A Review of the Direct Measurement of Total OH Reactivity: Ambient Air and Vehicular Emission
Abstract
:1. Introduction
2. Measurement Techniques of Total OH Reactivity
2.1. Total OH Reactivity Measurement System for Ambient Air
2.2. Total OH Reactivity Measurement System for Vehicles
3. Total OH Reactivity Observations
3.1. The Measured OH Reactivity for Ambient Air
3.1.1. Areas Dominated by Anthropogenic Emissions
3.1.2. Areas Dominated by Biogenic Emissions
3.1.3. Remote Areas
3.2. The Measured Total OH Reactivity for Vehicular Sources
3.2.1. The Total OH Reactivity Values
3.2.2. The Relative Species
3.3. Comparison of Total OH Reactivity between Ambient Air and Vehicular Emissions
4. Missing OH Reactivity
5. Discussion
5.1. Significance of Total OH Reactivity
5.2. Existing Problems and Prospects
- Exploring the possible interactions between OH radicals and particles, further improving the aerosol simulations.
- Developing more measurement techniques about the total reactivity of other radicals (NO3, HO2, etc.).
- 3.
- Exploring the impact of fuels, engines, after-treatment systems, and driving speed on the total OH reactivity for exhaust emission under strict quality control.
- 4.
- Evaluating the total OH reactivity in different evaporation emission processes (diurnal, hot soak, permeation, refueling, etc.) besides the headspace.
- 5.
- Adding the observation of OVOCs, I/SVOCs, and other organic reactive gases and, thus, evaluating the concentrations of mobile sources to the atmospheric chemistry.
- 6.
- Strengthening the measurement of total OH reactivity for more mobile sources (non-road machinery, ship, aviation, etc.).
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Ehhalt, D.H. Photooxidation of trace gases in the troposphere. Phys. Chem. Chem. Phys. 1999, 1, 5401–5408. [Google Scholar] [CrossRef]
- Lu, K.; Guo, S.; Tan, Z.; Wang, H.; Shang, D.; Liu, Y.; Li, X.; Wu, Z.; Hu, M.; Zhang, Y. Exploring atmospheric free-radical chemistry in China: The self-cleansing capacity and the formation of secondary air pollution. Natl. Sci. Rev. 2019, 6, 579–594. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.H.; Galbally, I.E. Known and unexplored organic constituents in the earth’s atmosphere. Environ. Sci. Technol. 2007, 41, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, T.A.; Brune, W.H. Total OH loss rate measurement. J. Atmos. Chem. 2001, 39, 105–122. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Tan, Z.; Lu, K.; Zhang, Y. Observations of OH Radical Reactivity in Field Studies. Acta Chim. Sin. 2019, 77, 613–624. [Google Scholar] [CrossRef]
- Lou, S.; Holland, F.; Rohrer, F.; Lu, K.; Bohn, B.; Brauers, T.; Chang, C.C.; Fuchs, H.; Haeseler, R.; Kita, K.; et al. Atmospheric OH reactivities in the Pearl River Delta—China in summer 2006: Measurement and model results. Atmos. Chem. Phys. 2010, 10, 11243–11260. [Google Scholar] [CrossRef]
- Nakashima, Y.; Kamei, N.; Kobayashi, S.; Kajii, Y. Total OH reactivity and VOC analyses for gasoline vehicular exhaust with a chassis dynamometer. Atmos. Environ. 2010, 44, 468–475. [Google Scholar] [CrossRef]
