Experimental Study on Flexural Fatigue Resistance of Recycled Fine Aggregate Concrete Incorporating Calcium Sulfate Whiskers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Mixing Ratio and Test Programme
3. Results and Discussion
3.1. Mechanical Characteristics of CSWRF
3.2. Analysis of Specimen Fatigue Damage Pattern
3.3. Fatigue Test Results and Analysis
4. Flexure Fatigue Life Estimation
4.1. Life Distribution Function of Three-Parameter Weibull Distribution
4.2. Fatigue Life Equation
4.2.1. Selection of S-N Curve
4.2.2. Fatigue life P-S-N Curves and Analysis of Results
5. The Action Mechanism of CSW in RFAC
6. Conclusions
- (1)
- The admixture of RFA reduces the mechanical properties of concrete; however, after adding CSW into RFAC, the mechanical properties of the RFAC were significantly improved, where the improvement effect of CSW on the flexural strength of RFAC was more obvious than that on the compressive strength, the brittleness of RFAC was reduced, and its toughness was enhanced by the admixture of CSW. However, when the CSW dosage is higher than 2%, the mechanical properties are instead reduced.
- (2)
- The fatigue life of concrete decreases rapidly with an increase in the maximum stress level, and the fatigue life in the RFAC group shrinks more than that of the NC group under the same stress level; meanwhile, 1% CSW modification can extend the fatigue life of the RF group by 56.5% overall.
- (3)
- The fatigue life of recycled concrete obeys the three-parameter Weibull distribution theory. The P-S-N fatigue equation, considering the fatigue probability, was derived by double logarithm, and the fitting correlation was good. Under the condition of 2 × 106 cycles, the Sc for six kinds of concrete with a survival rate of 0.5 was estimated. The results indicate that the incorporation of RFA reduces the Sc level of concrete, while CSW modification can reduce the fatigue life dispersion caused by recycled aggregate and increase the Sc.
- (4)
- According to the analysis of SEM images, the whiskers have a high aspect ratio and act as microfibers to play a “bridging” role. The cement paste encapsulates CSW to form a spatial skeleton structure, delaying the propagation of cracks and exerting a toughening mechanism, thereby improving the mechanical properties and fatigue properties of recycled concrete.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaarthik, M.; Maruthachalam, D. A sustainable approach of characteristic strength of concrete using recycled fine aggregate. Mater. Today Proc. 2021, 45, 6377–6380. [Google Scholar] [CrossRef]
- de Andrade Salgado, F.; de Andrade Silva, F. Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. J. Build. Eng. 2022, 52, 104452. [Google Scholar] [CrossRef]
- Ortiz, O.; Castells, F.; Sonnemann, G. Sustainability in the construction industry: A review of recent developments based on LCA. Constr. Build. Mater. 2009, 23, 28–39. [Google Scholar] [CrossRef]
- Radonjanin, V.; Malešev, M.; Marinković, S.; Al Malty, A.E.S. Green recycled aggregate concrete. Constr. Build. Mater. 2013, 47, 1503–1511. [Google Scholar] [CrossRef]
- Wang, B.; Yan, L.; Fu, Q.; Kasal, B. A comprehensive review on recycled aggregate and recycled aggregate concrete. Resour. Conserv. Recycl. 2021, 171, 105565. [Google Scholar] [CrossRef]
