Blockchain-Based Renewable Energy Certificate Trade for Low-Carbon Community of Active Energy Agents
Abstract
:1. Introduction
2. Design of BCREC Trade
2.1. Preliminary
2.2. Suitability Analysis
2.3. Trade Process
3. Implementation of BCREC Trade
3.1. Platform Selection
3.1.1. Blockchain Network
3.1.2. Blockchain Oracle
3.1.3. Software Tool
3.2. Setup Stage
3.2.1. BCREC Definition
3.2.2. Account Management
3.3. Pre-Transaction Stage
3.3.1. Data Preparation
3.3.2. BCREC Issuance
3.4. Transaction Stage
3.4.1. Order Initialization
3.4.2. P2P negotiation
3.5. Post-Transaction Stage
3.5.1. Transaction Record
3.5.2. Transaction Settlement
4. Case Study
4.1. Simulation Setups
4.2. Functional Demonstration
4.2.1. BCREC Issuance
- Link token address: Since Chainlink offers its services on multiple blockchains, it is necessary to specify the address of the link token contract on the chosen blockchain. The address on the Ethernet Sepolia test chain is 0x779877A7B0D9E8603169DdbD7836e478b4624789.
- Oracle address: This specifies which oracle node operator provides the service. The test in this article used 0x6090149792dAAeE9D1D568c9f9a6F6B46AA29eFD.
- Job ID: This corresponds to the content of the task requesting the work, which is to obtain uint256 format data through HTTP GET, corresponding to the ID of ca98366cc7314957b8c012c72f05aeeb.
- Request fee: This specifies the service fee to be paid for the request, which is 0.1LINK per request in the test chain environment.
- Task parameters: These are parameters required to complete the task content corresponding to the Job ID. Specifically, retrieving the generation data consists of the following tasks: HTTP request, parsing the JSON data, multiplying the data to convert it to an integer, and encoding the data with Ethereum ABI. The required parameters are the URL of the GET request, the path to the data in the JSON file, and the multiplier to multiply the data for integer conversion.
- Callback function signature: This specifies the function that is called when the response is returned. The BCREC issuance contract has a fill function to process the response from Chainlink and uses the resulting data to call the issue function of the BCREC contract.
4.2.2. Record of Deals
4.2.3. Transfer and Disposal
4.3. Quantitative Evaluation
4.3.1. Month 1# Trading
4.3.2. Month 2# Trading
4.3.3. Market Trading Efficiency and AEA Profits Comparison
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
AEA No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0.56 | 1.27 | 1.05 | 0.92 | 1.43 | 1.14 | 0.79 | 1.33 | 0.55 | 0.67 | 0.60 | 1.37 | 1.04 | 1.25 | 0.98 | |
AEA No. | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
1.01 | 1.21 | 0.69 | 0.92 | 1.42 | 0.90 | 0.84 | 0.92 | 0.63 | 1.41 | 1.34 | 0.78 | 1.02 | 0.65 | 1.15 |