- Duan, L.; Yuan, Z.; Sha, Q.e.; Wang, M.; Liu, X.; Liu, Y.; Hao, Y.; Zheng, J. Investigation on the trend of emission characteristics of volatile organic compounds from motor vehicle exhaust under different emission standards. Acta Sci. Circumstantiae 2021, 41, 1239–1249. [Google Scholar]
- Qi, L.; Zhao, J.; Li, Q.; Su, S.; Lai, Y.; Deng, F.; Man, H.; Wang, X.; Shen, X.e.; Lin, Y.; et al. Primary organic gas emissions from gasoline vehicles in China: Factors, composition and trends. Environ. Pollut. 2021, 290, 117984. [Google Scholar] [CrossRef]
- Cao, X.; Yao, Z.; Shen, X.; Ye, Y.; Jiang, X. On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China. Atmos. Environ. 2016, 124, 146–155. [Google Scholar] [CrossRef]
- Wallington, T.J.; Anderson, J.E.; Dolan, R.H.; Winkler, S.L. Vehicle Emissions and Urban Air Quality: 60 Years of Progress. Atmosphere 2022, 13, 650. [Google Scholar] [CrossRef]
- Zhang, Z.; Man, H.; Zhao, J.; Jiang, Y.; Zeng, M.; Cai, Z.; Huang, C.; Huang, W.; Zhao, H.; Jing, S.; et al. Primary organic gas emissions in vehicle cold start events: Rates, compositions and temperature effects. J. Hazard. Mater. 2022, 435, 128979. [Google Scholar] [CrossRef] [PubMed]
- Karavalakis, G.; Short, D.; Vu, D.; Villela, M.; Asa-Awuku, A.; Durbin, T.D. Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends. Fuel 2014, 128, 410–421. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Zardini, A.A.; Platt, S.M.; Hellebust, S.; Pieber, S.M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prevot, A.S.H.; et al. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle. Atmos. Environ. 2015, 117, 200–211. [Google Scholar] [CrossRef]
- Saliba, G.; Saleh, R.; Zhao, Y.; Presto, A.A.; Larnbe, A.T.; Frodin, B.; Sardar, S.; Maldonado, H.; Maddox, C.; May, A.A.; et al. Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts. Environ. Sci. Technol. 2017, 51, 6542–6552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ge, Y.; Li, J.; Wang, X.; Tan, J.; Hao, L.; Xu, H.; Hao, C.; Wang, J.; Qian, L. Effects of ethanol and aromatic contents of fuel on the non-regulated exhaust emissions and their ozone forming potential of E10-fueled China-6 compliant vehicles. Atmos. Environ. 2021, 264, 118688. [Google Scholar] [CrossRef]
- Yang, J.; Roth, P.; Durbin, T.D.; Johnson, K.C.; Cocker, D.R., III; Asa-Awuku, A.; Brezny, R.; Geller, M.; Karavalakis, G. Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles. Environ. Sci. Technol. 2018, 52, 3275–3284. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.-D.; Shao, M.; Lu, S.-H. Missing in total OH reactivity of VOCs from gasoline evaporation. Chin. Chem. Lett. 2015, 26, 1246–1248. [Google Scholar] [CrossRef]
- Shen, X.; Liu, S.; Yuan, B.; Yuan, Z.; Yang, H.; Chen, J.; Lou, S. Measurement of OH Reactivity of Diesel Vehicles Exhaust Based on LIF Method. J. Atmos. Environ. Opt. 2020, 15, 269–284. [Google Scholar]
- Sha, Q.E.; Liu, X.; Yuan, Z.; Zheng, J.; Lou, S.; Wang, H.; Li, X.; Yu, F. Upgrading Emission Standards Inadvertently Increased OH Reactivity from Light-Duty Diesel Truck Exhaust in China: Evidence from Direct LP-LIF Measurement. Environ. Sci. Technol. 2022, 56, 9968–9977. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shao, M.; Wang, X.; Noelscher, A.C.; Kessel, S.; Guenther, A.; Williams, J. Towards a quantitative understanding of total OH reactivity: A review. Atmos. Environ. 2016, 134, 147–161. [Google Scholar] [CrossRef]
