Analysis of the Social and Economic Factors Influencing PM2.5 Emissions at the City Level in China
Abstract
:1. Introduction
2. Literature Review
3. Methods and Data
3.1. Decomposition Methods
3.2. Data Sources
4. Results and Discussion
4.1. Emission Intensity (EI)
4.2. Energy Intensity (EnI)
4.3. Economic Output (EO)
4.4. Population (P)
5. Summary and Policy Implications
- The emission intensity (EI) is an important factor for reducing PM2.5 concentrations. The energy intensity (EnI) decreased in 66% of the cities, but contributed to higher PM2.5 concentrations in the other 34% of the cities. The economic output (EO) was the most important contributing factor, especially in less economically developed regions. The population size (P) showed a contributing effect in 57% of the cities, mainly in the eastern developed cities.
- The emission intensity was an important contributor for lowering PM2.5 concentrations, while the economic output was an important contributor for raising PM2.5 concentrations. In the western region, both the energy intensity and population size were factors that raised PM2.5 concentrations. In the central region, the energy intensity and emission intensity together contributed to lower PM2.5 concentrations, and the main raising factor was the economic output, with the population size playing a weaker role in raising PM2.5 concentrations. The northeastern region was the only region that the population size suppressed PM2.5 concentrations, but the percentage of cities in which the energy intensity contributed to PM2.5 was as high as 41%. In the East region, the energy intensity was positive in only 28% of cities, and the population size contributed to PM2.5 concentrations in 82% of cities.
- From a China-wide perspective, the emission intensity continued to be the most important factor for inhibiting PM2.5 concentrations, while the economic output was the most important factor for increasing PM2.5 concentrations. The energy intensity and population size had a slight inhibitory and promotional effect, respectively. Refined to the inter-annual changes, the inhibitory effect of the emission intensity on PM2.5 concentrations weakened year by year, and its abatement capacity was fully exploited. While GDP grew year by year, the facilitating effect of the economic output decreased year by year, suggesting that China is decoupling economic development and PM2.5 emissions.
- The emission intensity (EI) was the main factor for reducing PM2.5 concentrations, but the attenuating effect was not significant in some cities. The Chinese government should continue to impose restrictions on coal consumption and promote the use of renewable energy and the popularization of related technologies.
- The role of the energy intensity (EnI) varied considerably between cities. The cities where the energy intensity is still a contributing factor should adjust their industrial structure, upgrade their industrial chains, invest more in cleaner production technologies and equipment, and improve their energy use efficiency.
- The economic output (EO), as an important contributing factor, is a subject that deserves to be taken seriously across the country. Among them, the economic output of the cities in the western and northeastern regions significantly contributed to PM2.5 emissions. While continuing to make economic development their top priority, these cities should strengthen exchanges and cooperation with developed cities, actively learn from development experiences, introduce advanced technologies, and move toward a path of high-quality development.
- The population size (P) increased PM2.5 concentrations mainly in the eastern region, especially in economically developed cities. In this regard, the administrators of eastern cities should plan urban expansion to avoid unreasonable growth in energy consumption demand due to rapid population expansion, and raise the environmental awareness of citizens and enterprises. The administrators of less developed cities in the western region should revitalize local characteristic industries according to local conditions, create more employment and entrepreneurial opportunities, improve urban supporting facilities, and implement friendly settlement policies to retain and attract more talent.
- The limitations of this study were that the analysis was restricted to Chinese cities, and the discussion did not take the physical environment characteristics into account due to concerns about the length of the article. In future studies, we will conduct a wider and deeper scope of research as the data availability permits.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ΔCity | ΔEI | ΔEnI | ΔEO | ΔP | ΔPM (ug/m3) | CEI (%) | CEnI (%) | CEO (%) | CP (%) |
Ankang | −63.7155 | 23.3443 | 24.71363 | −1.65716 | −17.3147 | −367.985 | 134.8235 | 142.7319 | −9.57084 |
Anqing | −38.8278 | −9.68437 | 37.83011 | −9.63971 | −20.3218 | −191.065 | −47.6551 | 186.1555 | −47.4353 |
Anshun | −42.8835 | −1.37284 | 25.71398 | 2.258532 | −16.2839 | −263.35 | −8.43069 | 157.9109 | 13.86977 |
Anyang | −40.1858 | −30.9328 | 33.67831 | 4.063653 | −33.3767 | −120.401 | −92.6779 | 100.9037 | 12.17512 |
Baise | −81.348 | 46.79156 | 23.66692 | −2.20832 | −13.0978 | −621.082 | 357.248 | 180.6941 | −16.8602 |
Baishan | −9.95744 | −12.5752 | 20.9687 | −7.90231 | −9.46628 | −105.189 | −132.842 | 221.5093 | −83.4786 |
Baiyin | −15.9474 | −21.9318 | 26.75702 | −4.04156 | −15.1637 | −105.168 | −144.633 | 176.4545 | −26.6529 |
