Evaluation of Topsoil Carbon Content and Quality in a Peatland and Reforested Soil after 50 Years of Soil Restoration in the Sierra de Guadarrama National Park (Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Soil Characterization
2.3. Isolation and Characterization of Humic Substances
2.4. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Organic Carbon Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wuebbles, D.J.; Fahey, D.W.; Hibbard, K.A.; DeAngelo, B.; Doherty, S.; Hayhoe, K.; Horton, R.; Kossin, J.P.; Taylor, P.C.; Waple, A.M.; et al. Executive summary. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume 1, pp. 12–34. [Google Scholar] [CrossRef]
- Smith, P. Soils and climate change. Curr. Opin. Environ. Sustain. 2012, 4, 539–544. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- 4per1000. Available online: https://4p1000.org/?lang=en (accessed on 25 August 2023).
- Seely, M.; Dirkx, E.; Hager, C.; Klintenberg, P.; Roberts, C.; von Oertzen, D. Advances in desertification and climate change research: Are they accessible for application to enhance adaptive capacity? Glob. Planet. Change 2008, 64, 236–243. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Gillespie, A.W.; Beare, M.H.; Cutin, D.; Sanei, H.; Yanni, S.F. Evaluating biodegradability of soil organic matter by its thermal stability and chemical composition. Soil Biol. Biochem. 2015, 91, 182–191. [Google Scholar] [CrossRef]
- Niu, B.; Chen, O.; Jiao, H.; Yang, X.; Shao, M.; Wang, J.; Si, G.; Lei, T.; Yang, Y.; Zhang, G.; et al. Networks of mineral-associated organic matter fractions in forest ecosystems. Sci. Total Environ. 2023, 898, 165555. [Google Scholar] [CrossRef] [PubMed]
- Knicker, H. Stabilization of N-compounds in soil and organic-matter-rich sediments—What is the difference? Mar. Chem. 2004, 92, 167–195. [Google Scholar] [CrossRef]
- Gabriel, C.E.; Kellman, L.; Prest, D. Examining mineral-associated soil organic matter pools through depth in harvested forest soil profiles. PLoS ONE 2018, 13, e0206847. [Google Scholar] [CrossRef]
- Savarese, C.; Xiong, L.; Drosos, M.; Vitaglione, P.; Scopa, A.; Piccolo, A. The impact of long-term field experiments under different cropping systems on the molecular dynamics and stability of the soil Humeome. Agric. Ecosyst. Environ. 2022, 331, 107928. [Google Scholar] [CrossRef]
- Panettieri, M.; Jiménez-González, M.A.; de Sosa, L.L.; Almendros, G.; Madejón, E. Chemical diversity and molecular signature of soil humic fractions used as proxies of soil quality under contrasted tillage management. Span. J. Soil Sci. 2021, 11, 39–54. [Google Scholar] [CrossRef]
- Amaleviciute-Volunge, K.; Volungevicius, J.; Ceponkus, J.; Platakyte, R.; Mockeviciene, I.; Slepetiene, A.; Lepane, V. The impact of profile genesis and land use of Histosol on its organic substance stability and humic acid quality at the molecular level. Sustainability 2023, 15, 5921. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Francioso, O.; Concheri, G.; Muscolo, A.; Nardi, S. Land use affects the soil C sequestration in alpine environment, NE Italy. Forests 2017, 8, 197. [Google Scholar] [CrossRef]
- Jiménez-González, M.A.; Álvarez, A.M.; Carral, P.; González-Pérez, J.A.; Almendros, G. Climate variability in Mediterranean ecosystems is reflected by soil organic matter pyrolytic fingerprint. Geoderma 2020, 374, 114443. [Google Scholar] [CrossRef]