- Sadanaga, Y.; Yoshino, A.; Watanabe, K.; Yoshioka, A.; Wakazono, Y.; Kanaya, Y.; Kajii, Y. Development of a measurement system of OH reactivity in the atmosphere by using a laser-induced pump and probe technique. Rev. Sci. Instrum. 2004, 75, 2648–2655. [Google Scholar] [CrossRef]
- Muller, J.B.A.; Elste, T.; Plass-Duelmer, C.; Stange, G.; Holla, R.; Claude, A.; Englert, J.; Gilge, S.; Kubistin, D. A novel semi-direct method to measure OH reactivity by chemical ionization mass spectrometry (CIMS). Atmos. Meas. Tech. 2018, 11, 4413–4433. [Google Scholar] [CrossRef]
- Sinha, V.; Williams, J.; Crowley, J.N.; Lelieveld, J. The comparative reactivity method—A new tool to measure total OH reactivity in ambient air. Atmos. Chem. Phys. 2008, 8, 2213–2227. [Google Scholar] [CrossRef]
- Wang, W.; Qi, J.; Zhou, J.; Yuan, B.; Peng, Y.; Wang, S.; Yang, S.; Williams, J.; Sinha, V.; Shao, M. The improved comparative reactivity method (ICRM): Measurements of OH reactivity under high-NOx conditions in ambient air. Atmos. Meas. Tech. 2021, 14, 2285–2298. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, Z.; Sha, Q.E.; Lou, S.; Wang, H.; Li, X.; Zheng, J.; Yuan, B.; Shao, M. Direct identification of total and missing OH reactivities from light-duty gasoline vehicle exhaust in China based on LP-LIF measurement. J. Environ. Sci. 2023, 133, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Holland, F.; Hessling, M.; Hofzumahaus, A. In-Situ Measurement of Tropospheric Oh Radicals by Laser-Induced Fluorescence—A Description of the Kfa Instrument. J. Atmos. Sci. 1995, 52, 3393–3401. [Google Scholar] [CrossRef]
- Holland, F.; Hofzumahaus, A.; Schafer, R.; Kraus, A.; Patz, H.W. Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ. J. Geophys. Res.-Atmos. 2003, 108, PHO 2-1–PHO 2-23. [Google Scholar] [CrossRef]
- Fuchs, H.; Novelli, A.; Rolletter, M.; Hofzumahaus, A.; Pfannerstill, E.Y.; Kessel, S.; Edtbauer, A.; Williams, J.; Michoud, V.; Dusanter, S.; et al. Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR. Atmos. Meas. Tech. 2017, 10, 4023–4053. [Google Scholar] [CrossRef]
- Zannoni, N.; Gros, V.; Lanza, M.; Sarda, R.; Bonsang, B.; Kalogridis, C.; Preunkert, S.; Legrand, M.; Jambert, C.; Boissard, C.; et al. OH reactivity and concentrations of biogenic volatile organic compounds in a Mediterranean forest of downy oak trees. Atmos. Chem. Phys. 2016, 16, 1619–1636. [Google Scholar] [CrossRef]
- Hansen, R.F.; Blocquet, M.; Schoemaecker, C.; Leonardis, T.; Locoge, N.; Fittschen, C.; Hanoune, B.; Stevens, P.S.; Sinha, V.; Dusanter, S. Intercomparison of the comparative reactivity method (CRM) and pump-probe technique for measuring total OH reactivity in an urban environment. Atmos. Meas. Tech. 2015, 8, 4243–4264. [Google Scholar] [CrossRef]
- Kovacs, T.A.; Brune, W.H.; Harder, H.; Martinez, M.; Simpas, J.B.; Frost, G.J.; Williams, E.; Jobson, T.; Stroud, C.; Young, V.; et al. Direct measurements of urban OH reactivity during Nashville SOS in summer 1999. J. Environ. Monit. 2003, 5, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Praplan, A.P.; Pfannerstill, E.Y.; Williams, J.; Hellen, H. OH reactivity of the urban air in Helsinki, Finland, during winter. Atmos. Environ. 2017, 169, 150–161. [Google Scholar] [CrossRef]