Deal No. | Buyer No. | Seller No. | Amount of BCRECs (Units) | Price of BCREC (CNY/Unit) |
---|---|---|---|---|
1 | 16 | 3 | 6199.270 | 0.095 |
2 | 10 | 22 | 4881.734 | 0.110 |
3 | 20 | 29 | 7506.800 | 0.122 |
4 | 9 | 6 | 3519.386 | 0.111 |
5 | 24 | 11 | 3394.142 | 0.111 |
6 | 15 | 13 | 8422.506 | 0.114 |
7 | 8 | 28 | 5553.351 | 0.109 |
8 | 7 | 30 | 3906.981 | 0.106 |
9 | 21 | 17 | 1217.913 | 0.109 |
10 | 19 | 25 | 7603.875 | 0.112 |
11 | 5 | 1 | 3967.500 | 0.113 |
12 | 8 | 6 | 29.065 | 0.108 |
13 | 10 | 29 | 529.997 | 0.113 |
14 | 16 | 23 | 5022.131 | 0.111 |
15 | 14 | 25 | 1380.000 | 0.111 |
16 | 26 | 27 | 2279.788 | 0.110 |
17 | 8 | 12 | 4492.609 | 0.112 |
18 | 24 | 18 | 2524.318 | 0.112 |
19 | 21 | 23 | 3508.290 | 0.110 |
20 | 7 | 4 | 2329.163 | 0.111 |
21 | 26 | 2 | 1964.917 | 0.109 |
22 | 7 | 25 | 139.320 | 0.111 |
23 | 21 | 18 | 685.188 | 0.110 |
24 | 26 | 18 | 654.539 | 0.108 |
25 | 26 | 25 | 275.020 | 0.108 |
Deal No. | Buyer No. | Seller No. | Amount of BCRECs (Units) | Price of BCREC (CNY/Unit) |
---|---|---|---|---|
1 | 15 | 2 | 5755.3 | 0.108 |
2 | 17 | 28 | 11,929.8 | 0.101 |
3 | 22 | 8 | 6896.4 | 0.108 |
4 | 3 | 16 | 8423.7 | 0.119 |
5 | 1 | 23 | 5249.9 | 0.109 |
6 | 30 | 8 | 515.1 | 0.106 |
7 | 11 | 14 | 4934.4 | 0.111 |
8 | 10 | 7 | 5891.0 | 0.109 |
9 | 15 | 14 | 595.1 | 0.110 |
10 | 25 | 16 | 3562.5 | 0.109 |
11 | 5 | 4 | 4135.0 | 0.109 |
12 | 26 | 12 | 5919.7 | 0.109 |
13 | 10 | 14 | 102.4 | 0.109 |
14 | 17 | 16 | 601.0 | 0.109 |
15 | 17 | 4 | 168.9 | 0.109 |
16 | 27 | 12 | 2564.8 | 0.110 |
17 | 30 | 18 | 7187.6 | 0.109 |
18 | 21 | 9 | 3072.4 | 0.110 |
19 | 19 | 13 | 3424.5 | 0.111 |
20 | 10 | 4 | 0.2 | 0.110 |
21 | 6 | 13 | 2367.0 | 0.111 |
22 | 20 | 18 | 456.1 | 0.108 |
23 | 20 | 4 | 431.1 | 0.108 |
24 | 24 | 13 | 2310.2 | 0.111 |
25 | 20 | 12 | 419.0 | 0.108 |
26 | 29 | 13 | 1149.2 | 0.112 |
27 | 20 | 13 | 1168.1 | 0.110 |
28 | 1 | 9 | 224.1 | 0.112 |
29 | 1 | 13 | 831.2 | 0.113 |
References
- Tan, Y.X.; Xu, Z.Y.; Xu, W.S. A Two-Phase Hybrid Trading of Green Certificate under Renewables Portfolio Standards in Community of Active Energy Agents. Energies 2022, 15, 6915. [Google Scholar] [CrossRef]
- Jiang, Y.; Cao, H.; Yang, L.; Fei, F.; Li, J.; Lin, Z. Mechanism Design and Impact Analysis of Renewable Portfolio Standard. Autom. Electr. Power Syst. 2020, 44, 187–199. [Google Scholar]
- Jaccard, M. Renewable Portfolio Standard. In Encyclopedia of Energy; Cleveland, C.J., Ed.; Elsevier: New York, NY, USA, 2004; pp. 413–421. [Google Scholar]
- Nour, M.; Chaves-Avila, J.P.; Sánchez-Miralles, A. Review of Blockchain Potential Applications in the Electricity Sector and Challenges for Large Scale Adoption. IEEE Access 2022, 10, 47384–47418. [Google Scholar] [CrossRef]
- ERC-20: Token Standard. Available online: https://eips.ethereum.org/EIPS/eip-20 (accessed on 15 October 2023).