- Garito, M.A.; Caforio, A.; Falegnami, A.; Tomassi, A.; Romano, E. Shape the EU future citizen. Environmental education on the European Green Deal. Energy Rep. 2023, 9, 340–354. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Cao, D.; Dang, H.; Ding, B. Comparison of recycled aggregate treatment methods on the performance for recycled concrete. Constr. Build. Mater. 2020, 234, 117366. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, H.; Duan, L.; Yang, Y.; Yan, J.; Shan, D.; Liu, X.; Pang, J.; Chen, Y.; Li, X.; et al. Effect of nano metakaolin on compressive strength of recycled concrete. Constr. Build. Mater. 2020, 256, 119393. [Google Scholar] [CrossRef]
- Zega, C.J.; Di Maio, Á.A. Use of recycled fine aggregate in concretes with durable requirements. Waste Manag. 2011, 31, 2336–2340. [Google Scholar] [CrossRef]
- Tiwari, A.; Singh, S.; Nagar, R. Feasibility assessment for partial replacement of fine aggregate to attain cleaner production perspective in concrete: A review. J. Clean. Prod. 2016, 135, 490–507. [Google Scholar] [CrossRef]
- Kirthika, S.K.; Singh, S.K. Durability studies on recycled fine aggregate concrete. Constr. Build. Mater. 2020, 250, 118850. [Google Scholar] [CrossRef]
- Kumar, R.; Gurram SC, B.; Minocha, A.K. Influence of recycled fine aggregate on microstructure and hardened properties of concrete. Mag. Concr. Res. 2017, 69, 1288–1295. [Google Scholar] [CrossRef]
- Huang, B.T.; Li, Q.H.; Xu, S.L.; Zhou, B.M. Tensile fatigue behavior of fiber-reinforced cementitious material with high ductility: Experimental study and novel P-S-N model. Constr. Build. Mater. 2018, 178, 349–359. [Google Scholar] [CrossRef]
- Sainz-Aja, J.A.; Carrascal, I.A.; Polanco, J.A.; Thomas, C. Effect of temperature on fatigue behaviour of self-compacting recycled aggregate concrete. Cem. Concr. Compos. 2022, 125, 104309. [Google Scholar] [CrossRef]
- Xiao, J.; Li, H.; Yang, Z. Fatigue behavior of recycled aggregate concrete under compression and bending cyclic loadings. Constr. Build. Mater. 2013, 38, 681–688. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, L.; Lu, Q. Influence of recycled coarse aggregate replacement percentage on fatigue performance of recycled aggregate concrete. Constr. Build. Mater. 2018, 169, 347–353. [Google Scholar] [CrossRef]
- Thomas, C.; Setién, J.; Polanco, J.A.; Lombillo, I.; Cimentada, A. Fatigue limit of recycled aggregate concrete. Constr. Build. Mater. 2014, 52, 146–154. [Google Scholar] [CrossRef]
- Saini, B.S.; Singh, S.P. Flexural fatigue life analysis of self compacting concrete containing 100% coarse recycled concrete aggregates. Constr. Build. Mater. 2020, 253, 119176. [Google Scholar] [CrossRef]
- Munir, M.J.; Kazmi SM, S.; Wu, Y.F.; Lin, X. Axial stress-strain performance of steel spiral confined acetic acid immersed and mechanically rubbed recycled aggregate concrete. J. Build. Eng. 2021, 34, 101891. [Google Scholar] [CrossRef]
- Krishna, P.H.; Krishna, P.B. Effect of nano-silica and metakaolin on properties of recycled coarse aggregate concrete. Int. J. Adv. Engneering Res. Dev. 2017, 4, 831. [Google Scholar]
- Nazarimofrad, E.; Shaikh, F.U.A.; Nili, M. Effects of steel fibre and silica fume on impact behaviour of recycled aggregate concrete. J. Sustain. Cem. Based Mater. 2017, 6, 54–68. [Google Scholar] [CrossRef]
- Akhtar, T.; Ali, B.; Kahla, N.B.; Kurda, R.; Rizwan, M.; Javed, M.M.; Raza, A. Experimental investigation of eco-friendly high strength fiber-reinforced concrete developed with combined incorporation of tyre-steel fiber and fly ash. Constr. Build. Mater. 2022, 314, 125626. [Google Scholar] [CrossRef]