- Ren, X.R.; Harder, H.; Martinez, M.; Lesher, R.L.; Oliger, A.; Shirley, T.; Adams, J.; Simpas, J.B.; Brune, W.H. HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001. Atmos. Environ. 2003, 37, 3627–3637. [Google Scholar] [CrossRef]
- Shirley, T.R.; Brune, W.H.; Ren, X.; Mao, J.; Lesher, R.; Cardenas, B.; Volkamer, R.; Molina, L.T.; Molina, M.J.; Lamb, B.; et al. Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmos. Chem. Phys. 2006, 6, 2753–2765. [Google Scholar] [CrossRef]
- Mao, J.; Ren, X.; Chen, S.; Brune, W.H.; Chen, Z.; Martinez, M.; Harder, H.; Lefer, B.; Rappenglueck, B.; Flynn, J.; et al. Atmospheric oxidation capacity in the summer of Houston 2006: Comparison with summer measurements in other metropolitan studies. Atmos. Environ. 2010, 44, 4107–4115. [Google Scholar] [CrossRef]
- Dolgorouky, C.; Gros, V.; Sarda-Esteve, R.; Sinha, V.; Williams, J.; Marchand, N.; Sauvage, S.; Poulain, L.; Sciare, J.; Bonsang, B. Total OH reactivity measurements in Paris during the 2010 MEGAPOLI winter campaign. Atmos. Chem. Phys. 2012, 12, 9593–9612. [Google Scholar] [CrossRef]
- Kim, S.; Sanchez, D.; Wang, M.; Seco, R.; Jeong, D.; Hughes, S.; Barletta, B.; Blake, D.R.; Jung, J.; Kim, D.; et al. OH reactivity in urban and suburban regions in Seoul, South Korea—An East Asian megacity in a rapid transition. Faraday Discuss. 2016, 189, 231–251. [Google Scholar] [CrossRef]
- Whalley, L.K.; Stone, D.; Bandy, B.; Dunmore, R.; Hamilton, J.F.; Hopkins, J.; Lee, J.D.; Lewis, A.C.; Heard, D.E. Atmospheric OH reactivity in central London: Observations, model predictions and estimates of in situ ozone production. Atmos. Chem. Phys. 2016, 16, 2109–2122. [Google Scholar] [CrossRef]
- Yang, Y.; Shao, M.; Kessel, S.; Li, Y.; Lu, K.; Lu, S.; Williams, J.; Zhang, Y.; Zeng, L.; Noelscher, A.C.; et al. How the OH reactivity affects the ozone production efficiency: Case studies in Beijing and Heshan, China. Atmos. Chem. Phys. 2017, 17, 7127–7142. [Google Scholar] [CrossRef]
- Li, J.; Sakamoto, Y.; Kohno, N.; Fujii, T.; Matsuoka, K.; Takemura, M.; Zhou, J.; Nakagawa, M.; Murano, K.; Sadanaga, Y.; et al. Total hydroxyl radical reactivity measurements in a suburban area during AQUAS-Tsukuba campaign in summer 2017. Sci. Total Environ. 2020, 740, 139897. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Huo, J.; Wang, L.; Wang, Y.; Wu, S.; Yao, L.; Fu, Q.; Wang, L. Total OH Reactivity Measurements in a Suburban Site of Shanghai. J. Geophys. Res.-Atmos. 2022, 127, e2021JD035981. [Google Scholar] [CrossRef]
- Di Carlo, P.; Brune, W.H.; Martinez, M.; Harder, H.; Lesher, R.; Ren, X.R.; Thornberry, T.; Carroll, M.A.; Young, V.; Shepson, P.B.; et al. Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs. Science 2004, 304, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Sinha, V.; Williams, J.; Lelieveld, J.; Ruuskanen, T.M.; Kajos, M.K.; Patokoski, J.; Hellen, H.; Hakola, H.; Mogensen, D.; Boy, M.; et al. OH Reactivity Measurements within a Boreal Forest: Evidence for Unknown Reactive Emissions. Environ. Sci. Technol. 2010, 44, 6614–6620. [Google Scholar] [CrossRef] [PubMed]