Baoding | −129.173 | 58.5181 | 34.83045 | 1.394069 | −34.4305 | −375.171 | 169.9602 | 101.1617 | 4.04894 |
Baoji | −34.7765 | −7.64948 | 29.03557 | −4.06398 | −17.4544 | −199.242 | −43.8255 | 166.3509 | −23.2834 |
Baotou | −40.7865 | 16.04703 | 16.92969 | 0.181318 | −7.62846 | −534.662 | 210.3575 | 221.9281 | 2.376867 |
Beihai | −73.4749 | 25.36289 | 25.17117 | 3.159208 | −19.7817 | −371.429 | 128.2141 | 127.2449 | 15.97038 |
Beijing | −54.0434 | −9.97026 | 23.21584 | 3.817416 | −36.9804 | −146.141 | −26.9609 | 62.77874 | 10.3228 |
Bengbu | −36.379 | −17.1744 | 36.12368 | 1.854309 | −15.5754 | −233.567 | −110.266 | 231.9277 | 11.90536 |
Benxi | −12.3568 | −8.15107 | 14.42253 | −5.2422 | −11.3275 | −109.086 | −71.9579 | 127.3227 | −46.2783 |
Binzhou | −132.266 | 77.53364 | 29.44947 | 2.357582 | −22.9256 | −576.938 | 338.1973 | 128.4569 | 10.28364 |
Bozhou | −63.286 | 8.584651 | 38.9774 | 1.281363 | −14.4426 | −438.19 | 59.43983 | 269.8782 | 8.872116 |
Cangzhou | −148.956 | 76.50134 | 40.6828 | 0.90591 | −30.8661 | −482.588 | 247.849 | 131.8041 | 2.934966 |
Changchun | −46.1732 | 3.533005 | 20.47542 | 8.288932 | −13.8758 | −332.76 | 25.4616 | 147.5619 | 59.73653 |
Changde | −32.2449 | −35.6511 | 39.373 | −3.9086 | −32.4316 | −99.4242 | −109.927 | 121.4031 | −12.0518 |
Changsha | −63.9126 | 0.260795 | 19.98546 | 15.52784 | −28.1385 | −227.136 | 0.926826 | 71.02531 | 55.18359 |
Changzhou | −42.2706 | −13.0133 | 28.36091 | 5.955172 | −20.9678 | −201.598 | −62.0633 | 135.2594 | 28.40152 |
Chaozhou | −29.1349 | −3.8907 | 18.72886 | −1.26922 | −15.566 | −187.171 | −24.995 | 120.3194 | −8.15381 |
Chengde | −56.0091 | 22.05922 | 19.11711 | −1.186 | −16.0187 | −349.647 | 137.7089 | 119.3422 | −7.40383 |
Chengdu | −72.6798 | 16.36532 | 13.51173 | 17.45815 | −25.3446 | −286.766 | 64.57123 | 53.31205 | 68.88312 |
Chenzhou | −29.3079 | −17.6986 | 25.48491 | 0.557797 | −20.9638 | −139.802 | −84.4246 | 121.5661 | 2.660762 |
Chizhou | −53.3371 | 10.23756 | 25.46179 | −1.76215 | −19.3999 | −274.935 | 52.77128 | 131.2472 | −9.0833 |
Chongqing | −54.6668 | −2.4972 | 27.66764 | 3.342938 | −26.1534 | −209.024 | −9.54826 | 105.7898 | 12.78203 |
Chongzuo | −101.27 | 58.33984 | 31.11972 | −5.43659 | −17.2471 | −587.171 | 338.2581 | 180.4341 | −31.5217 |
Chuzhou | −77.2862 | 24.06393 | 35.04058 | 0.66836 | −17.5133 | −441.299 | 137.4034 | 200.0794 | 3.816291 |
Dalian | −30.7726 | −3.76319 | 10.9738 | 9.401524 | −14.1605 | −217.313 | −26.5753 | 77.49603 | 66.39274 |
Dandong | −53.9998 | 33.40464 | 11.22118 | −3.25043 | −12.6245 | −427.74 | 264.6027 | 88.88453 | −25.7471 |
Datong | −19.2959 | −11.2752 | 21.68528 | −2.51663 | −11.4025 | −169.225 | −98.8836 | 190.1793 | −22.0708 |
Deyang | −34.2655 | −17.7284 | 31.11184 | −1.55923 | −22.4413 | −152.69 | −78.999 | 138.6368 | −6.94805 |
Dezhou | −53.5767 | −20.3301 | 43.47952 | 0.077876 | −30.3494 | −176.533 | −66.9869 | 143.2633 | 0.256597 |
Dongguan | −36.2785 | −7.67305 | 13.02879 | 7.946862 | −22.9759 | −157.898 | −33.3961 | 56.70633 | 34.5878 |
Dongying | −47.9081 | −1.77252 | 29.39009 | 3.27525 | −17.0153 | −281.559 | −10.4172 | 172.7277 | 19.24888 |
Enshi | −49.998 | 8.621542 | 18.33256 | 1.511439 | −21.5325 | −232.198 | 40.03969 | 85.13905 | 7.019342 |
Ezhou | −40.2449 | −21.0247 | 28.86339 | 1.386503 | −31.0197 | −129.74 | −67.7785 | 93.04861 | 4.46975 |
Fangchenggang | −72.1314 | 28.28372 | 19.49323 | 4.400796 | −19.9537 | −361.495 | 141.7471 | 97.69255 | 22.05509 |
Foshan | −38.95 | −8.86278 | 12.66325 | 9.931204 | −25.2184 | −154.451 | −35.1441 | 50.21435 | 39.38082 |
Fushun | −11.0608 | −5.62389 | 12.54831 | −5.89618 | −10.0326 | −110.249 | −56.0563 | 125.0758 | −58.7704 |
Fuxin | −17.9989 | 1.100148 | 12.9572 | −5.90035 | −9.84191 | −182.88 | 11.1782 | 131.6534 | −59.9513 |
Fuyang | −63.2811 | 5.235252 | 36.83151 | 3.912252 | −17.3021 | −365.742 | 30.25788 | 212.8729 | 22.61141 |
Fuzhou | −24.1715 | −6.42253 | 14.97592 | 3.399562 | −12.2186 | −197.826 | −52.5637 | 122.5668 | 27.8229 |
Fuzhou | −50.3599 | 9.746563 | 25.50528 | −2.60817 | −17.7162 | −284.258 | 55.01484 | 143.9655 | −14.7219 |
Ganzhou | −39.8562 | −0.62706 | 21.20396 | 1.812428 | −17.4668 | −228.182 | −3.59003 | 121.3955 | 10.37639 |
Guangzhou | −35.4147 | −8.19924 | 8.91011 | 12.52826 | −22.1756 | −159.701 | −36.9741 | 40.17978 | 56.49568 |
Guigang | −65.7844 | 16.60179 | 33.14977 | −7.28555 | −23.3184 | −282.114 | 71.19622 | 142.1617 | −31.2438 |
Guilin | −89.1314 | 42.35356 | 24.85429 | −1.44727 | −23.3708 | −381.379 | 181.2243 | 106.3477 | −6.19265 |
Guiyang | −28.1115 | −19.028 | 20.64856 | 9.642993 | −16.8479 | −166.855 | −112.94 | 122.5587 | 57.23561 |
Haikou | −58.4182 | 30.65762 | 7.268784 | 6.419198 | −14.0726 | −415.12 | 217.8535 | 51.65209 | 45.61492 |
Handan | −168.155 | 87.62783 | 39.47849 | 1.234079 | −39.8149 | −422.343 | 220.088 | 99.15504 | 3.099541 |
Hangzhou | −33.4198 | −11.2153 | 12.0389 | 10.39076 | −22.2055 | −150.503 | −50.5069 | 54.21593 | 46.79369 |
Harbin | −22.655 | −11.3495 | 21.63334 | 0.316285 | −12.0549 | −187.932 | −94.1487 | 179.4567 | 2.623707 |
Hebi | −59.5232 | −20.3714 | 46.85633 | −0.4244 | −33.4626 | −177.88 | −60.878 | 140.026 | −1.26827 |
Hechi | −71.1177 | 37.90334 | 19.48822 | −4.99784 | −18.724 | −379.821 | 202.4318 | 104.0814 | −26.6922 |
Hefei | −60.4145 | −0.22544 | 27.39503 | 10.35716 | −22.8877 | −263.96 | −0.985 | 119.693 | 45.25202 |
Hengshui | −170.129 | 81.67451 | 50.22764 | −2.61927 | −40.8464 | −416.51 | 199.955 | 122.967 | −6.41248 |