- San-Emeterio, L.M.; Jiménez-Morillo, N.T.; Pérez-Ramos, I.M.; Domínguez, M.T.; González-Pérez, J.A. Changes in soil organic matter molecular structure after five-years mimicking climate change scenarios in a Mediterranean savannah. Sci. Total Environ. 2023, 857, 159288. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Senesi, N.; Schnitzer, M. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Amer. J. 1977, 41, 352. [Google Scholar] [CrossRef]
- Adiyah, F.; Michéli, E.; Csorba, A.; Weldmichael, T.G.; Gyuricza, C.; Ocansey, C.M.; Dawoe, E.; Owusu, S.; Fuchs, M. Effects of landuse change and topography on the quantity and distribution of soil organic carbon stocks on Acrisol catenas in tropical small-scale shade cocoa systems of the Ashanti region of Ghana. Catena 2022, 216, 106366. [Google Scholar] [CrossRef]
- Senesi, N.; D’Orazio, V.; Ricca, G. Humic acids in the first generation of EUROSOILS. Geoderma 2003, 116, 325–344. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legend for Soil Maps; World Soil Resources Reports No.106; FAO: Rome, Italy, 2014. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. The hydrometer as a new method for the mechanical analysis of soils. Soil Sci. 1927, 23, 343–353. [Google Scholar] [CrossRef]
- Traina, S.J.; Novak, J.; Smeck, N.E. An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids. J. Environ. Qual. 1990, 19, 151–153. [Google Scholar] [CrossRef]
- Xiao, M.; Wu, F.; Yi, Y.; Han, Z.; Wang, Z. Optical Properties of Dissolved Organic Matter and Controlling Factors in Dianchi Lake Waters. Water 2019, 11, 1967. [Google Scholar] [CrossRef]
- Almendros, G.; González-Vila, F.J.; Martín, F.; Fründ, R.; Lüdemann, H.-D. Solid state NMR studies of fire-induced changes in the structure of humic substances. Sci. Total Environ. 1992, 117–118, 63–74. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1984. [Google Scholar]
- Derkacheva, O.; Sukhov, D. Investigation of Lignins by FTIR Spectroscopy. Macromol. Symp. 2008, 265, 61–68. [Google Scholar] [CrossRef]
- Antala, M.; Juszczak, R.; van der Tol, C.; Rastogi, A. Impact of climate change-induced alterations in peatland vegetation phenology and composition on carbon balance. Sci. Total Environ. 2022, 827, 154294. [Google Scholar] [CrossRef] [PubMed]
- Ciavatta, C.; Govi, M.; Antisari, L.V.; Sequi, P. Characterization of humified compounds by extraction and fractionation on solid polyvinylpyrrolidone. J. Chromatogr. A 1990, 509, 141–146. [Google Scholar] [CrossRef]
- Kalisz, B.; Lachacz, A.; Glazewski, R. Transformation of some organic matter components in organic soils exposed to drainage. Turk. J. Agric. For. 2010, 34, 8. [Google Scholar] [CrossRef]
- Heller, C.; Zeitz, J. Stability of soil organic matter in two northeastern German fen soils: The influence of site and soil development. J Soils Sediments 2012, 12, 1231–1240. [Google Scholar] [CrossRef]
- Muscolo, A.; Settineri, G.; Romeo, F.; Mallamaci, C. Soil Biodiversity as Affected by Different Thinning Intensities in a Pinus laricio Stand of Calabrian Apennine, South Italy. Forests 2021, 12, 108. [Google Scholar] [CrossRef]
- Mori, A.S.; Cornelissen, J.H.C.; Fujii, S.; Okada, K.-I.; Isbell, F. A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver. Nat. Commun. 2020, 11, 4547. [Google Scholar] [CrossRef]
- Buotte, P.C.; Law, B.E.; Ripple, W.J.; Berner, L.T. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecol. Appl. 2020, 30, e02039. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Bonetti, J.A.; Nunes, M.R.; Fink, J.R.; Tretto, T.; Tormena, C.A. Agricultural practices to improve near-surface soil health and crop yield in subtropical soils. Soil Tillage Res. 2023, 234, 105835. [Google Scholar] [CrossRef]