- Hens, K.; Novelli, A.; Martinez, M.; Auld, J.; Axinte, R.; Bohn, B.; Fischer, H.; Keronen, P.; Kubistin, D.; Noelscher, A.C.; et al. Observation and modelling of HOx radicals in a boreal forest. Atmos. Chem. Phys. 2014, 14, 8723–8747. [Google Scholar] [CrossRef]
- Nakashima, Y.; Kato, S.; Greenberg, J.; Harley, P.; Karl, T.; Turnipseed, A.; Apel, E.; Guenther, A.; Smith, J.; Kajii, Y. Total OH reactivity measurements in ambient air in a southern Rocky mountain ponderosa pine forest during BEACHON-SRM08 summer campaign. Atmos. Environ. 2014, 85, 1–8. [Google Scholar] [CrossRef]
- Ramasamy, S.; Ida, A.; Jones, C.; Kato, S.; Tsurumaru, H.; Kishimoto, I.; Kawasaki, S.; Sadanaga, Y.; Nakashima, Y.; Nakayama, T.; et al. Total OH reactivity measurement in a BVOC dominated temperate forest during a summer campaign, 2014. Atmos. Environ. 2016, 131, 41–54. [Google Scholar] [CrossRef]
- Lew, M.M.; Rickly, P.S.; Bottorff, B.P.; Reidy, E.; Sklaveniti, S.; Leonardis, T.; Locoge, N.; Dusanter, S.; Kundu, S.; Wood, E.; et al. OH and HO2 radical chemistry in a midlatitude forest: Measurements and model comparisons. Atmos. Chem. Phys. 2020, 20, 9209–9230. [Google Scholar] [CrossRef]
- Pfannerstill, E.Y.; Reijrink, N.G.; Edtbauer, A.; Ringsdorf, A.; Zannoni, N.; Araujo, A.; Ditas, F.; Holanda, B.A.; Sa, M.O.; Tsokankunku, A.; et al. Total OH reactivity over the Amazon rainforest: Variability with temperature, wind, rain, altitude, time of day, season, and an overall budget closure. Atmos. Chem. Phys. 2021, 21, 6231–6256. [Google Scholar] [CrossRef]
- Sanchez, D.; Seco, R.; Gu, D.; Guenther, A.; Mak, J.; Lee, Y.; Kim, D.; Ahn, J.; Blake, D.; Herndon, S.; et al. Contributions to OH reactivity from unexplored volatile organic compounds measured by PTR-ToF-MS—A case study in a suburban forest of the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ) 2016. Atmos. Chem. Phys. 2021, 21, 6331–6345. [Google Scholar] [CrossRef]
- Ramasamy, S.; Nagai, Y.; Takeuchi, N.; Yamasaki, S.; Shoji, K.; Ida, A.; Jones, C.; Tsurumaru, H.; Suzuki, Y.; Yoshino, A.; et al. Comprehensive measurements of atmospheric OH reactivity and trace species within a suburban forest near Tokyo during AQUAS-TAMA campaign. Atmos. Environ. 2018, 184, 166–176. [Google Scholar] [CrossRef]
- Noelscher, A.C.; Yanez-Serrano, A.M.; Wolff, S.; de Araujo, A.C.; Lavric, J.V.; Kesselmeier, J.; Williams, J. Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity. Nat. Commun. 2016, 7, 10383. [Google Scholar] [CrossRef] [PubMed]
- Pfannerstill, E.Y.; Noelscher, A.C.; Yanez-Serrano, A.M.; Bourtsoukidis, E.; Kessel, S.; Janssen, R.H.H.; Tsokankunku, A.; Wolff, S.; Soergel, M.; Sa, M.O.; et al. Total OH Reactivity Changes Over the Amazon Rainforest During an El Nino Event. Front. For. Glob. Change 2018, 1, 12. [Google Scholar] [CrossRef]
- Edwards, P.M.; Evans, M.J.; Furneaux, K.L.; Hopkins, J.; Ingham, T.; Jones, C.; Lee, J.D.; Lewis, A.C.; Moller, S.J.; Stone, D.; et al. OH reactivity in a South East Asian tropical rainforest during the Oxidant and Particle Photochemical Processes (OP3) project. Atmos. Chem. Phys. 2013, 13, 9497–9514. [Google Scholar] [CrossRef]
