Does AI Application Matter in Promoting Carbon Productivity? Fresh Evidence from 30 Provinces in China
Abstract
:1. Introduction
2. Theoretical Analysis and Hypothesis
2.1. Direct Impact of AI Application on Carbon Productivity
2.2. Intermediate Transmission Mechanisms of AI Application That Affect Carbon Productivity
2.3. Nonlinear Regulating Effect of Manufacturing Agglomeration on AI Application and Carbon Productivity
3. Materials and Methods
3.1. Empirical Model Construction
3.2. Variable Definitions
3.2.1. Explained Variable: Carbon Productivity (CP)
3.2.2. Core Explanatory Variable: AI Application (AI)
3.2.3. Mediating Variables
3.2.4. Moderator Variables
3.2.5. Control Variables
3.3. Study Area, Data Sources, and Software
3.4. Preliminary Empirical Observation
4. Empirical Results
4.1. Baseline Regression
4.2. Robustness Test
4.3. Heterogeneity Test
4.4. Intermediate Effect Test
4.5. Nonlinear Regulating Effect Test
5. Discussion and Limitations
5.1. Discussion
5.2. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Barrage, L.; Nordhaus, W.D. Policies, Projections, and the Social Cost of Carbon: Results from the DICE-2023 Model; National Bureau of Economic Research: Cambridge, MA, USA, 2023. [Google Scholar]
- Taghizadeh-Hesary, F.; Yoshino, N.; Mohsin, M.; Mirza, N. Introduction: Ways to achieve green economic recovery and mitigate greenhouse gases in the post-COVID-19 era. Clim. Change Econ. 2022, 13, 2203002. [Google Scholar] [CrossRef]
- Yoshino, N.; Taghizadeh-Hesary, F.; Otsuka, M. COVID-19 and optimal portfolio selection for investment in sustainable development goals. Financ. Res. Lett. 2021, 38, 101695. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, Z.; Zhang, Y.; Liu, Y.; Osman, A.I.; Farghali, M.; Hua, J.; Al-Fatesh, A.; Ihara, I.; Rooney, D.W.; et al. Artificial intelligence-based solutions for climate change: A review. Environ. Chem. Lett. 2023, 21, 2525–2557. [Google Scholar] [CrossRef]
- Maher, H.; Meinecke, H.; Gromier, D.; Garcia-Novelli, M.; Fortmann, R. How AI Can Be a Powerful Tool in the Fight against Climate Change. Available online: https://web-assets.bcg.com/ff/d7/90b70d9f405fa2b67c8498ed39f3/ai-for-the-planet-bcg-report-july-2022.pdf (accessed on 4 April 2023).
- Chang, L.; Taghizadeh-Hesary, F.; Mohsin, M. Role of artificial intelligence on green economic development: Joint determinates of natural resources and green total factor productivity. Resour. Policy 2023, 82, 103508. [Google Scholar] [CrossRef]
- Dinga, C.D.; Wen, Z. China’s green deal: Can China’s cement industry achieve carbon neutral emissions by 2060? Renew. Sustain. Energy Rev. 2022, 155, 111931. [Google Scholar] [CrossRef]
- Li, Y.N.; He, Q.; Wang, Q. Research on total factor productivity measurement of artificial intelligence listed companies and its impact on employment. Hum. Resour. Dev. China 2020, 37, 62–74. [Google Scholar]
- Fan, X.N.; Meng, F.K.; Bao, X.N.; Qu, G. Whether artificial intelligence has a “productivity paradox” for manufacturing companies? Sci. Technol. Prog. Policy 2020, 37, 125–134. [Google Scholar]
- Acemoglu, D.; Pascual, R. Artificial Intelligence, Automation, and Work; University of Chicago Press: Chicago, IL, USA, 2018. [Google Scholar]
- Cao, Y.R.; Liu, J.; Shao, J. Replace or create: How does intelligence affect manufacturing employment in China? Bus. Rev. 2023, 35, 37–49. [Google Scholar]
