Sustainable Water Management for Small Farmers with Center-Pivot Irrigation: A Hydraulic and Structural Design Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. IrriExpress
2.3. Structure of the CPIS in Irriexpress Software
2.4. Last Regular Drive Unit Setting
2.5. Structural Design of Center-Pivot Irrigation System
2.5.1. Analysis and Design of Center-Pivot
2.5.2. Model Definition
2.5.3. Load Considerations
2.5.4. Physical Properties of the Scale Model
2.5.5. Material Selection
2.5.6. Fitness Function
2.6. Cost Estimation of the Center-Pivot Irrigation System
3. Results and Discussion
3.1. Hydraulic Design
3.2. Node Pressure of Center-Pivot
3.3. Pipe Velocity Variation for All Pivots
3.4. Maximum Span Slope
3.5. Maximum Wheel Slope
3.6. Maximum Twist Angle
3.7. Structural Design
3.7.1. Structural Optimization of CPIS Trusses
3.7.2. Design of the Finalized Layout for the CPIS
3.7.3. Cost Estimation Results of the CPIS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domínguez, A.; Schwartz, R.C.; Pardo, J.J.; Guerrero, B.; Bell, J.M.; Colaizzi, P.D.; Louis Baumhardt, R. Center Pivot Irrigation Capacity Effects on Maize Yield and Profitability in the Texas High Plains. Agric. Water Manag. 2022, 261, 107335. [Google Scholar] [CrossRef]
- De Albuquerque, A.O.; de Carvalho, O.L.F.; e Silva, C.R.; de Bem, P.P.; Trancoso Gomes, R.A.; Borges, D.L.; Guimarães, R.F.; Pimentel, C.M.M.M.; de Carvalho Júnior, O.A. Instance Segmentation of Center Pivot Irrigation Systems Using Multi-Temporal SENTINEL-1 SAR Images. Remote Sens. Appl. Soc. Environ. 2021, 23, 100537. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019. [Google Scholar] [CrossRef]
- Noreldin, T.; Ouda, S.; Mounzer, O.; Abdelhamid, M.T. CropSyst Model for Wheat under Deficit Irrigation Using Sprinkler and Drip Irrigation in Sandy Soil. J. Water Land Dev. 2015, 26, 57–64. [Google Scholar] [CrossRef]
- Baiamonte, G.; Provenzano, G.; Rallo, G. Analytical Approach Determining the Optimal Length of Paired Drip Laterals in Uniformly Sloped Fields. J. Irrig. Drain. Eng. 2015, 141, 04014042. [Google Scholar] [CrossRef]
- Baiamonte, G. Dual-Diameter Laterals in Center-Pivot Irrigation System. Water 2022, 14, 2292. [Google Scholar] [CrossRef]
- Baiamonte, G. Design of Concave and Convex Paired Sloped Drip Laterals. Agric. Water Manag. 2017, 191, 173–183. [Google Scholar] [CrossRef]
- Baiamonte, G. Explicit Relationships for Optimal Designing Rectangular Microirrigation Units on Uniform Slopes: The IRRILAB Software Application. Comput. Electron. Agric. 2018, 153, 151–168. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2018. [Google Scholar]
- Abd El-Wahed, M.H.; Medici, M.; Lorenzini, G. Harvesting Water in a Center Pivot Irrigation System: Evaluation of Distribution Uniformity with Varying Operating Parameters. J. Eng. Thermophys. 2015, 24, 143–151. [Google Scholar] [CrossRef]
- Abedinpour, M. Field Evaluation of Centre Pivot Sprinkler Irrigation System in the North-East of Iran. J. Water Land Dev. 2017, 34, 3–9. [Google Scholar] [CrossRef]
- Sui, R.; Fisher, D.K. Field Test of a Center Pivot Irrigation System. Appl. Eng. Agric. 2015, 31, 83–88. [Google Scholar] [CrossRef]
- Qureshi, W.A.; Xiang, Q.; Xu, Z.; Fan, Z. Study on the Irrigation Uniformity of Impact Sprinkler under Low Pressure with and without Aeration. Front. Energy Res. 2023, 11, 1135543. [Google Scholar] [CrossRef]
- Gabriel, S.; SOROPA; EZRA; Pandasvika, E.; Oniward, S.; Svubure; Mubayiwa, T. Performance of 4 Mm Impact Sprinklers at Different Spacing within Acceptable Pressure Range (250–350 KPa). Int. J. Eng. Sci. Technol. 2011. [Google Scholar]