Sample | pH | 1 EC (µS·cm−1) | 2 WHC (%) | Bulk Density (g·cm−3) | Clay (%) | Silt (%) | Sand (%) | 3 SOC (%) | SOC Stock (Mg·ha−1) |
---|---|---|---|---|---|---|---|---|---|
F1 | 4.11 | 81.2 | 90 | 1.1 | 4 | 20 | 76 | 9.5 | 104.2 |
F2 | 4.72 | 70.2 | 100 | 0.95 | 4 | 20 | 76 | 8.0 | 75.7 |
F3 | 4.72 | 90.5 | 96 | 1.11 | 4 | 20 | 76 | 7.6 | 84.4 |
Mean F | 4.52 a ± 0.35 | 80.6 a ± 10.2 | 95 a ± 5 | 1.05 a ± 0.09 | 4 ± 0 | 20 ± 0 | 76 ± 0 | 8.4 a ± 1 | 88.1 a ± 14.6 |
D1 | 4.63 | 59.9 | 69 | 0.81 | 4 | 16 | 80 | 6.0 | 48.8 |
D2 | 4.63 | 48.9 | 73 | 0.77 | 4 | 16 | 80 | 6.4 | 49.3 |
D3 | 4.68 | 49.1 | 75 | 0.81 | 4 | 16 | 80 | 7.4 | 59.7 |
Mean D | 4.65 a ± 0.03 | 52.6 b ± 6.3 | 72 a ± 3 | 0.80 b ± 0.02 | 4 ± 0 | 16 ± 0 | 80 ± 0 | 7.0 b± 1.3 | 52.6 b ± 6 |
P1 | 5.59 | 12.0 | 599 | 0.40 | n.d | n.d | n.d | 27.6 | 110.2 |
P2 | 5.58 | 14.0 | 817 | 0.34 | n.d | n.d | n.d | 30.3 | 103.0 |
P3 | 5.67 | 8.0 | 750 | 0.28 | n.d | n.d | n.d | 33.6 | 94.2 |
Mean P | 5.61 b ± 0.05 | 11.3 c ± 3.1 | 722 b ± 112 | 0.34 c ± 0.06 | n.d | n.d | n.d | 30.5 c ± 3 | 102.5 a ± 8 |
Sample | 1 HE (g C·100 g SOC−1) | 2 FA (g C·100 g SOC−1) | 3 HA (g C·100 g SOC−1) | 4 OD272 (AU) | 5 E4/E6 |
---|---|---|---|---|---|
F1 | 47.2 | 8.7 | 38.5 | 2.929 | 4.337 |
F2 | 50.8 | 10.7 | 40.1 | 2.599 | 4.393 |
F3 | 58.1 | 11.2 | 46.9 | 2.445 | 4.424 |
Mean F | 52.1 a ± 5.6 | 10.2 a ± 1.3 | 41.9 a ± 4.5 | 2.658 a ± 0.247 | 4.385 a ± 0.044 |
D1 | 59.4 | 13.7 | 45.7 | 1.862 | 5.417 |
D2 | 51.0 | 14.5 | 36.5 | 1.926 | 5.013 |
D3 | 54.7 | 9.4 | 45.3 | 2.298 | 5.193 |
Mean D | 55.0 a ± 4.2 | 12.5 a ± 2.7 | 42.5 a ± 5.2 | 2.029 b ± 0.235 | 5.207 b ± 0.202 |
P1 | 33.5 | 7.0 | 26.5 | 1.724 | 6.021 |
P2 | 27.4 | 4.9 | 22.5 | 1.706 | 5.544 |
P3 | 19.1 | 4.8 | 14.4 | 1.523 | 5.921 |
Mean P | 26.7 b ± 7.2 | 5.6 b ± 1.3 | 21.1 b ± 6.2 | 1.651 c ± 0.111 | 5.828 c ± 0.252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-González, M.A.; Boubehziz, S.; Álvarez, A.M.; Carral, P.; Marqués-Pérez, M.J.; Abd-Elmabod, S.K.; Almendros, G. Evaluation of Topsoil Carbon Content and Quality in a Peatland and Reforested Soil after 50 Years of Soil Restoration in the Sierra de Guadarrama National Park (Spain). Sustainability 2023, 15, 16312. https://doi.org/10.3390/su152316312
Jiménez-González MA, Boubehziz S, Álvarez AM, Carral P, Marqués-Pérez MJ, Abd-Elmabod SK, Almendros G. Evaluation of Topsoil Carbon Content and Quality in a Peatland and Reforested Soil after 50 Years of Soil Restoration in the Sierra de Guadarrama National Park (Spain). Sustainability. 2023; 15(23):16312. https://doi.org/10.3390/su152316312
Chicago/Turabian StyleJiménez-González, Marco A., Sana Boubehziz, Ana M. Álvarez, Pilar Carral, María José Marqués-Pérez, Sameh K. Abd-Elmabod, and Gonzalo Almendros. 2023. "Evaluation of Topsoil Carbon Content and Quality in a Peatland and Reforested Soil after 50 Years of Soil Restoration in the Sierra de Guadarrama National Park (Spain)" Sustainability 15, no. 23: 16312. https://doi.org/10.3390/su152316312
APA StyleJiménez-González, M. A., Boubehziz, S., Álvarez, A. M., Carral, P., Marqués-Pérez, M. J., Abd-Elmabod, S. K., & Almendros, G. (2023). Evaluation of Topsoil Carbon Content and Quality in a Peatland and Reforested Soil after 50 Years of Soil Restoration in the Sierra de Guadarrama National Park (Spain). Sustainability, 15(23), 16312. https://doi.org/10.3390/su152316312