- Di Silvestre, M.L.; Gallo, P.; Guerrero, J.M.; Musca, R.; Sanseverino, E.R.; Sciume, G.; Vasquez, J.C.; Zizzo, G. Blockchain for power systems: Current trends and future applications. Renew. Sust. Energ. Rev. 2020, 119, 109585. [Google Scholar] [CrossRef]
- Hasankhani, A.; Hakimi, S.M.; Bisheh-Niasar, M.; Shafie-khah, M.; Asadolahi, H. Blockchain technology in the future smart grids: A comprehensive review and frameworks. Int. J. Elec. Power 2021, 129, 106811. [Google Scholar] [CrossRef]
- Fu, S.C.; Xu, Z.Y. Peer-to-peer electricity trading of active energy agent community based on non-fungible tokens. Electr. Power Autom. Equip. 2023, 43, 38–44+69. [Google Scholar] [CrossRef]
- AlSkaif, T.; Crespo-Vazquez, J.L.; Sekuloski, M.; van Leeuwen, G.; Catalao, J.P.S. Blockchain-Based Fully Peer-to-Peer Energy Trading Strategies for Residential Energy Systems. IEEE Trans. Ind. Inform. 2022, 18, 231–241. [Google Scholar] [CrossRef]
- Esmat, A.; de Vos, M.; Ghiassi-Farrokhfal, Y.; Palensky, P.; Epema, D. A novel decentralized platform for peer-to-peer energy trading market with blockchain technology. Appl. Energy 2021, 282, 16. [Google Scholar] [CrossRef]
- Xu, L.; Yu, D.; Zhou, J.Y.; Jin, C.W. Blockchain-Based Decentralized Power Dispatching Model for Power Grids Integrated with Renewable Energy and Flexible Load. Processes 2023, 11, 21. [Google Scholar] [CrossRef]
- Kolahan, A.; Maadi, S.R.; Teymouri, Z.; Schenone, C. Blockchain-based solution for energy demand-side management of residential buildings. Sustain. Cities Soc. 2021, 75, 103316. [Google Scholar] [CrossRef]
- Afzal, M.; Huang, Q.; Amin, W.; Umer, K.; Raza, A.; Naeem, M. Blockchain Enabled Distributed Demand Side Management in Community Energy System With Smart Homes. IEEE Access 2020, 8, 37428–37439. [Google Scholar] [CrossRef]
- Zuo, Y.J. Tokenizing Renewable Energy Certificates (RECs)-A Blockchain Approach for REC Issuance and Trading. IEEE Access 2022, 10, 134477–134490. [Google Scholar] [CrossRef]
- Luo, Z.; Qin, J.; Liang, J.; Zhao, M.; Wang, H.; Liu, K. Operation Optimization of Integrated Energy System With Green Certificate Cross-chain Transaction. Power Syst. Technol. 2021, 45, 1311–1320. [Google Scholar]
- Cai, Y.; Gu, Y.; Luo, G.; Zhang, X.; Chen, Q. Blockchain Based Trading Platform of Green Power Certificate: Concept and Practice. Autom. Electr. Power Syst. 2020, 44, 1–9. [Google Scholar]
- Zhao, F.Y.; Guo, X.; Chan, W.C. Individual Green Certificates on Blockchain: A Simulation Approach. Sustainability 2020, 12, 3942. [Google Scholar] [CrossRef]
- Imbault, F.; Swiatek, M.; de Beaufort, R.; Plana, R. The green blockchain Managing decentralized energy production and consumption. In Proceedings of the 2017 1st IEEE International Conference on Environment and Electrical Engineering and 2017 17th IEEE Industrial and Commercial Power Systems Europe (Eeeic/I&Cps Europe), Milan, Italy, 6–9 June 2017. [Google Scholar]
- Castellanos, A.F.; Coll-Mayor, D.; Notholt, J.A. Cryptocurrency as Guarantees of Origin: Simulating a Green Certificate Market with the Ethereum Blockchain. In Proceedings of the 2017 the 5th IEEE International Conference on Smart Energy Grid Engineering (SEGE 2017), Oshawa, ON, Canada, 14–17 August 2017; pp. 367–372. [Google Scholar]
- Zhou, Y.; Wu, J.Z.; Long, C.; Ming, W.L. State-of-the-Art Analysis and Perspectives for Peer-to-Peer Energy Trading. Eng.-Prc. 2020, 6, 739–753. [Google Scholar] [CrossRef]
- Soto, E.A.; Bosman, L.B.; Wollega, E.; Leon-Salas, W.D. Peer-to-peer energy trading: A review of the literature. Appl. Energy 2021, 283, 9. [Google Scholar] [CrossRef]
- Guo, L.; Chen, X.; Deng, H.; He, Y.; Chen, Q. A Framework of Operating Mechanism Based on Peer-to-Peer Transaction Among Distributed Energy Resources in Community Microgrid. Electr. Power Constr. 2018, 39, 2–9. [Google Scholar]
- The Merge. Available online: https://ethereum.org/en/roadmap/merge/ (accessed on 15 October 2023).
- Ethereum’s Energy Expenditure. Available online: https://ethereum.org/en/energy-consumption/ (accessed on 15 October 2023).