Hengyang | −41.044 | −16.6465 | 35.86067 | −3.34925 | −25.1791 | −163.008 | −66.1123 | 142.4224 | −13.3017 |
Heyuan | −31.7352 | −2.69041 | 18.82331 | −1.37501 | −16.9773 | −186.927 | −15.847 | 110.8732 | −8.09912 |
Heze | −64.9744 | −3.27856 | 44.69318 | 3.571237 | −19.9885 | −325.058 | −16.4022 | 223.594 | 17.86642 |
Hezhou | −46.8806 | −0.30418 | 30.03124 | −5.28945 | −22.443 | −208.888 | −1.35533 | 133.8113 | −23.5684 |
Hohhot | −37.2293 | 11.386 | 17.19031 | 2.620348 | −6.03265 | −617.13 | 188.7394 | 284.9542 | 43.43607 |
Huai’An | −35.7951 | −14.9415 | 37.03871 | −2.3956 | −16.0935 | −222.42 | −92.8419 | 230.1474 | −14.8855 |
Huaibei | −42.3765 | −3.33003 | 34.73941 | −3.97989 | −14.947 | −283.511 | −22.2789 | 232.4169 | −26.6266 |
Huaihua | −30.9808 | −18.5599 | 25.61863 | −1.29782 | −25.2199 | −122.843 | −73.5923 | 101.5809 | −5.146 |
Huainan | −35.1545 | −7.13564 | 12.45048 | 13.15528 | −16.6844 | −210.703 | −42.7684 | 74.62358 | 78.8479 |
Huanggang | −53.4519 | 4.355934 | 26.88478 | −2.84631 | −25.0575 | −213.317 | 17.38373 | 107.2922 | −11.3591 |
Huangshan | −40.0884 | 2.93158 | 18.97549 | −0.42071 | −18.6021 | −215.505 | 15.75941 | 102.0073 | −2.26164 |
Huangshi | −42.575 | −11.3876 | 25.63665 | 0.65163 | −27.6743 | −153.843 | −41.1487 | 92.63716 | 2.354643 |
Huizhou | −40.1617 | 1.684652 | 12.00481 | 7.489036 | −18.9832 | −211.564 | 8.874418 | 63.23902 | 39.45078 |
Huludao | −15.1737 | −7.49633 | 18.35978 | −5.53518 | −9.84543 | −154.119 | −76.1402 | 186.4803 | −56.2208 |
Huzhou | −49.9635 | −1.15895 | 20.6845 | 5.869219 | −24.5688 | −203.362 | −4.71718 | 84.19022 | 23.88894 |
Ji’An | −46.2759 | 1.873811 | 28.59042 | −2.67683 | −18.4885 | −250.295 | 10.13499 | 154.6387 | −14.4784 |
Jiangmen | −40.3945 | −3.61274 | 17.38029 | 2.331242 | −24.2957 | −166.262 | −14.8699 | 71.53656 | 9.595294 |
Jiaozuo | −51.2585 | −18.5586 | 30.88335 | −0.20073 | −39.1345 | −130.98 | −47.4227 | 78.91599 | −0.51291 |
Jiaxing | −45.6989 | −8.44303 | 22.8733 | 7.564502 | −23.7041 | −192.789 | −35.6184 | 96.49508 | 31.9122 |
Jiayuguan | −46.8975 | 21.16751 | 15.86392 | 8.348365 | −1.51769 | −3090.06 | 1394.721 | 1045.269 | 550.0712 |
Jieyang | −30.3053 | −6.62703 | 20.30384 | −1.76799 | −18.3965 | −164.734 | −36.0233 | 110.3679 | −9.61045 |
Jilin | −12.5706 | −13.5524 | 21.51451 | −6.5625 | −11.171 | −112.529 | −121.318 | 192.5926 | −58.7459 |
Jinan | −56.5788 | −9.33436 | 22.97853 | 17.35877 | −25.5758 | −221.22 | −36.4968 | 89.84467 | 67.87171 |
Jincheng | −43.5508 | −4.90629 | 26.15467 | −1.86343 | −24.1658 | −180.216 | −20.3026 | 108.23 | −7.71099 |
Jingdezhen | −38.6459 | −7.94082 | 23.91862 | 0.434799 | −22.2333 | −173.82 | −35.7159 | 107.5801 | 1.955618 |
Jingmen | −49.6599 | −18.4429 | 41.6485 | −6.75059 | −33.2049 | −149.556 | −55.5427 | 125.4287 | −20.3301 |
Jingzhou | −73.8826 | 0.447301 | 40.18229 | −5.7038 | −38.9568 | −189.653 | 1.148197 | 103.1458 | −14.6414 |
Jinhua | −34.9836 | −4.71797 | 10.26548 | 8.914205 | −20.5219 | −170.47 | −22.99 | 50.02218 | 43.43761 |
Jining | −43.1051 | −16.7366 | 37.82318 | 1.752794 | −20.2657 | −212.699 | −82.5857 | 186.636 | 8.649049 |
Jinzhong | −59.5089 | 4.622363 | 25.46576 | 1.587633 | −27.8332 | −213.806 | 16.60738 | 91.49426 | 5.704102 |
Jinzhou | −37.1545 | 12.2661 | 19.20099 | −5.6413 | −11.3287 | −327.968 | 108.2748 | 169.4902 | −49.7966 |
Jiujiang | −55.4482 | 3.407598 | 30.94194 | −1.32187 | −22.4205 | −247.31 | 15.19858 | 138.0073 | −5.8958 |
Kaifeng | −58.3735 | −13.2175 | 44.64788 | 2.414784 | −24.5284 | −237.983 | −53.8867 | 182.0252 | 9.844847 |
Kunming | −46.0717 | 16.77766 | 12.14284 | 6.717073 | −10.4341 | −441.549 | 160.7964 | 116.3764 | 64.37615 |
Laibin | −58.4198 | 13.98233 | 28.0668 | −8.65647 | −25.0271 | −233.426 | 55.86874 | 112.1456 | −34.5884 |
Langfang | −147.438 | 69.5996 | 28.32884 | 14.66238 | −34.8476 | −423.095 | 199.7259 | 81.29364 | 42.07579 |
Lanzhou | −43.3882 | −1.80299 | 19.89856 | 6.511664 | −18.781 | −231.022 | −9.60006 | 105.9504 | 34.67152 |
Lianyungang | −45.8146 | −4.07957 | 31.80013 | 2.27906 | −15.815 | −289.691 | −25.7956 | 201.0759 | 14.41075 |
Liaocheng | −93.0942 | 21.92281 | 42.10368 | 1.173575 | −27.8941 | −333.741 | 78.59287 | 150.941 | 4.207247 |
Liaoyang | −14.1851 | −19.5738 | 23.31735 | −6.13457 | −16.5761 | −85.5755 | −118.084 | 140.6681 | −37.0084 |
Liaoyuan | −17.8622 | −12.3787 | 27.30957 | −8.20085 | −11.1322 | −160.455 | −111.198 | 245.3204 | −73.6678 |
Linfen | −39.2138 | −2.15693 | 23.59334 | −4.13484 | −21.9122 | −178.958 | −9.84348 | 107.672 | −18.87 |
Linyi | −52.2614 | −3.49018 | 31.0408 | 4.770024 | −19.9408 | −262.083 | −17.5027 | 155.6647 | 23.92092 |
Lishui | −27.1908 | −2.66596 | 12.09076 | 4.302012 | −13.464 | −201.952 | −19.8007 | 89.80081 | 31.95201 |
Liu’An | −53.5753 | 5.254678 | 37.22067 | −10.1898 | −21.2897 | −251.648 | 24.68173 | 174.8291 | −47.8625 |
Liupanshui | −62.0583 | 16.45795 | 26.58356 | 1.808713 | −17.2081 | −360.635 | 95.64078 | 154.4829 | 10.51083 |
Liuzhou | −61.6011 | 13.13198 | 18.25869 | 3.880918 | −26.3295 | −233.962 | 49.87547 | 69.34682 | 14.73979 |
Loudi | −32.0486 | −22.7498 | 28.83298 | 0.393086 | −25.5723 | −125.325 | −88.9625 | 112.7508 | 1.537153 |
Luohe | −64.4135 | −13.3421 | 51.48008 | −4.90024 | −31.1758 | −206.614 | −42.7964 | 165.1286 | −15.7181 |
Luoyang | −29.013 | −28.9551 | 27.18022 | 3.29979 | −27.4881 | −105.547 | −105.337 | 98.8799 | 12.00443 |
Luzhou | −61.0793 | −4.05845 | 34.56888 | 0.368588 | −30.2002 | −202.248 | −13.4385 | 114.4656 | 1.220481 |
Lvliang | −45.4908 | 7.242648 | 20.76744 | −4.30455 | −21.7853 | −208.814 | 33.24557 | 95.32777 | −19.759 |