- Qiu, Y.; Zhang, W.G. Robot applications and labor employment: Empirical evidence from manufacturing companies in China. J. Guangdong Univ. Financ. Econ. 2023, 38, 18–36. [Google Scholar]
- Li, L.; Wang, X.X.; Bao, Q. Employment effects of AI robots: Mechanisms and the Chinese experience. J. Manag. World 2021, 37, 104–119. [Google Scholar]
- He, X.G.; Liu, K.M. Robots, Job Tasks and Employment Polarization Effect:Evidence from China’s Industrial Enterprises. J. Quant. Tech. Econ. 2023, 40, 52–71. [Google Scholar]
- Xue, L.; Zhang, H.Y. lmpact and challenge of the fourth industrial revolution to the construction of China’s environmental governance system. China Popul. Resour. Environ. 2017, 27, 1–5. [Google Scholar]
- Liu, Z.; Sun, Y.; Xing, C.; Liu, J.; He, Y.; Zhou, Y.; Zhang, G. Artificial intelligence powered large-scale renewable integrations in multi-energy systems for carbon neutrality transition: Challenges and future perspectives. Energy AI 2022, 10, 100195. [Google Scholar] [CrossRef]
- Chen, P.; Gao, J.; Ji, Z.; Liang, H.; Peng, Y. Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities. Energies 2022, 15, 5730. [Google Scholar] [CrossRef]
- Xu, X.; Song, Y. Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China. Sustainability 2023, 15, 12437. [Google Scholar] [CrossRef]
- Priya, A.K.; Devarajan, B.; Alagumalai, A.; Song, H. Artificial intelligence enabled carbon capture: A review. Sci. Total Environ. 2023, 886, 163913. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Yang, L.G. How does producer services agglomeration affect the structural upgrading of manufacturing industry? A comprehensive framework of agglomeration economy and Schumpeter’s endogenous growth theory. Manag. World 2020, 2, 72–94. [Google Scholar]
- Tian, R.Z.; Cao, G.H.; Xiang, S.L.; Gao, X.W.; Su, L.P. Study on the influence and spatial effect of regional innovation and entrepreneurship capacity on carbon emission in the Yangtze River Economic Belt. Resour. Environ. Yangtze Basin 2023, 32, 1365–1378. [Google Scholar]
- Grant, D.; Jorgenson, A.K.; Longhofer, W. How organizational and global factors condition the effects of energy efficiency on CO2 emission rebounds among the world’s power plants. Energy Policy 2016, 94, 89–93. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Zhu, W.P. Can industrial agglomeration bring about economic efficiency: Model regulation effect and crowding effect. Ind. Econ. Res. 2013, 3, 12–22. [Google Scholar]
- Guo, Y.N. The Influence of AI Development on Green Total Factor Productivity in China:An Empirical Study Based on GMM and Threshold Model of Dynamic System. J. Hebei Agric. Univ. 2021, 23, 29–37. [Google Scholar]
- He, D.A.; Li, H.Z. Formation mechanism and development of industrial monopoly in the era of big data. Soc. Sci. Front. 2022, 2, 53–64. [Google Scholar]
- Sun, X.B.; Zhou, J.M.; Zhang, M.C. Data-Intelligence Empowerment Drives the Realization Mechanism of Scene Value Creation: Case Analysis Based on Haier Zhijia and Xiaomi. J. Technol. Econ. 2022, 41, 181–195. [Google Scholar]
- Zhou, J.Q.; Chen, D.; Xia, N.X. The action mechanism and empowerment effect of artificial intelligence on green economic growth: Perspective of industrial structure optimization. Sci. Technol. Prog. Policy 2023, 40, 45–55. [Google Scholar]
- Zhang, W.B. Artificial intelligence in environmental governance. J. Int. Soc. Sci. 2019, 10, 56–62+84. [Google Scholar]
- Xue, F.; Liu, J.Q.; Fu, Y.M. The Effect of Artificial Intelligence Technology on Carbon Emissions. Sci. Technol. Prog. Policy 2022, 39, 1–9. [Google Scholar]