- Bawa, S.; Singh, S.P. Fatigue performance of self-compacting concrete containing hybrid steel–polypropylene fibres. Innov. Infrastruct. Solut. 2019, 4, 57. [Google Scholar] [CrossRef]
- Tan, Y.; Zhou, C.; Zhou, J. Influence of the steel fiber content on the flexural fatigue behavior of recycled aggregate concrete. Adv. Civ. Eng. 2020, 2020, 8839271. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, B.; Zhang, W.; Fu, Y.; Kong, X. Experimental investigation on the impact properties and microstructure of recycled steel fiber and silica fume reinforced recycled aggregate concrete. Case Stud. Constr. Mater. 2023, 18, e02213. [Google Scholar] [CrossRef]
- Luo, S.; Cheng, S.; Xiao, J.; You, F. Fatigue behavior of nano-modified recycled aggregate concrete under uniaxial compression. Eng. Mech./Gongcheng Lixue 2021, 38, 134–144. (In Chinese) [Google Scholar]
- Al-Dulaymi, S.A.A.; Brown, T.; Fellows, C.; Mahini, S.S. Prevention of Environmental Degradation of Epoxy Resins Modified with the Addition of Different Fillers; University of New England: Biddeford, ME, USA, 2019. [Google Scholar]
- Zhang, X.; Wang, X.; Jin, B.; Liu, X.; Yang, L. Crystal structure formation of hemihydrate calcium sulfate whiskers (HH-CSWs) prepared using FGD gypsum. Polyhedron 2019, 173, 114140. [Google Scholar] [CrossRef]
- Li, M.G.; Ye, K.; Luo, K.B.; Li, H.P.; Su, Y.; Li, G.B.; Mei, Y. Research progress on modification and application in the materials fields of calcium sulfate whisker. Bull. Chin. Ceram. Soc. 2017, 36, 1590–1593. [Google Scholar]
- Pan, Q.; Chen, T.; Pan, R.; Liu, B.; Li, D. Mechanical properties and microstructure of cementitious materials incorporated with calcium sulfate whiskers and silica fume. Mater. Rep. 2019, 33, 257–263. [Google Scholar]
- Li, X.; Li, L.; Zhang, C.; Zheng, Y. Experimental Study on Basic Mechanical Properties of Calcium Sulfate Whisker-Reinforced Cement. IOP Conf. Ser. Mater. Sci. Eng. 2020, 735, 012036. [Google Scholar] [CrossRef]
- Cao, K.; Liu, G.; Li, H.; Huang, Z. Mechanical properties and microstructure of calcium sulfate whisker-reinforced cement-based composites. Materials 2022, 15, 947. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Zhou, J.; Shu, Z.; Yakubu, Y.; Chen, Y.; Wang, W.; Wang, Y. Calcium sulfate whisker reinforced non-fired ceramic tiles prepared from phosphogypsum. Boletín Soc. Española Cerámica Vidr. 2018, 57, 73–78. [Google Scholar] [CrossRef]
- Ma, F.; Chen, C.; Wang, Y. Mechanical behavior of calcium sulfate whisker-reinforced paraffin/gypsum composites. Constr. Build. Mater. 2021, 305, 124795. [Google Scholar] [CrossRef]
- Liu, M.; Jia, S.; Ding, X.; Liu, X.; Wang, X. Carbonation of calcium sulfate whisker concrete under bending load. China Civ. Eng. 2020, 53, 66–73. (In Chinese) [Google Scholar]
- Zhang, J.; Jin, J.; Guo, B.; Wang, J.; Fu, C.; Zhang, Y. Effect of mixed basalt fiber and calcium sulfate whisker on chloride permeability of concrete. J. Build. Eng. 2023, 64, 105633. [Google Scholar] [CrossRef]
- Ding, W.; Len, G.; Wei, Q.; Zhang, X.; Zhou, Y.; Tian, G.; He, R.; Ji, X.; Wang, J. Introduction to the Design Regulations for Proportioning of Ordinary Concrete (JGJ55-2011). Concr. World 2011, 12, 76–79. (In Chinese) [Google Scholar]