Ma’Anshen | −39.0936 | −14.9552 | 35.15275 | −0.62276 | −19.5187 | −200.287 | −76.6195 | 180.0974 | −3.19058 |
Maoming | −39.9341 | −0.63356 | 18.18464 | 1.478927 | −20.9041 | −191.035 | −3.03078 | 86.99085 | 7.074821 |
Meishan | −46.9954 | −15.2079 | 31.7925 | 0.025687 | −30.385 | −154.666 | −50.0505 | 104.6322 | 0.084537 |
Meizhou | −31.0956 | −1.39278 | 18.71054 | −2.71584 | −16.4936 | −188.531 | −8.44434 | 113.4409 | −16.466 |
Mianyang | −29.5552 | −12.6457 | 23.52127 | 1.797641 | −16.882 | −175.069 | −74.9066 | 139.3278 | 10.64829 |
Nanchang | −49.0683 | −3.78492 | 22.48825 | 8.207564 | −22.1574 | −221.453 | −17.0819 | 101.4932 | 37.04209 |
Nanjing | −42.4035 | −13.3875 | 28.05246 | 6.370466 | −21.3681 | −198.443 | −62.6519 | 131.2822 | 29.81303 |
Nanning | −59.4074 | 14.00019 | 15.76302 | 7.24795 | −22.3962 | −265.256 | 62.51138 | 70.38245 | 32.36236 |
Nanping | −14.9745 | −14.4836 | 16.21026 | 0.286159 | −12.9617 | −115.529 | −111.741 | 125.0626 | 2.20772 |
Nantong | −35.3674 | −9.48793 | 26.8215 | 2.267879 | −15.766 | −224.328 | −60.1798 | 170.1228 | 14.38466 |
Nanyang | −45.5019 | −19.0124 | 35.40364 | −2.10465 | −31.2153 | −145.768 | −60.9074 | 113.4176 | −6.74236 |
Ningbo | −31.673 | −3.45633 | 12.25828 | 6.452276 | −16.4187 | −192.907 | −21.0511 | 74.66028 | 39.29824 |
Ningde | −28.8998 | 0.769624 | 15.26941 | 2.472759 | −10.388 | −278.204 | 7.4088 | 146.9912 | 23.80406 |
Panjin | −36.0362 | 3.775657 | 20.86747 | −0.06607 | −11.4592 | −314.475 | 32.94875 | 182.1026 | −0.57654 |
Panzhihua | −9.21222 | −13.7009 | 15.85167 | −0.18311 | −7.24456 | −127.161 | −189.12 | 218.8078 | −2.52752 |
Pingdingshan | −53.9357 | −16.875 | 34.53487 | 0.847099 | −35.4287 | −152.237 | −47.6309 | 97.47703 | 2.390995 |
Pingliang | −50.1299 | 17.10966 | 21.34956 | −3.18855 | −14.8592 | −337.365 | 115.145 | 143.6787 | −21.4584 |
Pingxiang | −35.0875 | −13.375 | 27.44962 | −1.16414 | −22.177 | −158.216 | −60.31 | 123.775 | −5.24931 |
Putian | −31.144 | −0.68462 | 16.18252 | 3.484154 | −12.162 | −256.077 | −5.62923 | 133.0585 | 28.64796 |
Puyang | −69.1704 | −2.95093 | 43.81241 | 3.76217 | −24.5468 | −281.79 | −12.0216 | 178.4854 | 15.32654 |
Qingdao | −36.9112 | −11.0835 | 23.44151 | 6.155166 | −18.398 | −200.626 | −60.2431 | 127.4133 | 33.45561 |
Qingyuan | −38.1949 | 0.920988 | 15.73393 | 1.963921 | −19.5761 | −195.11 | 4.704661 | 80.37325 | 10.03225 |
Qinhuangdao | −69.6123 | 26.71575 | 22.00723 | 1.814645 | −19.0746 | −364.947 | 140.059 | 115.3744 | 9.513396 |
Qinzhou | −61.9306 | 17.10484 | 28.51618 | −5.59714 | −21.9067 | −282.701 | 78.08027 | 130.1708 | −25.5499 |
Qiqihar | −11.1135 | −3.77348 | 20.86755 | −8.02479 | −2.04421 | −543.656 | −184.594 | 1020.811 | −392.562 |
Quanzhou | −21.6586 | −9.58947 | 17.04598 | 1.692769 | −12.5094 | −173.14 | −76.6584 | 136.2659 | 13.53203 |
Qujing | −42.1775 | 7.9396 | 21.36771 | −0.59166 | −13.4619 | −313.311 | 58.97831 | 158.7273 | −4.39509 |
Quzhou | −36.3423 | −2.7025 | 16.67898 | 2.275767 | −20.09 | −180.897 | −13.452 | 83.02111 | 11.32783 |
Rizhao | −52.3782 | −2.59601 | 32.16466 | 2.510247 | −20.2993 | −258.03 | −12.7887 | 158.4521 | 12.36618 |
Sanmenxia | −10.9677 | −40.0186 | 31.33487 | −3.95203 | −23.6035 | −46.4665 | −169.545 | 132.7553 | −16.7434 |
Sanming | −21.9617 | −10.7711 | 19.11189 | −0.20575 | −13.8267 | −158.835 | −77.9011 | 138.2247 | −1.48804 |
Sanya | −24.6365 | 4.709254 | 2.450279 | 6.415862 | −11.0611 | −222.731 | 42.57505 | 22.15229 | 58.00401 |
Shanghai | −20.6465 | −14.0895 | 17.99157 | 1.969779 | −14.7747 | −139.743 | −95.3624 | 121.7728 | 13.33211 |
Shangqiu | −23.1916 | −34.7453 | 37.60568 | 3.637296 | −16.694 | −138.922 | −208.131 | 225.2648 | 21.78806 |
Shangrao | −40.7 | −3.30744 | 25.34704 | −0.65865 | −19.319 | −210.673 | −17.1201 | 131.2025 | −3.40936 |
Shantou | −29.4403 | −8.53259 | 19.20167 | 0.446567 | −18.3247 | −160.659 | −46.5634 | 104.7859 | 2.436971 |
Shanwei | −36.3103 | −0.66728 | 22.46384 | −2.71364 | −17.2274 | −210.771 | −3.87336 | 130.3961 | −15.7519 |
Shaoguan | −33.2285 | −3.50655 | 18.10681 | 0.10792 | −18.5203 | −179.417 | −18.9336 | 97.76749 | 0.582715 |
Shaoxing | −33.1189 | −9.53252 | 18.81026 | 2.443598 | −21.3975 | −154.779 | −44.5496 | 87.90846 | 11.41999 |
Shaoyang | −39.3851 | −11.1306 | 31.92239 | −3.09844 | −21.6918 | −181.567 | −51.3127 | 147.1633 | −14.2839 |
Shenyang | −42.4779 | 9.553031 | 5.851058 | 10.83339 | −16.2405 | −261.556 | 58.82243 | 36.02767 | 66.70618 |
Shenzhen | −30.4436 | −10.6153 | 5.525513 | 15.09737 | −20.4361 | −148.97 | −51.9442 | 27.03807 | 73.87618 |
Shijiazhuang | −130.721 | 49.08242 | 38.95764 | 6.248817 | −36.4326 | −358.804 | 134.7212 | 106.9308 | 17.15173 |
Shiyan | −26.6374 | −16.2423 | 22.3163 | −1.83736 | −22.4007 | −118.913 | −72.5077 | 99.62302 | −8.20222 |
Shizuishan | −41.5603 | 0.204377 | 25.6509 | 1.183768 | −14.5212 | −286.203 | 1.407436 | 176.644 | 8.151979 |
Shuozhou | −34.0778 | −0.06787 | 21.7829 | −3.32955 | −15.6924 | −217.162 | −0.43251 | 138.8121 | −21.2177 |
Siping | −4.54397 | −29.1082 | 48.0841 | −27.3682 | −12.9363 | −35.1259 | −225.013 | 371.7003 | −211.562 |
Songyuan | −52.9113 | 24.53422 | 25.4805 | −9.56442 | −12.461 | −424.615 | 196.8878 | 204.4817 | −76.7547 |
Suining | −52.9186 | −9.83338 | 39.26456 | −6.12968 | −29.6171 | −178.676 | −33.2017 | 132.5741 | −20.6964 |
Suizhou | −57.2659 | −1.89505 | 32.26761 | −3.49373 | −30.3871 | −188.455 | −6.23637 | 106.1887 | −11.4974 |
Suquan | −57.826 | 4.355661 | 36.21793 | 2.28087 | −14.9715 | −386.239 | 29.09293 | 241.9118 | 15.2347 |