- Islam, Z.; Mangrio, A.; Ahmad, M.; Akbar, G.; Muhammad, S.; Umair, M. Application and Distribution of Irrigation Water Under Various Sizes of Center Pivot Sprinkler Systems. Pak. J. Agric. Res. 2017, 30, 415–425. [Google Scholar]
- Kincaid, D.C. Application Rates from Center Pivot Irrigation with Current Sprinkler Types. Appl. Eng. Agric. 2005, 21, 605–610. [Google Scholar] [CrossRef]
- Baiamonte, G.; Minacapilli, M.; Novara, A.; Gristina, L. Time Scale Effects and Interactions of Rainfall Erosivity and Cover Management Factors on Vineyard Soil Loss Erosion in the Semi-Arid Area of Southern Sicily. Water 2019, 11, 978. [Google Scholar] [CrossRef]
- Reddy, B.J.M.; Apolayo, H. Friction Correction Factor for Center-Pivot Irrigation Systems. J. Irrig. Drain. Eng. 1988, 114, 183–185. [Google Scholar] [CrossRef]
- Scaloppi, E.J.; Allen, R.G. Hydraulics of Center-Pivot Laterals. J. Irrig. Drain. Eng. 1993, 119, 554–567. [Google Scholar] [CrossRef]
- Faci, J.M.; Salvador, R.; Playán, E.; Sourell, H. Comparison of Fixed and Rotating Spray Plate Sprinklers. J. Irrig. Drain. Eng. 2001, 127, 224–233. [Google Scholar] [CrossRef]
- Misaal, M.A.; Zahra, S.M.; Rasul, F.; Imran, M.; Noor, R.; Fahad, M. Influence of Climate Change on Crop Yield and Sustainable Agriculture. In Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems; Pande, C.B., Moharir, K.N., Singh, S.K., Pham, Q.B., Elbeltagi, A., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Pande, C.B.; Kadam, S.A.; Rajesh, J.; Gorantiwar, S.D.; Shinde, M.G. Predication of Sugarcane Yield in the Semi-Arid Region Based on the Sentinel-2 Data Using Vegetation’s Indices and Mathematical Modeling. In Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems; Pande, C.B., Moharir, K.N., Singh, S.K., Pham, Q.B., Elbeltagi, A., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Valín, M.I.; Cameira, M.R.; Teodoro, P.R.; Pereira, L.S. DEPIVOT: A Model for Center-Pivot Design and Evaluation. Comput. Electron. Agric. 2012, 87, 159–170. [Google Scholar] [CrossRef]
- de Almeida, A.N.; Coelho, R.D.; de Costa, O.J.; Farías, A.J. Methodology for Dimensioning of a Center Pivot Irrigation System Operating with Dripper Type Emitter. Eng. Agric. 2017, 37, 828–837. [Google Scholar] [CrossRef]
- Baiamonte, G.; Baiamonte, G. Using Rotating Sprinkler Guns in Centre-Pivot Irrigation Systems. Irrig. Drain. 2019, 68, 893–908. [Google Scholar] [CrossRef]
- Howell, T.A. Sprinkler Package Water Loss Comparisons. In Proceedings of the 2004 Central Plains Irrigation Conference, Kearney, NE, USA, 17–18 February 2004; pp. 53–68. [Google Scholar]
- Hoque, M.M.; Islam, A.; Islam, A.R.M.T.; Pal, S.C.; Mahammad, S.; Alam, E. Assessment of soil heavy metal pollution and associated ecological risk of agriculture dominated mid-channel bars in a subtropical river basin. Sci. Rep. 2023, 13, 11104. [Google Scholar] [CrossRef] [PubMed]
- Towfiqul Islam, A.R.M.; Shen, S.; Bodrud-Doza, M.; Atiqur-Rahman, M.; Das, S. Assessment of trace elements of groundwater and their spatial distribution in Rangpur district Bangladesh. Arab. J. Geosci. 2017, 10, 95. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Sodango, T.H.; Li, X.; Sha, J.; Bao, Z. Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: Impacts and mitigation approaches. J. Health Pollut. 2018, 8, 53–70. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef]
- Hui, X.; Zheng, Y.; Yan, H. Water Distributions of Low-Pressure Sprinklers as Affected by the Maize Canopy under a Centre Pivot Irrigation System. Agric. Water Manag. 2021, 245, 106646. [Google Scholar] [CrossRef]
- Shanthi, R.M.; Sheela, V.; Gayathri, R.; Edwin, A. Weight Optimization of Steel Trusses Using Genetic Algorithm. Int. J. Civ. Eng. Technol. 2018, 9, 853–859. [Google Scholar]