- Diodato, D.; Weterings, A.B.R. The resilience of regional labour markets to economic shocks: Exploring the role of interactions among firms and workers. J. Econ. Geogr. 2015, 15, 723–742. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and jobs: Evidence from US labor markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
- Wei, W. Does Innovation Effect of AI Employment Compensate for Substitution Effect? Enterp. Econ. 2021, 40, 137–145. [Google Scholar]
- Kang, Q.; Lin, G.H. Industrial Robots and Migrant Workers’ Employment:Substitution or Promotion. J. Shanxi Univ. Financ. Econ. 2021, 43, 43–56. [Google Scholar]
- Schumpeter, J.A. The Theory of Economic Development; Harvard University Press: Cambridge, MA, USA, 1934. [Google Scholar]
- Shi, D.; Ye, Y.L. Artificial Intelligence, Employment Structure and High-Quality Development. Contemp. Financ. Econ. 2023, 462, 3–14. [Google Scholar]
- Cheng, Y.; Sun, Y.X.; Wang, X.J.; Yin, J.Z. Research on the impact of global scientific and technological innovation on carbon productivity and countermeasures. China Popul. Resour. Environ. 2019, 29, 30–40. [Google Scholar]
- Marshall, A. Principles Of Economics; Macmillan: London, UK, 1890; ISBN 978-0-2302-4929-5. [Google Scholar]
- Krugman, P. Increasing returns and economic geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Shao, Z.D.; Su, D.N. Industrial agglomeration and export domestic value-added of enterprises: Localization path of GVC upgrading. J. Manag. World 2019, 35, 9–29. [Google Scholar]
- Zhang, P.D.; Tu, X.W. Study on the influence of manufacturing agglomeration on improving urban carbon total factor productivity. Urban Probl. 2023, 6, 37–45. [Google Scholar]
- Yan, F.Z.; Su, L.; Qiao, J. The exploration of the relationship between the industrial agglomeration’s developments and the environmental pollution—The evidence from the manufacturing in China. Stud. Sci. Sci. 2011, 29, 79–83+120. [Google Scholar]
- Zhang, P.D.; Tu, X.W. The Bilateral Impact of manufacturing agglomeration on green economy efficiency. Econ. Theory Bus. Manag. 2021, 41, 35–53. [Google Scholar]
- Lu, F.Z.; Yang, H.C. Industrial Co-agglomeration and Environmental Pollution Control: Lmpetus or Resistance. J. Guangdong Univ. Financ. Econ. 2020, 35, 16–29. [Google Scholar]
- Li, X.W.; Li, N.; Xie, Y.F. Digital Economy, Manufacturing Agglomeration and Carbon Productivity. J. Zhongnan Univ. Econ. Law 2022, 255, 131–145. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Sun, H.P.; Du, X.M. The impact of global value chain embedment degree and position on industrial carbon productivity. China Popul. Resour. Environ. 2020, 30, 27–37. [Google Scholar]
- Intergovernmental Panel on Climage Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Han, M.C.; Han, Q.J.; Xia, L. The Impact of Industrial Robot Application on Manufacturing Employment: An Empirical Study Based on the Data of Prefecture Level Cities in China. Reform 2020, 3, 22–39. [Google Scholar]
- Wang, Y.Q.; Dong, W. How the Rise of Robots Has Affected China’s Labor Market:Evidence from China’s Listed anufacturing Firms. Econ. Res. J. 2020, 55, 159–175. [Google Scholar]
- Lan, T.; Jing, Y.J. Comparative study on human capital difference in the process of economic growth in two typical provinces. Econ. Rev. J. 2012, 1, 30–33. [Google Scholar]