Suzhou | −33.0621 | −14.1407 | 18.53695 | 8.064594 | −20.6013 | −160.486 | −68.6399 | 89.97942 | 39.146 |
Suzhou | −56.9613 | 0.208764 | 42.18825 | −0.40077 | −14.9651 | −380.628 | 1.395008 | 281.911 | −2.67803 |
Tai’An | −46.2625 | −17.503 | 40.7276 | −0.3791 | −23.4171 | −197.559 | −74.7447 | 173.9227 | −1.61891 |
Taiyuan | −39.6066 | −16.4287 | 18.05178 | 10.56135 | −27.4221 | −144.433 | −59.9104 | 65.82925 | 38.514 |
Taizhou | −40.2129 | −14.3923 | 36.02233 | −0.66938 | −19.2523 | −208.874 | −74.7564 | 187.1069 | −3.47687 |
Taizhou | −27.0672 | −3.84075 | 14.11764 | 2.919569 | −13.8708 | −195.139 | −27.6895 | 101.7797 | 21.04834 |
Tangshan | −69.4953 | 0.270782 | 34.15704 | 0.713179 | −34.3543 | −202.29 | 0.788202 | 99.42568 | 2.075951 |
Tianjin | −45.8127 | −26.0051 | 38.52639 | 2.108566 | −31.1829 | −146.916 | −83.3954 | 123.5499 | 6.76194 |
Tianshui | −36.1756 | −0.05866 | 22.96501 | −2.38572 | −15.655 | −231.081 | −0.37469 | 146.6949 | −15.2394 |
Tongchuan | −7.15013 | −36.3045 | 32.31251 | −6.03167 | −17.1738 | −41.634 | −211.395 | 188.1502 | −35.1214 |
Tonghua | −4.52706 | −18.7905 | 30.97998 | −18.6748 | −11.0124 | −41.1086 | −170.63 | 281.318 | −169.579 |
Tongling | −50.1784 | −0.60056 | 0.974766 | 27.0559 | −22.7483 | −220.581 | −2.64 | 4.285001 | 118.9358 |
Tongren | −64.1272 | 15.11771 | 28.41109 | 2.10859 | −18.4898 | −346.825 | 81.76238 | 153.6581 | 11.40407 |
Urumqi | −44.2973 | 3.03495 | 25.52813 | 10.57703 | −5.15722 | −858.938 | 58.84856 | 494.9978 | 205.0917 |
Weifang | −58.1603 | 1.486683 | 32.5225 | 1.352711 | −22.7984 | −255.107 | 6.521008 | 142.6528 | 5.933369 |
Weihai | −21.7308 | −7.658 | 18.05225 | 1.149937 | −10.1866 | −213.327 | −75.1771 | 177.2153 | 11.2887 |
Wenzhou | −22.5332 | −9.69922 | 17.42697 | 1.364147 | −13.4413 | −167.641 | −72.1597 | 129.6522 | 10.14891 |
Wuhai | −39.7404 | −11.3259 | 29.88973 | 1.416425 | −19.7601 | −201.114 | −57.3169 | 151.2628 | 7.168092 |
Wuhan | −56.4605 | −12.5426 | 22.33381 | 10.90127 | −35.7679 | −157.852 | −35.0665 | 62.44085 | 30.47776 |
Wuhu | −51.7361 | −7.80361 | 36.21855 | 1.01345 | −22.3077 | −231.92 | −34.9817 | 162.3589 | 4.543051 |
Wuxi | −33.5394 | −16.8993 | 22.26411 | 6.605353 | −21.5692 | −155.497 | −78.3492 | 103.222 | 30.62406 |
Wuzhou | −48.808 | 5.261184 | 27.10201 | −4.99723 | −21.442 | −227.628 | 24.53676 | 126.3965 | −23.3058 |
Xiamen | −30.073 | −5.4552 | 11.16828 | 11.37605 | −12.9839 | −231.618 | −42.0152 | 86.01639 | 87.61663 |
Xi’An | −52.6439 | −4.82236 | 15.61204 | 19.76725 | −22.0869 | −238.348 | −21.8336 | 70.68449 | 89.49747 |
Xiangtan | −40.3884 | −25.1701 | 37.232 | −0.60543 | −28.932 | −139.598 | −86.9977 | 128.6881 | −2.09259 |
Xiangxi | −24.425 | −18.2201 | 19.40205 | −1.00178 | −24.2448 | −100.743 | −75.1506 | 80.02557 | −4.13193 |
Xiangyang | −51.7208 | −11.4801 | 34.3791 | −2.42721 | −31.249 | −165.512 | −36.7374 | 110.0168 | −7.76733 |
Xianning | −59.4576 | 0.138299 | 24.4124 | 3.578892 | −31.328 | −189.791 | 0.441457 | 77.92529 | 11.42395 |
Xianyang | −34.2382 | −11.9734 | 36.775 | −9.52163 | −18.9582 | −180.598 | −63.1567 | 193.9795 | −50.2244 |
Xiaogan | −57.3723 | −8.59989 | 40.61873 | −7.79891 | −33.1524 | −173.056 | −25.9405 | 122.5213 | −23.5244 |
Xingtai | −167.346 | 80.88463 | 43.15921 | −0.46357 | −43.766 | −382.366 | 184.8116 | 98.61355 | −1.05921 |
Xinxiang | −66.6329 | −13.5947 | 37.72608 | 6.737774 | −35.7637 | −186.314 | −38.0124 | 105.487 | 18.83968 |
Xinyang | −55.0144 | −4.87023 | 31.70051 | 1.038591 | −27.1456 | −202.664 | −17.9412 | 116.7797 | 3.826006 |
Xinyu | −23.599 | −22.0392 | 23.43004 | 1.722985 | −20.4852 | −115.201 | −107.586 | 114.3757 | 8.4109 |
Xuancheng | −44.0528 | −1.63775 | 25.8624 | −0.67019 | −20.4983 | −214.909 | −7.98965 | 126.1683 | −3.26946 |
Xuchang | −72.9797 | −9.77307 | 47.6707 | 1.222998 | −33.8591 | −215.54 | −28.864 | 140.7916 | 3.612028 |
Xuzhou | −29.3987 | −27.3428 | 37.91971 | 3.346248 | −15.4755 | −189.969 | −176.685 | 245.0309 | 21.6229 |
Yan’An | −48.951 | 16.60025 | 13.20149 | 1.272506 | −17.8768 | −273.825 | 92.85941 | 73.84724 | 7.118217 |
Yanbian | −15.8599 | −3.27725 | 14.20162 | −2.83961 | −7.77512 | −203.982 | −42.1505 | 182.6545 | −36.5217 |
Yancheng | −43.4553 | −2.57217 | 32.45671 | −3.06088 | −16.6316 | −261.281 | −15.4656 | 195.1509 | −18.404 |
Yangjiang | −56.0211 | 12.33985 | 19.37368 | 1.96906 | −22.3385 | −250.783 | 55.24023 | 86.7277 | 8.814642 |
Yangquan | −20.0088 | −24.2487 | 22.26255 | −1.84862 | −23.8436 | −83.9168 | −101.699 | 93.36899 | −7.75311 |
Yangzhou | −38.4242 | −13.7452 | 33.98537 | 0.994419 | −17.1897 | −223.531 | −79.9621 | 197.7079 | 5.784979 |
Yantai | −33.8149 | −4.35001 | 23.88555 | 0.662217 | −13.6171 | −248.327 | −31.9452 | 175.4086 | 4.86313 |
Yichang | −33.6742 | −20.5586 | 26.29449 | −0.8033 | −28.7416 | −117.162 | −71.5289 | 91.4857 | −2.79491 |
Yichun | −15.1567 | 2.852049 | 13.82743 | −7.95277 | −6.43001 | −235.718 | 44.35528 | 215.0452 | −123.682 |
Yichun | −50.0227 | −1.07569 | 31.45645 | −3.18592 | −22.8279 | −219.13 | −4.71218 | 137.7983 | −13.9563 |
Yingkou | −28.2735 | 3.485401 | 16.92352 | −0.42641 | −8.291 | −341.015 | 42.03837 | 204.1192 | −5.14304 |
Yingtan | −33.0348 | −9.03679 | 24.44508 | 0.459031 | −17.1675 | −192.427 | −52.6389 | 142.3916 | 2.673835 |
Yiyang | −47.9821 | −12.0598 | 37.16551 | −4.98586 | −27.8622 | −172.212 | −43.2837 | 133.3904 | −17.8947 |
Yizhou | −37.5708 | −3.28794 | 26.87528 | −5.51089 | −19.4944 | −192.727 | −16.8661 | 137.8618 | −28.2691 |