- Noelscher, A.C.; Williams, J.; Sinha, V.; Custer, T.; Song, W.; Johnson, A.M.; Axinte, R.; Bozem, H.; Fischer, H.; Pouvesle, N.; et al. Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmos. Chem. Phys. 2012, 12, 8257–8270. [Google Scholar] [CrossRef]
- Kaiser, J.; Skog, K.M.; Baumann, K.; Bertman, S.B.; Brown, S.B.; Brune, W.H.; Crounse, J.D.; de Gouw, J.A.; Edgerton, E.S.; Feiner, P.A.; et al. Speciation of OH reactivity above the canopy of an isoprene-dominated forest. Atmos. Chem. Phys. 2016, 16, 9349–9359. [Google Scholar] [CrossRef]
- Noelscher, A.C.; Bourtsoukidis, E.; Bonn, B.; Kesselmeier, J.; Lelieveld, J.; Williams, J. Seasonal measurements of total OH reactivity emission rates from Norway spruce in 2011. Biogeosciences 2013, 10, 4241–4257. [Google Scholar] [CrossRef]
- Sinha, V.; Williams, J.; Diesch, J.M.; Drewnick, F.; Martinez, M.; Harder, H.; Regelin, E.; Kubistin, D.; Bozem, H.; Hosaynali-Beygi, Z.; et al. Constraints on instantaneous ozone production rates and regimes during DOMINO derived using in-situ OH reactivity measurements. Atmos. Chem. Phys. 2012, 12, 7269–7283. [Google Scholar] [CrossRef]
- Lu, K.D.; Hofzumahaus, A.; Holland, F.; Bohn, B.; Brauers, T.; Fuchs, H.; Hu, M.; Haeseler, R.; Kita, K.; Kondo, Y.; et al. Missing OH source in a suburban environment near Beijing: Observed and modelled OH and HO2 concentrations in summer 2006. Atmos. Chem. Phys. 2013, 13, 1057–1080. [Google Scholar] [CrossRef]
- Ren, X.R.; Brune, W.H.; Cantrell, C.A.; Edwards, G.D.; Shirley, T.; Metcalf, A.R.; Lesher, R.L. Hydroxyl and peroxy radical chemistry in a rural area of Central Pennsylvania: Observations and model comparisons. J. Atmos. Chem. 2005, 52, 231–257. [Google Scholar] [CrossRef]
- Ingham, T.; Goddard, A.; Whalley, L.K.; Furneaux, K.L.; Edwards, P.M.; Seal, C.P.; Self, D.E.; Johnson, G.P.; Read, K.A.; Lee, J.D.; et al. A flow-tube based laser-induced fluorescence instrument to measure OH reactivity in the troposphere. Atmos. Meas. Tech. 2009, 2, 465–477. [Google Scholar] [CrossRef]
- Fuchs, H.; Tan, Z.; Lu, K.; Bohn, B.; Broch, S.; Brown, S.S.; Dong, H.; Gomm, S.; Haeseler, R.; He, L.; et al. OH reactivity at a rural site (Wangdu) in the North China Plain: Contributions from OH reactants and experimental OH budget. Atmos. Chem. Phys. 2017, 17, 645–661. [Google Scholar] [CrossRef]
- Yoshino, A.; Nakashima, Y.; Miyazaki, K.; Kato, S.; Suthawaree, J.; Shimo, N.; Matsunaga, S.; Chatani, S.; Apel, E.; Greenberg, J.; et al. Air quality diagnosis from comprehensive observations of total OH reactivity and reactive trace species in urban central Tokyo. Atmos. Environ. 2012, 49, 51–59. [Google Scholar] [CrossRef]
- Hansen, R.F.; Griffith, S.M.; Dusanter, S.; Rickly, P.S.; Stevens, P.S.; Bertman, S.B.; Carroll, M.A.; Erickson, M.H.; Flynn, J.H.; Grossberg, N.; et al. Measurements of total hydroxyl radical reactivity during CABINEX 2009-Part 1: Field measurements. Atmos. Chem. Phys. 2014, 14, 2923–2937. [Google Scholar] [CrossRef]
- Ren, X.; Brune, W.H.; Oliger, A.; Metcalf, A.R.; Simpas, J.B.; Shirley, T.; Schwab, J.J.; Bai, C.; Roychowdhury, U.; Li, Y.; et al. OH, HO2, and OH reactivity during the PMTACS-NY Whiteface Mountain 2002 campaign: Observations and model comparison. J. Geophys. Res.-Atmos. 2006, 111, D10S03. [Google Scholar] [CrossRef]