- Shpak, N.; Odrekhivsky, M.; Doroshkevych, K.; Sroka, W. Simulation of innovative systems under industry 4.0 conditions. Soc. Sci. 2019, 8, 202. [Google Scholar] [CrossRef]
- Gu, Y.J.; Dong, X.X.; Ren, Y.Z. Theoretical analysis and test of new product R8D activities in industrial enterprises. Econ. Probl. 2022, 9, 84–90. [Google Scholar]
- Combes, P.P. Economic Structure and Local Growth: France 1984–1993. J. Urban Econ. 2020, 47, 329–355. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Gao, G.L. Environmental regulation, technological innovation and carbon productivity. J. Arid Land Resour. Environ. 2020, 34, 1–6. [Google Scholar]
- Yang, R.F.; Lu, Y. Research on the impact of artificial intelligence on the high-quality development of manufacturing industry. East China Econ. Manag. 2023, 37, 65–76. [Google Scholar]
- Gai, M.; Shang, Q.F.; He, Y.N. Spatiotemporal changes and influencing factors of agricultural green development levelin main grain-producing areas in Northeast China. Resour. Sci. 2022, 44, 927–942. [Google Scholar]
- Ma, H. Influence of urbanization and industrialization on China’s energy consumption. China Soft Sci. 2012, 1, 176–182. [Google Scholar] [CrossRef]
- Hu, X.P.; Xu, P. The influence of FDI quality characteristics on the high-quality development of China’s economy. J. Int. Trade 2020, 10, 31–50. [Google Scholar]
- Tian, Z.H.; Wu, Y.Y.; Wang, X.L. How does foreign direct investment affect carbon productivity? Ecol. Econ. 2023, 39, 13–23+32. [Google Scholar]
- Zhou, H.J. Spatial agglomeration of economy and the development of artificial intelligence: An empirical test based on industrial robot data. Rev. Ind. Econ. 2022, 5, 154–173. [Google Scholar]
- Cheng, H.F.; Yu, P.; Hong, C.X. Does human capital quality improve regional innovation performance? From the perspective of intellectual property protection. Technol. Econ. 2023, 42, 13–25. [Google Scholar]
- Li, L.; Ding, L.T. Spatial and temporal evolution and distribution dynamics of regional science and technology innovation in China. Stat. Decis. 2023, 39, 169–173. [Google Scholar]
- Liu, Z.Y.; Tan, W.X. Study on the influence of advanced manufacturing agglomeration on economic growth in China. J. Shenyang Univ. Technol. 2023, 16, 325–331. [Google Scholar]
- Gelman, A.; Hills, J. Data Analysis Using Regression and Multilevel/Hierarchical Models, 1st ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Xie, X.L.; Shen, Y.; Zhang, H.X.; Guo, F. Can digital finance boost entrepreneurship? Evidence from China. China Econ. Q. 2018, 17, 1557–1580. [Google Scholar]
- Lu, M.; Chen, D. Urbanization, urban-oriented economic policies and urban-rural income gap. Econ. Res. J. 2004, 6, 50–58. [Google Scholar]
- Huang, S.; Ye, W.; Han, F. Does the Digital Economy Promote Industrial Collaboration and Agglomeration? Evidence from 286 Cities in China. Sustainability 2023, 15, 14545. [Google Scholar] [CrossRef]
- Chen, M.; Hu, X.; Zhang, J.; Xu, Z.; Yang, G.; Sun, Z. Are Firms More Willing to Seek Green Technology Innovation in the Context of Economic Policy Uncertainty?—Evidence from China. Sustainability 2023, 15, 14188. [Google Scholar] [CrossRef]
- Li, C.; He, Q.; Ji, H.; Yu, S.; Wang, J. Reexamining the Impact of Global Value Chain Participation on Regional Economic Growth: New Evidence Based on a Nonlinear Model and Spatial Spillover Effects with Panel Data from Chinese Cities. Sustainability 2023, 15, 13835. [Google Scholar] [CrossRef]