Yongzhou | −36.9185 | −13.5008 | 27.74103 | 0.661028 | −22.0172 | −167.68 | −61.3192 | 125.9969 | 3.002322 |
Yueyang | −49.6268 | −16.5141 | 38.56734 | −3.94725 | −31.5207 | −157.442 | −52.3911 | 122.3556 | −12.5227 |
Yulin | −70.1735 | 25.96777 | 28.22526 | −5.50078 | −21.4813 | −326.673 | 120.8855 | 131.3946 | −25.6073 |
Yulin | −43.7884 | 2.766467 | 21.45113 | 2.92942 | −16.6414 | −263.13 | 16.62404 | 128.9024 | 17.60324 |
Yuncheng | −39.1557 | −15.7668 | 34.11025 | −4.55223 | −25.3645 | −154.372 | −62.1609 | 134.4802 | −17.9472 |
Yunfu | −45.0834 | −0.02161 | 22.76815 | 0.010949 | −22.3259 | −201.933 | −0.09681 | 101.9806 | 0.049042 |
Yuxi | −17.537 | −10.4707 | 19.41374 | −0.78691 | −9.38087 | −186.944 | −111.618 | 206.9504 | −8.38847 |
Zaozhuang | −41.7437 | −12.5908 | 34.20558 | 1.674822 | −18.4541 | −226.202 | −68.2277 | 185.3546 | 9.075595 |
Zhangjiajie | −48.3081 | −4.69522 | 24.03282 | 0.724514 | −28.2459 | −171.027 | −16.6226 | 85.08415 | 2.565018 |
Zhangjiakou | −33.9376 | 7.610907 | 16.80304 | −1.55203 | −11.0757 | −306.416 | 68.71745 | 151.7115 | −14.0129 |
Zhangye | −24.7206 | 2.329769 | 18.99224 | −1.51389 | −4.91249 | −503.22 | 47.42541 | 386.6112 | −30.8171 |
Zhangzhou | −37.8182 | 3.540004 | 18.7401 | 1.18148 | −14.3566 | −263.421 | 24.65773 | 130.5333 | 8.229543 |
Zhanjiang | −46.0351 | 11.15245 | 17.81858 | −0.35471 | −17.4188 | −264.285 | 64.02552 | 102.2954 | −2.03637 |
Zhaoqing | −33.8282 | −6.56124 | 17.99144 | 1.33037 | −21.0676 | −160.57 | −31.1437 | 85.39854 | 6.314761 |
Zhengzhou | −51.1727 | −34.6284 | 24.27038 | 23.06667 | −38.464 | −133.04 | −90.028 | 63.09893 | 59.9695 |
Zhenjiang | −37.7548 | −15.9155 | 32.42336 | 1.131598 | −20.1153 | −187.692 | −79.1212 | 161.1874 | 5.625552 |
Zhongshan | −37.7764 | −0.85489 | 4.744495 | 10.85269 | −23.0341 | −164.002 | −3.71142 | 20.59772 | 47.11581 |
Zhongwei | −62.3541 | 27.42808 | 21.46995 | −0.39898 | −13.8551 | −450.045 | 197.9638 | 154.9606 | −2.87969 |
Zhoukou | −71.4225 | 7.678318 | 40.91275 | 0.469191 | −22.3622 | −319.389 | 34.33609 | 182.9546 | 2.098138 |
Zhoushan | −31.9982 | 1.473266 | 19.23477 | 0.482501 | −10.8076 | −296.07 | 13.63172 | 177.9741 | 4.464446 |
Zhuhai | −37.8721 | −5.45729 | 8.190159 | 13.02429 | −22.1149 | −171.251 | −24.6769 | 37.0345 | 58.89363 |
Zhumadian | −62.6176 | −4.61729 | 40.5401 | −0.64017 | −27.3349 | −229.075 | −16.8915 | 148.3088 | −2.34193 |
Zhuzhou | −23.4118 | −28.4618 | 28.78065 | 0.191129 | −22.9018 | −102.227 | −124.278 | 125.6697 | 0.834559 |
Zibo | −37.1872 | −22.9358 | 31.91115 | 1.886252 | −26.3255 | −141.259 | −87.1237 | 121.2175 | 7.165101 |
Zigong | −43.2752 | −36.2145 | 44.73341 | −4.20475 | −38.961 | −111.073 | −92.9506 | 114.816 | −10.7922 |
Appendix B
Region | ΔEI | ΔEnI | ΔEO | ΔP | ΔPM (ug/m3) | CEI (%) | CEnI (%) | CEO (%) | CP (%) |
Western region | −2437.58 | 320.23 | 1204.8 | 21.35 | −885.17 | −275.38 | 36.18 | 136.11 | 2.41 |
Central region | −3723.37 | −766.66 | 2451.38 | 37.29 | −2001.36 | −186.04 | −38.31 | 122.49 | 1.86 |
Northeastern region | −512.82 | −54.91 | 431.99 | −106.34 | −242.09 | −211.83 | −22.68 | 178.44 | −43.93 |
Eastern region | −4244.14 | 204.81 | 2012.81 | 277.38 | −1749.13 | −242.64 | 11.71 | 115.07 | 15.86 |
References
- Guo, L.L.; Qu, Y.; Tseng, M.-L. The interaction effects of environmental regulation and technological innovation on regional green growth performance. J. Clean. Prod. 2017, 162, 894–902. [Google Scholar] [CrossRef]
- Available online: http://www.unep-iemp.org/ (accessed on 10 October 2022).
- Liu, Y.; Yuan, Q.; Zhang, X.; Chen, Z.; Jia, X.; Wang, M.; Xu, T.; Wang, Z.; Jiang, J.; Ma, Q.; et al. Fine particulate matter (PM2.5) induces inhibitory memory alveolar macrophages through the AhR/IL-33 pathway. Cell. Immunol. 2023, 386, 104694. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Pu, W.; Wazir, J.; Jin, X.; Wei, L.; Song, S.; Su, Z.; Li, J.; Deng, Y.; Wang, H. Long-term exposure to PM2.5 aggravates pulmonary fibrosis and acute lung injury by disrupting Nrf2-mediated antioxidant function. Environ. Pollut. 2022, 313, 120017. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Zhou, X.; Liu, G.; Abudupataer, M.; Zhu, S.; Xiang, B.; Yin, X.; Lai, H.; Sun, Y.; Wang, C.; et al. PM2.5 exposure exacerbates mice thoracic aortic aneurysm and dissection by inducing smooth muscle cell apoptosis via the MAPK pathway. Chemosphere 2023, 313, 137500. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Kang, N.; Zhang, W.; Chen, B.; Xu, S.; Wu, L. The developmental toxicity of PM2.5 on the early stages of fetal lung with human lung bud tip progenitor organoids. Environ. Pollut. 2023, 330, 121764. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, Y.; Si, H.; Li, J.; Zhao, Y.; Gao, T.; Pi, J.; Zhang, R.; Chen, R.; Chen, W.; et al. The effect of real-ambient PM2.5 exposure on the lung and gut microbiomes and the regulation of Nrf2. Ecotoxicol. Environ. Saf. 2023, 254, 114702. [Google Scholar] [CrossRef]
- Chen, L. Xanthine-derived reactive oxygen species exacerbates adipose tissue disorders in male db/db mice induced by real-ambient PM2.5 exposure. Sci. Total Environ. 2023, 882, 163592. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, H.; Huebner, G.; Zeng, Y.; Pei, Z.; Ucci, M. Short-term exposure to indoor PM2.5 in office buildings and cognitive performance in adults: An intervention study. Build. Environ. 2023, 233, 110078. [Google Scholar] [CrossRef]
- Available online: https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y (accessed on 10 October 2022).