- Mateos Matilla, D.; Lozano Murciego, Á.; Jiménez-Bravo, D.M.; Sales Mendes, A.; Leithardt, V.R.Q. Low-Cost Edge Computing Devices and Novel User Interfaces for Monitoring Pivot Irrigation Systems Based on Internet of Things and LoRaWAN Technologies. Biosyst. Eng. 2022, 223, 14–29. [Google Scholar] [CrossRef]
- Young, D. Analysis of Vierendeel Trusses. Trans. Am. Soc. Civ. Eng. 1937, 102, 869–896. [Google Scholar] [CrossRef]
- Yoshizawa, N.; Tanimoto, B. Operational Method for Displacement Analysis Second Report: Vierendeel Trusses; Shinshu University Library: Matsumoto, Japan, 1967. [Google Scholar]
- Pons Poblet, J.M. The Vierendeel Truss: Past and Present of an Innovative Typology. Arquitetura Rev. 2019, 15, 193–211. [Google Scholar]
- Chakraborty, M.; Khot, L.R.; Peters, R.T. Assessing Suitability of Modified Center Pivot Irrigation Systems in Corn Production Using Low Altitude Aerial Imaging Techniques. Inf. Process. Agric. 2020, 7, 41–49. [Google Scholar] [CrossRef]
- Cai, D.-Y.; Yan, H.-J.; Li, L.-H. Effects of Water Application Uniformity Using a Center Pivot on Winter Wheat Yield, Water and Nitrogen Use Efficiency in the North China. Plain. J. Integr. Agric. 2020, 19, 2326–2339. [Google Scholar] [CrossRef]
- Croce, E.S.; Ferreira, E.G.; Lemonge, A.C.C.; Fonseca, L.G.; Barbosa, H.J.C. A Genetic Algorithm for Structural Optimization of Steel Truss Roofs. In Proceedings of the 25th Iberian Latin-American Congress on Computational Methods in Engineering, Recife, Brazil, 10–12 November 2004; p. 12. [Google Scholar]
- Press, W.I.T. Transactions on Modelling and Simulation; WIT Press: Southampton, UK, 1995; Volume 10. [Google Scholar]
- Cazacu, R.; Grama, L. Steel Truss Optimization Using Genetic Algorithms and FEA. Procedia Technol. 2014, 12, 339–346. [Google Scholar] [CrossRef]
- Chen, X.; Wang, F.; Jiang, L.; Huang, C.; An, P.; Pan, Z. Impact of Center Pivot Irrigation on Vegetation Dynamics in a Farming-Pastoral Ecotone of Northern China: A Case Study in Ulanqab, Inner Mongolia. Ecol. Indic. 2019, 101, 274–284. [Google Scholar] [CrossRef]
- Qin, A.; Ning, D.; Liu, Z.; Li, S.; Zhao, B.; Duan, A. Determining Threshold Values for a Crop Water Stress Index-Based Center Pivot Irrigation with Optimum Grain Yield. Agriculture 2021, 11, 958. [Google Scholar] [CrossRef]
- Moreno, M.A.; Medina, D.; Ortega, J.F.; Tarjuelo, J.M. Optimal Design of Center Pivot Systems with Water Supplied from Wells. Agric. Water Manag. 2012, 107, 112–121. [Google Scholar] [CrossRef]
- Achtziger, W. On Simultaneous Optimization of Truss Geometry and Topology. Struct. Multidiscip. Optim. 2007, 33, 285–304. [Google Scholar] [CrossRef]
- Suvorov, V.; Vasilyev, R.; Melnikov, B.; Kuznetsov, I.; Bahrami, M.R. Weight Reduction of a Ship Crane Truss Structure Made of Composites. Appl. Sci. 2023, 13, 8916. [Google Scholar] [CrossRef]
- Deb, K.; Gulati, S. Design of Truss-Structures for Minimum Weight Using Genetic Algorithms. Finite Elem. Anal. Des. 2001, 37, 447–465. [Google Scholar] [CrossRef]
- Stolpe, M. Truss Optimization with Discrete Design Variables: A Critical Review. Struct. Multidiscip. Optim. 2016, 53, 349–374. [Google Scholar] [CrossRef]
- Smith, J.; Hodgins, J.; Oppenheim, I.; Witkin, A. Creating Models of Truss Structures with Optimization. ACM Trans. Graph. 2002, 21, 295–301. [Google Scholar] [CrossRef]
- Ohsaki, M.; Swan, C.C. Topology and Geometry Optimization of Trusses and Frames. Recent Adv. Optim. Struct. Des. 2002, 46, 1–32. [Google Scholar]
- Martinez, P.; Marti, P.; Querin, O.M. Growth Method for Size, Topology, and Geometry Optimization of Truss Structures. Struct. Multidiscip. Optim. 2007, 33, 13–26. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K. Developing an Optimal Design Model of Furrow Irrigation Based on the Minimum Cost and Maximum Irrigation Efficiency. Appl. Water Sci. 2022, 12, 144. [Google Scholar] [CrossRef]