- Huang, Q.; Fang, S.L. Research on the Influence and Mechanism of Population Structure on Artificial Intelligence. Inq. Into Econ. Issues 2020, 8, 106–118. [Google Scholar]
- Qin, J.Q.; Hu, Y.L.; Li, P. Does the development of the Internet promote the diversification of producer services? Intermediary mechanism and empirical evidence. J. Xi’an Jiaotong Univ. 2021, 41, 26–35. [Google Scholar]
- Li, Y.; Zhang, Y.; Pan, A.; Han, M.; Veglianti, E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technol. Soc. 2022, 70, 102034. [Google Scholar] [CrossRef]
- Shao, S.; Xu, J. “Green+ intelligent manufacturing” enables the high-quality development of advanced manufacturing. People’s Trib. 2023, 17, 25–36. [Google Scholar]
- Anton, K.; Joseph, S.; Shi, J.B. Artificial Intelligence, Globalization and economic development strategies. J. Int. Soc. Sci. 2021, 9, 10–23. [Google Scholar]
- Zhang, W.Y. The influence of industrial structure rationalization on regional carbon productivity: An analysis based on DEA-Malmquist index method. J. Xiangtan Univ. 2014, 38, 74–78. [Google Scholar]
- Zhang, X.F.; Song, G.; Yan, Y. The Influence of Factor Inputs on China’s Industrial Carbon Productivity: Empirical Evidence Based on the Heckman Model. Econ. Probl. 2021, 6, 60–64. [Google Scholar]
- Guo, F.; Sun, Y.J.; Meng, S.Q. Digital economy, technological innovation and carbon productivity. World Surv. Res. 2022, 9, 12–19. [Google Scholar]
- Xu, D.L.; Li, L. On the regional differences and the driving factors of China’s carbon productivity under the background of low carbon transformation. J. Qingdao Univ. Sci. Technol. 2014, 30, 60–65. [Google Scholar]
- Sheng, X.F. Political performance appeals, high-quality economic development and smog pollution. J. Shanxi Univ. Financ. Econ. 2022, 44, 16–28. [Google Scholar]
- Yao, H.; Gu, X.; Yu, Q. Impact of Graduate Student Expansion and Innovative Human Capital on Green Total Factor Productivity. Sustainability 2023, 15, 1721. [Google Scholar] [CrossRef]
- Song, T.; Rong, T.T. Analysis on the influence of human capital agglomeration and spillover effect on green production. Jianghuai Trib. 2016, 3, 46–53. [Google Scholar]
- Cao, Z.; Liu, X. Spatial econometric analysis of the influence of human capital structure on green total factor productivity. Sci. Technol. Manag. Res. 2022, 42, 232–243. [Google Scholar]
- Shao, S.; Fan, M.T.; Yang, L.L. Economic restructuring, green technology progress and low-carbon transformation in China: An empirical study from the perspective of overall technology frontier and spatial spillover effect. J. Manag. World 2022, 38, 46–69+4–10. [Google Scholar]
- Zheng, Q.; Lin, B. Impact of industrial agglomeration on energy efficiency in China’s paper industry. J. Clean. Prod. 2018, 184, 1072–1080. [Google Scholar] [CrossRef]
- Wang, C.; Han, A.; Gong, W.; Zhao, M.; Li, W. Threshold Effect of Manufacturing Agglomeration on Eco-Efficiency in the Yellow River Basin of China. Sustainability 2023, 15, 14151. [Google Scholar] [CrossRef]
- Shapiro, J.S.; Walker, R. Why is pollution from us manufacturing declining? The roles of environmental regulation, productivity, and trade. Am. Econ. Rev. 2018, 108, 3814–3854. [Google Scholar] [CrossRef]
Variable Types | Abbreviations | Definition | Unit | Source |
---|---|---|---|---|
Explained variable | CP | Carbon productivity | 10 million yuan per thousand tons | Statistical Yearbook |
Core explanatory variable | AI | AI penetration | per 1 million people | IFR Statistical Yearbook |