- Chowdhury, S.; Pozzer, A.; Haines, A.; Klingmüller, K.; Münzel, T.; Paasonen, P.; Sharma, A.; Venkataraman, C.; Lelieveld, J. Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols. Environ. Int. 2022, 159, 107020. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Li, G.; Fang, C.; Sun, S. PM2.5 mitigation in China: Socioeconomic determinants of concentrations and differential control policies. J. Environ. Manag. 2018, 213, 47–55. [Google Scholar] [CrossRef]
- Xu, S.-C.; Zhou, Y.-F.; Feng, C.; Zhang, J.-N. The factors of regional PM2.5 emissions inequality in China. Process Saf. Environ. Prot. 2021, 150, 79–92. [Google Scholar] [CrossRef]
- Zhang, Y.; Shuai, C.; Bian, J.; Chen, X.; Wu, Y.; Shen, L. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. J. Clean. Prod. 2019, 218, 96–107. [Google Scholar] [CrossRef]
- Wang, N.; Wei, C.; Zhao, X.; Wang, S.; Ren, Z.; Ni, R. Does green technology innovation reduce anthropogenic PM2.5 emissions? Evidence from China’s cities. Atmos. Pollut. Res. 2023, 14, 101699. [Google Scholar] [CrossRef]
- Ji, X.; Yao, Y.; Long, X. What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy 2018, 119, 458–472. [Google Scholar] [CrossRef]
- Xie, P.; Gao, S.; Sun, F. An analysis of the decoupling relationship between CO2 emission in power industry and GDP in China based on LMDI method. J. Clean. Prod. 2019, 211, 598–606. [Google Scholar] [CrossRef]
- Chontanawat, J.; Wiboonchutikula, P.; Buddhivanich, A. An LMDI decomposition analysis of carbon emissions in the Thai manufacturing sector. Energy Rep. 2020, 6, 705–710. [Google Scholar] [CrossRef]
- Quan, C.; Cheng, X.; Yu, S.; Ye, X. Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method. Sci. Total Environ. 2020, 734, 138473. [Google Scholar] [CrossRef]
- Ma, M.; Cai, W.; Cai, W. Carbon abatement in China’s commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods. Energy 2018, 165, 350–368. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, C. Decouple transport CO2 emissions from China’s economic expansion: A temporal-spatial analysis. Transp. Res. Part D Transp. Environ. 2020, 79, 102225. [Google Scholar] [CrossRef]
- Yang, J.; Cai, W.; Ma, M.; Li, L.; Liu, C.; Ma, X.; Li, L.; Chen, X. Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods. Sci. Total Environ. 2020, 711, 134569. [Google Scholar] [CrossRef]
- Cansino, J.M.; Sánchez-Braza, A.; Rodríguez-Arévalo, M.L. Driving forces of Spain’s CO2 emissions: A LMDI decomposition approach. Renew. Sustain. Energy Rev. 2015, 48, 749–759. [Google Scholar] [CrossRef]
- Ortega-Ruiz, G.; Mena-Nieto, A.; García-Ramos, J.E. Is India on the right pathway to reduce CO2 emissions? Decomposing an enlarged Kaya identity using the LMDI method for the period 1990–2016. Sci. Total Environ. 2020, 737, 139638. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Z.; Wu, T.; Wu, S.; Yin, T. The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector. Energy 2022, 255, 124488. [Google Scholar] [CrossRef]
- Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ. 2016, 565, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; He, H.; Lu, Y.; Zhou, Z. Driving force analysis of the nitrogen oxides intensity related to electricity sector in China based on the LMDI method. J. Clean. Prod. 2020, 242, 118364. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, Y.; He, S.; Liu, N.; Xiao, C.; Liu, L. Investigating the driving forces of NOx generation from energy consumption in China. J. Clean. Prod. 2018, 184, 836–846. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, S. Examining the spatially varying effects of factors on PM2.5 concentrations in Chinese cities using geographically weighted regression modeling. Environ. Pollut. 2019, 248, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.; Sun, K.; Li, L.; Lei, Y.; Wu, S.; Tang, W.; Wang, Y.; Yang, J. Spatiotemporal pattern analysis of PM2.5 and the driving factors in the middle Yellow River urban agglomerations. J. Clean. Prod. 2021, 299, 126904. [Google Scholar] [CrossRef]
- Dong, F.; Li, J.; Li, K.; Sun, Z.; Yu, B.; Wang, Y.; Zhang, S. Causal chain of haze decoupling efforts and its action mechanism: Evidence from 30 provinces in China. J. Clean. Prod. 2020, 245, 118889. [Google Scholar] [CrossRef]
- Fu, Z.; Li, R. The contributions of socioeconomic indicators to global PM2.5 based on the hybrid method of spatial econometric model and geographical and temporal weighted regression. Sci. Total Environ. 2020, 703, 135481. [Google Scholar] [CrossRef]
- Yan, D.; Ren, X.; Kong, Y.; Ye, B.; Liao, Z. The heterogeneous effects of socioeconomic determinants on PM2.5 concentrations using a two-step panel quantile regression. Appl. Energy 2020, 272, 115246. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, R.; Zhang, W.; Li, W.; Wang, S. The varying driving forces of PM2.5 concentrations in Chinese cities: Insights from a geographically and temporally weighted regression model. Environ. Int. 2020, 145, 106168. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, M.; Ding, Y. Exploring the effect of economic and environment factors on PM2.5 concentration: A case study of the Beijing-Tianjin-Hebei region. J. Environ. Manag. 2020, 268, 110703. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Lin, B. What cause large regional differences in PM2.5 pollutions in China? Evidence from quantile regression model. J. Clean. Prod. 2018, 174, 447–461. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, H.; Guo, Y.; Peng, C. The heterogeneous effect of democracy, political globalization, and urbanization on PM2.5 concentrations in G20 countries: Evidence from panel quantile regression. J. Clean. Prod. 2018, 194, 54–68. [Google Scholar] [CrossRef]
- Liu, P.; Zhong, F.; Yang, C.; Jiang, D.; Luo, X.; Song, X.; Guo, J. Influence mechanism of urban polycentric spatial structure on PM2.5 emissions in the Yangtze River Economic Belt, China. J. Clean. Prod. 2022, 365, 132721. [Google Scholar] [CrossRef]
- Gan, T.; Yang, H.; Liang, W. How do urban haze pollution and economic development affect each other? Empirical evidence from 287 Chinese cities during 2000–2016. Sustain. Cities Soc. 2021, 65, 102642. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, R.; Wang, G.; Guo, J.; Liu, Z. Factor decomposition, reduction potential, and rebound effect of energy consumption related PM2.5 in China. J. Clean. Prod. 2021, 322, 129088. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Li, D.; Li, L.; Song, M.; Xie, Q. Changes in PM2.5 emissions in China: An extended chain and nested refined laspeyres index decomposition analysis. J. Clean. Prod. 2021, 294, 126248. [Google Scholar] [CrossRef]
- Fang, D.; Yu, B. Driving mechanism and decoupling effect of PM2.5 emissions: Empirical evidence from China’s industrial sector. Energy Policy 2021, 149, 112017. [Google Scholar] [CrossRef]
- Zhang, X.; Geng, Y.; Shao, S.; Song, X.; Fan, M.; Yang, L.; Song, J. Decoupling PM2.5 emissions and economic growth in China over 1998–2016: A regional investment perspective. Sci. Total Environ. 2020, 714, 136841. [Google Scholar] [CrossRef]
- Jia, W.; Li, L.; Lei, Y.; Wu, S. Synergistic effect of CO2 and PM2.5 emissions from coal consumption and the impacts on health effects. J. Environ. Manag. 2023, 325, 116535. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Yang, X.; Zou, B.; Wang, J. Spatial variations of PM2.5 in Chinese cities for the joint impacts of human activities and natural conditions: A global and local regression perspective. J. Clean. Prod. 2018, 203, 143–152. [Google Scholar] [CrossRef]
- Yu, B.; Fang, D. Decoupling economic growth from energy-related PM2.5 emissions in China: A GDIM-based indicator decomposition. Ecol. Indic. 2021, 127, 107795. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, W.; Wu, T.; Han, L. The impacts of urban structure on PM2.5 pollution depend on city size and location. Environ. Pollut. 2022, 292, 118302. [Google Scholar] [CrossRef]
- Yuan, M.; Huang, Y.; Shen, H.; Li, T. Effects of urban form on haze pollution in China: Spatial regression analysis based on PM2.5 remote sensing data. Appl. Geogr. 2018, 98, 215–223. [Google Scholar] [CrossRef]