- GB/T50081-2002; Standard for Test Methods of Mechanical Properties of Ordinary Concrete. Academy of Building Research: Beijing, China, 2007.
- Wu, W.; He, X.; Yi, Z.; Zhu, Z.; He, J.; Wang, W.; Zhao, C. Flexural fatigue behaviors of high-content hybrid fiber-polymer concrete. Constr. Build. Mater. 2022, 349, 128772. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.B.; Wang, H.; Deng, Q.Q.; Du, L.; Gao, G.S.; Luan, F.C. Effect of different kinds of CaSO4 whisker on the bending strength and hygroscopicity of gypsum board. Appl. Mech. Mater. 2014, 638, 1322–1325. [Google Scholar] [CrossRef]
- Huang, J.; Qiu, S.; Rodrigue, D. Parameters estimation and fatigue life prediction of sisal fibre reinforced foam concrete. J. Mater. Res. Technol. 2022, 20, 381–396. [Google Scholar] [CrossRef]
- Chen, H.; Xu, B.; Mo, Y.L.; Zhou, T. Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings. Constr. Build. Mater. 2018, 178, 418–431. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zhang, W.; Chen, C.; He, T.S. Effect of curing time and CaSO4 whisker content on properties of gypsum board. Appl. Mech. Mater. 2014, 507, 222–225. [Google Scholar] [CrossRef]
- Singh, S.P.; Mohammadi, Y.; Goel, S.; Kaushik, S.K. Prediction of mean and design fatigue lives of steel fibrous concrete beams in flexure. Adv. Struct. Eng. 2007, 10, 25–36. [Google Scholar] [CrossRef]
- Deng, Y.S.; Zhang, K.Q.; Fu, Y.B.; Li, W.J.; Ye, W.J.; Ma, E.L. Fatigue properties of recycled concrete modified with calcium carbonate nanoparticles. Bull. Chin. Ceram. Soc. 2022, 41, 4254–4262+4281. (In Chinese) [Google Scholar] [CrossRef]
- Becher, P.F.; Hsueh, C.H.; Angelini, P.; Tiegs, T.N. Toughening behavior in whisker-reinforced ceramic matrix composites. J. Am. Ceram. Soc. 1988, 71, 1050–1061. [Google Scholar] [CrossRef]
- Romualdi, J.P.; Batson, G.B. Mechanics of crack arrest in concrete. J. Eng. Mech. Div. 1963, 89, 147–168. [Google Scholar] [CrossRef]
Aggregate Types | Apparent Density (kg/m3) | Stack Density (kg/m3) | Water Absorption (%) | Crushing Indicator |
---|---|---|---|---|
NFA | 2536 | 1368 | 2.2% | 12.6% |
RFA | 2312 | 1226 | 13.1% | 19.22% |
Chemical Formula | Average Diameter (μm) | Average Length (μm) | Density (g/cm3) | Water Soluble (ppm) | Tensile Strength (GPa) | Elastic Modulus (GPa) | PH |
---|---|---|---|---|---|---|---|
CaSO4 | 1–8 | 30–200 | 2.69 | <1200 | 20.5 | 178 | 7 |
Project | Cement | Fly Ash | Coarse Aggregates | Fine Aggregates | CSW | Water | |
---|---|---|---|---|---|---|---|
NFA | RFA | ||||||
NC | 328.00 | 82.00 | 1173.00 | 632.00 | 0.00 | 0.00 | 185.00 |
RF | 328.00 | 82.00 | 1173.00 | 506.00 | 126.00 | 0.00 | 185.00 |
C0.5RF | 328.00 | 82.00 | 1173.00 | 506.00 | 126.00 | 2.05 | 185.00 |
C1RF | 328.00 | 82.00 | 1173.00 | 506.00 | 126.00 | 4.10 | 185.00 |
C2RF | 328.00 | 82.00 | 1173.00 | 506.00 | 126.00 | 8.20 | 185.00 |
C3RF | 328.00 | 82.00 | 1173.00 | 506.00 | 126.00 | 12.30 | 185.00 |
Project | S | N1/Second | N2/Second | N3/Second | N4/Second | Ñ/Second |
---|---|---|---|---|---|---|
NC | 0.6 | 190,243 | 259,072 | 306,251 | 451,789 | 301,839 |
0.7 | 12,900 | 24,156 | 42,637 | 59,982 | 34,919 | |
0.8 | 1728 | 3327 | 6139 | 9125 | 5080 | |
RF | 0.6 | 80,874 | 149,003 | 211,725 | 335,672 | 194,319 |
0.7 | 8692 | 16,725 | 29,028 | 43,485 | 24,483 | |
0.8 | 1331 | 2142 | 3890 | 4482 | 2961 | |
C0.5RF | 0.6 | 126,926 | 213,786 | 228,903 | 351,003 | 230,155 |
0.7 | 10,307 | 20,394 | 33,187 | 51,326 | 28,804 | |