Mediating variables | HC | Human capital | per thousand people | Statistical Yearbook |
LnInn | Innovation level | 10 thousand yuan | ||
Moderator variables | MA | Manufacturing agglomeration | / | |
Control variables | Urb | Urbanization level | / | |
PGDP | Economic development | 10 thousand yuan | ||
LnOpe | Opening up | 10 thousand yuan | ||
Ind | Industrialization | / | ||
LnEdu | Education support | 10 thousand yuan |
Abbreviations | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
OBS | Mean | Sd | Min | Max | |
CP | 300 | 0.620 | 0.444 | 0.112 | 3.082 |
AI | 300 | 19.096 | 22.283 | 0.607 | 119.344 |
HC | 300 | 1.354 | 2.962 | 0.001 | 25.994 |
LnInn | 300 | 14.261 | 1.392 | 10.41 | 17.47 |
MA | 300 | 0.835 | 0.346 | 0.292 | 1.824 |
Urb | 300 | 0.577 | 0.126 | 0.338 | 0.896 |
PGDP | 300 | 1.259 | 0.781 | 0.476 | 4.712 |
LnOpe | 300 | 17.189 | 1.56 | 12.837 | 20.392 |
Ind | 300 | 0.330 | 0.085 | 0.113 | 0.556 |
LnEdu | 300 | 15.950 | 0.690 | 13.810 | 17.711 |
Variables | OLS | FE | |||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
AI | 0.005 *** | 0.004 *** | 0.002 ** | 0.003 *** | 0.002 *** | 0.002 *** | 0.002 *** |
(5.21) | (4.85) | (2.08) | (3.92) | (2.95) | (3.12) | (2.89) | |
Urb | −1.341 *** | −2.869 *** | −1.315 *** | −1.907 *** | −1.717 *** | −2.265 *** | |
(−4.43) | (−4.59) | (−2.78) | (−3.71) | (−3.34) | (−3.83) | ||
PGDP | 0.440 *** | 0.860 *** | 0.827 *** | 0.885 *** | 0.818 *** | ||
(9.53) | (14.77) | (14.05) | (14.23) | (11.43) | |||
lnOpe | −0.001 | 0.080 *** | 0.074 ** | 0.078 *** | |||
(−0.03) | (2.75) | (2.57) | (2.72) | ||||
Ind | −0.744 *** | 0.641 *** | 0.632 *** | ||||
(−3.17) | (2.65) | (2.62) | |||||
lnEdu | 0.240 *** | 0.190 * | |||||
(5.11) | (1.85) | ||||||
Constant | −2.829 *** | 0.394 *** | 1.888 *** | 0.064 | −0.923 ** | −1.231 *** | −3.865 ** |
(−5.51) | (15.73) | (5.78) | (0.24) | (−2.06) | (−2.69) | (−2.58) | |
Province FE | NO | YES | YES | YES | YES | YES | YES |
Year FE | NO | YES | YES | YES | YES | YES | YES |
Observations | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
0.607 | 0.595 | 0.625 | 0.797 | 0.803 | 0.808 | 0.811 | |
F test | 64.54 *** | ||||||
Hausman test | 19.41 *** |
Variables | Method 1 | Method 2 | Method 3 | |
---|---|---|---|---|
W | RCE | RE | IV | |
(1) | (2) | (3) | (4) | |
AI | 0.003 *** | 0.012 *** | 0.001 *** | 0.002 *** |
(4.13) | (3.07) | (0.00) | (2.98) | |
Urb | −1.686 *** | −2.434 *** | 0.242 * | −2.440 *** |
(−3.03) | (−4.40) | (0.15) | (−4.04) | |
PGDP | 0.615 *** | 0.695 *** | 0.127 *** | 0.734 *** |
(9.15) | (9.20) | (0.02) | (10.70) | |
lnOpe | 0.073 *** | 0.099 *** | 0.020 *** | 0.052 * |
(2.69) | (3.63) | (0.01) | (1.84) | |
Ind | 0.408 * | 0.570 ** | 0.277 *** | 0.583 ** |
(1.80) | (2.37) | (0.06) | (2.54) | |
lnEdu | 0.290 *** | 0.173 * | 0.071 *** | 0.274 *** |
(2.99) | (1.67) | (0.02) | (2.69) | |
Constant | −5.286 *** | −3.684 ** | −1.651 *** | −4.115 *** |
(−3.76) | (−2.46) | (0.37) | (−2.83) | |
Province FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Observations | 300 | 300 | 300 | 270 |
0.807 | 0.811 | 0.716 | 0.968 |
Variables | East | Central–West | ||
---|---|---|---|---|
2010–2016 | 2017–2019 | 2010–2016 | 2017–2019 | |
(1) | (2) | (3) | (4) | |
AI | 0.002 | 0.006 ** | 0.008 *** | 0.002 * |
(1.04) | (2.74) | (4.27) | (1.98) | |
Urb | −4.123 *** | −2.933 | −0.623 | 5.558 ** |
(−6.93) | (−1.12) | (−0.53) | (2.52) | |
PGDP | 1.042 *** | 0.362 ** | 0.820 *** | −0.073 |