- Huang, Z.; An, X.; Cai, X.; Chen, Y.; Liang, Y.; Hu, S.; Wang, H. The impact of new urbanization on PM2.5 concentration based on spatial spillover effects: Evidence from 283 cities in China. Sustain. Cities Soc. 2023, 90, 104386. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; He, S. The influence of environmental efficiency on PM2.5 pollution: Evidence from 283 Chinese prefecture-level cities. Sci. Total Environ. 2020, 748, 141549. [Google Scholar] [CrossRef]
- Xu, C.; Dong, L.; Yu, C.; Zhang, Y.; Cheng, B. Can forest city construction affect urban air quality? The evidence from the Beijing-Tianjin-Hebei urban agglomeration of China. J. Clean. Prod. 2020, 264, 121607. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Z.; Shao, C.; Zhao, R.; Guan, Y.; Chen, C. Spatio-temporal variation and driving factors analysis of PM2.5 health risks in Chinese cities. Ecol. Indic. 2021, 129, 107937. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, R. Spatial-temporal heterogeneity of air pollution: The relationship between built environment and on-road PM2.5 at micro scale. Transp. Res. Part D Transp. Environ. 2019, 76, 305–322. [Google Scholar] [CrossRef]
- Zeng, L.; Hang, J.; Wang, X.; Shao, M. Influence of urban spatial and socioeconomic parameters on PM2.5 at subdistrict level: A land use regression study in Shenzhen, China. J. Environ. Sci. 2022, 114, 485–502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, R. Is China’s economic growth decoupled from carbon emissions? J. Clean. Prod. 2019, 225, 1194–1208. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L. A new energy decomposition method: Perfect in decomposition and consistent in aggregation. Energy 2001, 26, 537–548. [Google Scholar] [CrossRef]
- Lin, B.; Long, H. Emissions reduction in China’s chemical industry—Based on LMDI. Renew. Sustain. Energy Rev. 2016, 53, 1348–1355. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, N. Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment. Energy 2021, 221, 119846. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. Decomposing the change in energy consumption in China’s nonferrous metal industry: An empirical analysis based on the LMDI method. Renew. Sustain. Energy Rev. 2018, 82, 2652–2663. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, H.; Ding, L. Decomposition analysis of the decoupling and driving factors of municipal solid waste: Taking China as an example. Waste Manag. 2022, 137, 200–209. [Google Scholar] [CrossRef]
- Chen, W.; Yang, M.; Zhang, S.; Andrews-Speed, P.; Li, W. What accounts for the China-US difference in solar PV electricity output? An LMDI analysis. J. Clean. Prod. 2019, 231, 161–170. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Hammer, M.S.; Bindle, L.; Brauer, M.; Brook, J.R.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Kahn, R.A.; Lee, C.; et al. Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China National Statistical Yearbook. 2018. Available online: http://www.stats.gov.cn/ (accessed on 10 October 2022).
Authors | Period | Regions | Methods |
---|---|---|---|
Xu et al. [13] | 2006–2017 | 30 Chinese provinces | Logarithmic mean Divisia index (LMDI) |
Wang et al. [29] | 2015 | All over China | Geographically weighted regression modeling |
Mi et al. [30] | 2015–2018 | Middle Yellow River urban agglomerations | Geographically and temporally weighted regression |
Zhang et al. [14] | 2014–2016 | 152 Chinese cities | LMDI |
Dong et al. [31] | 2000–2014 | 30 Chinese provinces | LMDI |
Fu et al. [32] | 1998–2016 | All over China | Geographically and temporally weighted regression |
Ji et al. [16] | 2001–2010 | 79 developing countries | Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) |
Yan et al. [33] | 2010–2016 | 273 Chinese cities | Panel quantile regression |
Liu et al. [34] | 1998–2015 | 287 Chinese cities | Geographically and temporally weighted regression |
Luo et al. [12] | 1999–2011 | 12 Chinese regions | STIRPAT |
Wu et al. [35] | 2016 | 13 Chinese cities | Geographical detector method |
Xu et al. [36] | 2001–2015 | 29 Chinese provinces | Panel quantile regression |
Wang et al. [37] | 2000–2014 | G20 countries | Panel quantile regression |
Liu et al. [38] | 2009–2018 | 108 Chinese cities | STIRPAT |
Gan et al. [39] | 2000–2016 | 287 Chinese cities | Generalized three-stage least squares (GS3SLS) method |
Sun et al. [40] | 2006–2020 | 30 Chinese provinces | An expanded IDA–PDA model |
Chen et al. [41] | 2005–2015 | Chinese industrial sectors | Refined Laspeyres index decomposition analysis (RLI) |
Symbol | Implication |
---|---|
PM | PM2.5 concentration, μg/m3 |
E | Energy consumption (electricity consumption of the whole society, billion kWh) |
GDP | Gross national product, billion yuan |
P | Population, million people |
EI | Emission intensity (PM2.5 concentration/energy consumption) |
EnI | Energy intensity (energy consumption/gross national product) |
EO | Economic output (gross national product/population) |
i | Different cities |
CEI | Contribution rate of the emission intensity |
CEnI | Contribution rate of the energy intensity |
CEO | Contribution rate of the economic output |
CP | Contribution rate of the population |
Date of Issue | Policy Documents |
---|---|
2011 | Determination of PM10 and PM2.5 in Ambient Air Weight Method |
2013 | Technical Policy on Integrated Prevention and Control of Fine Particulate Matter Pollution in Ambient Air |
Technical Guidance on Source Analysis of Atmospheric Particulate Matter (Trial) | |
Technical Specification for the Installation and Acceptance of Continuous Automatic Ambient Air Particulate Matter (PM10 and PM2.5) Monitoring Systems | |
Technical Requirements and Test Methods for Continuous Automatic Ambient Air Particulate Matter (PM10 and PM2.5) Monitoring Systems | |
Technical Requirements and Test Methods for Ambient Air Particulate Matter (PM10 and PM2.5) Samplers | |
Technical Specification for Manual Monitoring Methods for Ambient Air Particulate Matter (PM10 and PM2.5) (Weight Method) | |
2014 | Technical Guidance for the Development of Primary Source Emission Inventories of Atmospheric Respirable Particulates (Trial) |
2018 | Technical Specification for the Investigation of Ambient Air Particle Matter (PM2.5) Infiltration Coefficient in Civil Buildings |
Determination of Low Concentration Particulate Matter in Exhaust from Stationary Sources Weight Method | |
Method for the Determination of Particulate Matter in Exhaust from Stationary Sources and Sampling of Gaseous Pollutants | |
Technical Specification for Continuous Monitoring of Flue Gas (SO2, NOX, Particulate Matter) Emissions from Stationary Sources | |
Technical Requirements and Test Methods for Continuous Monitoring Systems for Flue Gas (SO2, NOX, Particulate Matter) Emissions from Stationary Sources | |
2021 | Technical Requirements and Test Methods for Continuous Automatic Ambient Air Particulate Matter (PM10 and PM2.5) Monitoring Systems |
Guidelines for Quality Assessment of Automated Ambient Air Particulate Matter (PM10, PM25) Monitoring | |
Work Plan for the “One City, One Policy” Resident Follow-up Study on the Synergistic Prevention and Control of Fine Particulate Matter and Ozone Pollution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Jiang, P.; Chen, Y. Analysis of the Social and Economic Factors Influencing PM2.5 Emissions at the City Level in China. Sustainability 2023, 15, 16335. https://doi.org/10.3390/su152316335
Huang H, Jiang P, Chen Y. Analysis of the Social and Economic Factors Influencing PM2.5 Emissions at the City Level in China. Sustainability. 2023; 15(23):16335. https://doi.org/10.3390/su152316335
Chicago/Turabian StyleHuang, Han, Ping Jiang, and Yuanxiang Chen. 2023. "Analysis of the Social and Economic Factors Influencing PM2.5 Emissions at the City Level in China" Sustainability 15, no. 23: 16335. https://doi.org/10.3390/su152316335
APA StyleHuang, H., Jiang, P., & Chen, Y. (2023). Analysis of the Social and Economic Factors Influencing PM2.5 Emissions at the City Level in China. Sustainability, 15(23), 16335. https://doi.org/10.3390/su152316335