0.8 | 1604 | 3067 | 4192 | 7089 | 3988 | |
C1RF | 0.6 | 151,908 | 245,596 | 348,007 | 470,789 | 304,075 |
0.7 | 19,820 | 27,089 | 52,707 | 68,311 | 41,982 | |
0.8 | 2468 | 4132 | 6655 | 8908 | 5541 | |
C2RF | 0.6 | 126,344 | 199,872 | 320,984 | 399,189 | 261,597 |
0.7 | 13,720 | 25,519 | 39,819 | 60,181 | 34,810 | |
0.8 | 1805 | 2795 | 55641 | 7932 | 4543 | |
C3RF | 0.6 | 81,722 | 159,871 | 241,772 | 373,259 | 214,156 |
0.7 | 16,510 | 21,078 | 30,862 | 53,972 | 30,581 | |
0.8 | 941 | 2012 | 4181 | 6673 | 3452 |
Project | S | n | β | γ | R2 |
---|---|---|---|---|---|
NC | 0.6 | 2.721 | 339,280 | 2597 | 0.9642 |
0.7 | 1.402 | 395,07.8 | 1481 | 0.9938 | |
0.8 | 0.9535 | 5601 | 82 | 0.9557 | |
RF | 0.6 | 1.477 | 207,997.8 | 17,603 | 0.9985 |
0.7 | 1.316 | 27,147.6 | 1483 | 0.9974 | |
0.8 | 1.338 | 2884.3 | 543 | 0.9657 | |
C0.5RF | 0.6 | 1.955 | 228,966.8 | 33,926 | 0.9572 |
0.7 | 1.404 | 32,980 | 822 | 0.9997 | |
0.8 | 1.373 | 4172 | 447 | 0.9945 | |
C1RF | 0.6 | 1.981 | 340,238 | 11,183 | 0.9995 |
0.7 | 0.759 | 285,49.3 | 16,948 | 0.9736 | |
0.8 | 1.079 | 4521.3 | 1564 | 0.9831 | |
C2RF | 0.6 | 1.732 | 279,271 | 23,706 | 0.9864 |
0.7 | 1.47 | 38,692.6 | 1956 | 0.9998 | |
0.8 | 1.334 | 4742.4 | 420 | 0.9765 | |
C3RF | 0.6 | 1.557 | 251,501.4 | 222 | 0.9999 |
0.7 | 0.71 | 16,589.2 | 15,104 | 0.9999 | |
0.8 | 1.018 | 3719.3 | 269 | 0.9946 |
Project | Survival Probability | a | b | Fatigue Equation | R2 |
---|---|---|---|---|---|
NC | 0.5 | 1.4430 | 0.06906 | lg(S) = 0.15624 − 0.06906lg(N) | 0.9999 |
RF | 1.3828 | 0.06873 | lg(S) = 0.14076 − 0.06873lg(N) | 0.9969 | |
C0.5RF | 1.4212 | 0.06968 | lg(S) = 0.15264 − 0.06968lg(N) | 0.9994 | |
C1RF | 1.4485 | 0.06988 | lg(S) = 0.16093 − 0.06988lg(N) | 0.9993 | |
C2RF | 1.4318 | 0.06906 | lg(S) = 0.15587 − 0.06906lg(N) | 0.9959 | |
C3RF | 1.3782 | 0.06779 | lg(S) = 0.13932 − 0.06779lg(N) | 0.9942 | |
NC | 0.95 | 1.2077 | 0.0605 | lg(S) = 0.08196 − 0.0605lg(N) | 0.9791 |
RF | 1.2919 | 0.07191 | lg(S) = 0.11122 − 0.07191lg(N) | 0.9916 | |
C0.5RF | 1.2132 | 0.06269 | lg(S) = 0.08394 − 0.06269lg(N) | 0.9743 | |
C1RF | 1.4060 | 0.07369l | lg(S) = 0.148 − 0.07369lg(N) | 0.9626 | |
C2RF | 1.2539 | 0.06574 | lg(S) = 0.09828 − 0.06574lg(N) | 1 | |
C3RF | 1.1562 | 0.05796 | lg(S) = 0.06304 − 0.05796lg(N) | 0.869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, C.; Chen, X.; Mao, W.; Xing, S.; Chen, J.; Zhou, J. Experimental Study on Flexural Fatigue Resistance of Recycled Fine Aggregate Concrete Incorporating Calcium Sulfate Whiskers. Sustainability 2023, 15, 16357. https://doi.org/10.3390/su152316357
Zhong C, Chen X, Mao W, Xing S, Chen J, Zhou J. Experimental Study on Flexural Fatigue Resistance of Recycled Fine Aggregate Concrete Incorporating Calcium Sulfate Whiskers. Sustainability. 2023; 15(23):16357. https://doi.org/10.3390/su152316357
Chicago/Turabian StyleZhong, Chuheng, Xiaoyu Chen, Weiqi Mao, Sijia Xing, Jinhui Chen, and Jinzhi Zhou. 2023. "Experimental Study on Flexural Fatigue Resistance of Recycled Fine Aggregate Concrete Incorporating Calcium Sulfate Whiskers" Sustainability 15, no. 23: 16357. https://doi.org/10.3390/su152316357
APA StyleZhong, C., Chen, X., Mao, W., Xing, S., Chen, J., & Zhou, J. (2023). Experimental Study on Flexural Fatigue Resistance of Recycled Fine Aggregate Concrete Incorporating Calcium Sulfate Whiskers. Sustainability, 15(23), 16357. https://doi.org/10.3390/su152316357