- Chatani, S.; Shimo, N.; Matsunaga, S.; Kajii, Y.; Kato, S.; Nakashima, Y.; Miyazaki, K.; Ishii, K.; Ueno, H. Sensitivity analyses of OH missing sinks over Tokyo metropolitan area in the summer of 2007. Atmos. Chem. Phys. 2009, 9, 8975–8986. [Google Scholar] [CrossRef]
- Kato, S.; Sato, T.; Kajii, Y. “A method to estimate the contribution of unidentified VOCs to OH reactivity”. Atmos. Environ. 2011, 45, 5531–5539. [Google Scholar] [CrossRef]
- Ning, J.; Yan, F. Temperature Control of Electrically Heated Catalyst for Cold-start Emission Improvement. In Proceedings of the 8th IFAC Symposium on Advances in Automotive Control (AAC), Norrkoping, Sweden, 20–23 June 2016; pp. 14–19. [Google Scholar]
- Lelieveld, J.; Butler, T.M.; Crowley, J.N.; Dillon, T.J.; Fischer, H.; Ganzeveld, L.; Harder, H.; Lawrence, M.G.; Martinez, M.; Taraborrelli, D.; et al. Atmospheric oxidation capacity sustained by a tropical forest. Nature 2008, 452, 737–740. [Google Scholar] [CrossRef]
- Peeters, J.; Nguyen, T.L.; Vereecken, L. HOx radical regeneration in the oxidation of isoprene. Phys. Chem. Chem. Phys. 2009, 11, 5935–5939. [Google Scholar] [CrossRef]
- Hofzumahaus, A.; Rohrer, F.; Lu, K.; Bohn, B.; Brauers, T.; Chang, C.-C.; Fuchs, H.; Holland, F.; Kita, K.; Kondo, Y.; et al. Amplified Trace Gas Removal in the Troposphere. Science 2009, 324, 1702–1704. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Ma, J.; Chu, B.; Hu, R.; Li, H.; Gao, M.; Liu, Y.; Wang, Y.; Ma, Q.; Xie, P.; et al. Generation and Release of OH Radicals from the Reaction of H2O with O2 over Soot. Angew. Chem.-Int. Ed. 2022, 61, e202201638. [Google Scholar] [CrossRef] [PubMed]
- Baral, A.; Das, D.P.; Minakshi, M.; Ghosh, M.K.; Padhi, D.K. Probing Environmental Remediation of RhB Organic Dye Using α-MnO2 under Visible- Light Irradiation: Structural, Photocatalytic and Mineralization Studies. Chemistryselect 2016, 1, 4277–4285. [Google Scholar] [CrossRef]
- Ash, B.; Nalajala, V.S.; Popuri, A.K.; Subbaiah, T.; Minakshi, M. Perspectives on Nickel Hydroxide Electrodes Suitable for Rechargeable Batteries: Electrolytic vs. Chemical Synthesis Routes. Nanomaterials 2020, 10, 1878. [Google Scholar] [CrossRef] [PubMed]
- Palmgren, F.; Berkowicz, R.; Ziv, A.; Hertel, O. Actual car fleet emissions estimated from urban air quality measurements and street pollution models. Sci. Total Environ. 1999, 235, 101–109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X. A Review of the Direct Measurement of Total OH Reactivity: Ambient Air and Vehicular Emission. Sustainability 2023, 15, 16246. https://doi.org/10.3390/su152316246
Yang X. A Review of the Direct Measurement of Total OH Reactivity: Ambient Air and Vehicular Emission. Sustainability. 2023; 15(23):16246. https://doi.org/10.3390/su152316246
Chicago/Turabian StyleYang, Xinping. 2023. "A Review of the Direct Measurement of Total OH Reactivity: Ambient Air and Vehicular Emission" Sustainability 15, no. 23: 16246. https://doi.org/10.3390/su152316246
APA StyleYang, X. (2023). A Review of the Direct Measurement of Total OH Reactivity: Ambient Air and Vehicular Emission. Sustainability, 15(23), 16246. https://doi.org/10.3390/su152316246