(12.74) | (2.36) | (2.76) | (−0.30) | |
lnOpe | −0.170 ** | 0.749 * | 0.030 | 0.052 |
(−2.10) | (1.99) | (0.92) | (1.12) | |
Ind | 3.644 *** | 2.018 | 0.247 | −0.974 |
(7.69) | (1.75) | (0.82) | (−1.32) | |
lnEdu | −0.109 | 0.534 | 0.214 | 0.122 |
(−1.21) | (1.22) | (1.45) | (0.53) | |
Constant | 4.789 *** | −21.230 ** | −3.908 * | −4.973 |
(2.92) | (−2.68) | (−1.86) | (−1.40) | |
Province FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Observations | 77 | 33 | 133 | 57 |
0.959 | 0.840 | 0.750 | 0.779 |
Variables | Mediating Variable 1 | Mediating Variable 2 | ||
---|---|---|---|---|
HC | CP | lnInn | CP | |
(1) | (2) | (3) | (4) | |
AI | 0.146 *** | 0.001 ** | 0.006 *** | 0.001 * |
(3.42) | (2.16) | (5.84) | (1.90) | |
Med | — | 0.003 *** | — | 0.096 ** |
(3.50) | (2.45) | |||
Urb | 133.510 *** | −2.715 *** | 0.006 *** | −2.752 *** |
(3.56) | (−4.58) | (5.43) | (−4.45) | |
PGDP | −10.227 ** | 0.853 *** | 5.063 *** | 0.761 *** |
(−2.25) | (12.06) | (5.28) | (10.19) | |
lnOpe | 6.439 *** | 0.056 * | 0.597 * | 0.071 ** |
(3.54) | (1.96) | (1.7) | (2.47) | |
Ind | −46.755 *** | 0.790 *** | 0.077 *** | 0.493 ** |
(−3.05) | (3.29) | (3.8) | (2.01) | |
lnEdu | 30.907 ** | 0.086 | 1.445 *** | 0.142 |
(4.73) | (0.82) | (3.09) | (1.37) | |
Constant | −615.435 *** | −2.058 | −1.705 | −3.971 *** |
(−6.93) | (−1.38) | (−0.77) | (−2.86) | |
Province FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Observations | 300 | 300 | 300 | 300 |
R-squared | 0.988 | 0.963 | 0.989 | 0.962 |
Threshold Variable | Number of Thresholds | Threshold Value | p-Value | Critical Value | ||
---|---|---|---|---|---|---|
10% | 5% | 1% | ||||
Mad | Single | 0.405 | 0.003 | 37.853 | 48.967 | 71.010 |
Double | 0.714 | 0.683 | 33.155 | 41.377 | 56.444 |
Variables | OLS | Threshold Regression Model | |
---|---|---|---|
AI | 0.002 *** | 0.016 *** | 0.004 *** |
(0.00) | (5.60) | (5.34) | |
Control variable | YES | YES | YES |
Constant | −4.203 *** | −4.480 *** | |
(1.49) | (−3.81) | ||
Province FE | YES | YES | |
Year FE | YES | YES | |
Observations | 300 | 300 | |
R-squared | 0.814 | 0.815 |
Code | Hypothesis | Results |
---|---|---|
H1 | AI application helps increase carbon productivity. | Accepted |
H2a | AI application has a positive impact on carbon productivity by improving human capital. | Accepted |
H2b | AI application has a positive impact on carbon productivity by improving the innovation level. | Accepted |
H3 | Manufacturing agglomeration has a nonlinear regulation effect on the relationship between AI application and carbon productivity. | Accepted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Liu, S. Does AI Application Matter in Promoting Carbon Productivity? Fresh Evidence from 30 Provinces in China. Sustainability 2023, 15, 16261. https://doi.org/10.3390/su152316261
Feng S, Liu S. Does AI Application Matter in Promoting Carbon Productivity? Fresh Evidence from 30 Provinces in China. Sustainability. 2023; 15(23):16261. https://doi.org/10.3390/su152316261
Chicago/Turabian StyleFeng, Shan, and Shuguang Liu. 2023. "Does AI Application Matter in Promoting Carbon Productivity? Fresh Evidence from 30 Provinces in China" Sustainability 15, no. 23: 16261. https://doi.org/10.3390/su152316261
APA StyleFeng, S., & Liu, S. (2023). Does AI Application Matter in Promoting Carbon Productivity? Fresh Evidence from 30 Provinces in China. Sustainability, 15(23), 16261. https://doi.org/10.3390/su152316261