- Basic Request Model. Available online: https://docs.chain.link/architecture-overview/architecture-request-model?parent=gettingStarted (accessed on 15 October 2023).
Type | Example | Advantages | Disadvantages |
---|---|---|---|
Public | Bitcoin, Ethereum | generality, complete ecosystem, existing infrastructure, mature platform, rapid development and deployment | high transaction fee unstable transaction latency (especially in large-scale applications) |
Permissioned | Hyperledger Fabric, FISCO BCOS | low transaction fee high transaction performance high data privacy | dedicated infrastructure high upfront cost to build, run, and maintain |
Contract Name | Function Name | Caller |
---|---|---|
BCREC | lock (address) | Administrator |
unlock (address) | Administrator | |
pause () | Administrator | |
unpause () | Administrator | |
burnfrom (address, uint256) | Administrator | |
issue (address, uint256) | BCREC Issuance | |
transfer (address, uint256) | AEA | |
approve (address, uint256) | AEA |
Contract Name | Function Name | Caller |
---|---|---|
Account Management | register (uint256, string) | AEA |
activate (address) | Administrator | |
deactivate (address) | Administrator |
Name | Content | Recorder |
---|---|---|
time | Trading period of the transaction | AEA (Seller) |
number | Serial number of the transaction | |
seller_ID | Seller’s ID in the real world | |
seller_Addr | Seller’s account address | |
buyer_ID | Buyer’s ID in the real world | |
buyer_Addr | Buyer’s account address | |
amount | BCREC amount of the transaction | |
price | BCREC price of the transaction | |
transfer_transactions_hash | The hash of the Ethereum transaction used to transfer BCREC | AEA (Seller) |
payment_transactions_hash | The hash of the Ethereum transaction used for payment | AEA (Buyer) |
Contract Name | Function Name | Caller |
---|---|---|
Transaction Ledger | record (uint256, uint256, uint256, address, uint256, address, uint256, uint256) | AEA (Seller) |
submitTransTx (uint256, uint256, bytes32) | AEA (Seller) | |
submitPayTx (uint256, uint256, bytes32) | AEA (Buyer) |
Contract Name | Function Name | Caller |
---|---|---|
Stablecoin | issue (address, uint256) | Administrator |
burn (uint256) | Administrator | |
transfer (address, uint256) | AEA |
Trade Period | The Market Supply of BCREC (Unit) | The Market Demand of BCREC (Unit) | Normalized Ratio of Supply and Demand |
---|---|---|---|
Month 1# | 110,616.9 | 63,239.2 | 1.749/1 |
Month 2# | 61,036.0 | 113,217.9 | 0.549/1 |
Trade Period | Trade Type | P2P Market Volume (Unit) | Outstanding Volume (Unit) |
---|---|---|---|
Month 1# | Single | 63,239.200 | 47,377.700 |
Multi | 81,987.804 | 618.810 | |
Month 2# | Single | 61,036.000 | 52,181.900 |
Multi | 90,285.700 | 70.761 |
Economic Index | BCREC Trade | Traditional REC Trade | Improvement of BCREC * |
---|---|---|---|
Revenue (CNY) | 18,997.335 | 17,681.957 | 1154.255 |
Expenditure (CNY) | 18,950.842 | 20,201.611 | −716.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, S.; Tan, Y.; Xu, Z. Blockchain-Based Renewable Energy Certificate Trade for Low-Carbon Community of Active Energy Agents. Sustainability 2023, 15, 16300. https://doi.org/10.3390/su152316300
Fu S, Tan Y, Xu Z. Blockchain-Based Renewable Energy Certificate Trade for Low-Carbon Community of Active Energy Agents. Sustainability. 2023; 15(23):16300. https://doi.org/10.3390/su152316300
Chicago/Turabian StyleFu, Shengcheng, Yaxin Tan, and Zhiyu Xu. 2023. "Blockchain-Based Renewable Energy Certificate Trade for Low-Carbon Community of Active Energy Agents" Sustainability 15, no. 23: 16300. https://doi.org/10.3390/su152316300
APA StyleFu, S., Tan, Y., & Xu, Z. (2023). Blockchain-Based Renewable Energy Certificate Trade for Low-Carbon Community of Active Energy Agents. Sustainability, 15(23), 16300. https://doi.org/10.3390/su152316300