- Johansen, K.; Lopez, O.; Tu, Y.H.; Li, T.; McCabe, M.F. Center Pivot Field Delineation and Mapping: A Satellite-Driven Object-Based Image Analysis Approach for National Scale Accounting. ISPRS J. Photogramm. Remote Sens. 2021, 175, 1–19. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Z.; Liu, Z.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. Impact of dam construction on precipitation: A regional perspective. Mar. Freshw. Res. 2022, 74, 877–890. [Google Scholar] [CrossRef]
- Baiamonte, G.; Provenzano, G.; Iovino, M.; Elfahl, M. Hydraulic Design of the Center-Pivot Irrigation System for Gradually Decreasing Sprinkler Spacing. J. Irrig. Drain. Eng. 2021, 147, 04021027. [Google Scholar] [CrossRef]
- Musa, M.N.; Taha, M.A. Analysis of Center Pivot Irrigation System by Experimental Method. Appl. Mech. Mater. 2016, 819, 549–552. [Google Scholar] [CrossRef]
- Diotto, A.V.; Folegatti, M.V.; Duarte, S.N.; Romanelli, T.L. Embodied Energy Associated with the Materials Used in Irrigation Systems: Drip and Centre Pivot. Biosyst. Eng. 2014, 121, 38–45. [Google Scholar] [CrossRef]
- Gong, S.; Bai, X.; Luo, G.; Li, C.; Wu, L.; Chen, F.; Zhang, S. Climate change has enhanced the positive contribution of rock weathering to the major ions in riverine transport. Glob. Planet. Change 2023, 228, 104203. [Google Scholar] [CrossRef]
- Qiu, D.; Zhu, G.; Bhat, M.A.; Wang, L.; Liu, Y.; Sang, L.; Sun, N. Water use strategy of nitraria tangutorum shrubs in ecological water delivery area of the lower inland river: Based on stable isotope data. J. Hydrol. 2023, 624, 129918. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Liu, M.; Yin, Z.; Liu, X.; Yin, L.; Zheng, W. Remote sensing and geostatistics in urban water-resource monitoring: A review. Mar. Freshw. Res. 2023. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zhong, X.; Yao, T.; Qi, J.; Wang, Y.; Xue, Y. Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau. Sci. Bull. 2022, 67, 474–478. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Li, J.; Lu, S.; Tian, J.; Yin, Z.; Zheng, W. YOLOV4_CSPBi: Enhanced Land Target Detection Model. Land 2023, 12, 1813. [Google Scholar] [CrossRef]
- Zheng, H.; Fan, X.; Bo, W.; Yang, X.; Tjahjadi, T.; Jin, S. A Multiscale Point-Supervised Network for Counting Maize Tassels in the Wild. Plant Phenomics 2023, 5, 100. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhu, G.; Meng, G.; Lu, S.; Qiu, D.; Lin, X.; Sun, N. Estimating non-productive water loss in irrigated farmland in arid oasis regions: Based on stable isotope data. Agric. Water Manag. 2023, 289, 108515. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, C.; Chen, Q.; Li, G. Using deep belief network to construct the agricultural information system based on Internet of Things. J. Supercomput. 2022, 78, 379–405. [Google Scholar] [CrossRef]
- Li, Y.; Mi, W.; Ji, L.; He, Q.; Yang, P.; Xie, S.; Bi, Y. Urbanization and agriculture intensification jointly enlarge the spatial inequality of river water quality. Sci. Total Environ. 2023, 878, 162559. [Google Scholar] [CrossRef]
Sr. No. | Field Area | Span Length | Overhanging Portion | No. of Spans | End-Gun | Radius Ro | Last Wheel | Application Rate | App. Time |
---|---|---|---|---|---|---|---|---|---|
Acres | m | m | m | m | m | mm/Day | Hour | ||
1 | 5.18 | 49.4 | 25.1 | 1 | 6.1 | 80.6 | 311.9 | 10 | 2 |
2 | 10.07 | 66.4 | 30.6 | 1 | 16.5 | 113.4 | 426.2 | 10 | 3 |
3 | 15.1 | 93.0 | 30.6 | 2 | 15.8 | 139.5 | 584.5 | 10 | 4 |
4 | 20.17 | 130.6 | 25.1 | 3 | 5.5 | 161.2 | 820.9 | 10 | 5 |
5 | 25.14 | 147.9 | 25.1 | 3 | 7.0 | 180.0 | 929.9 | 10 | 6 |
6 | 30.19 | 165.2 | 25.1 | 3 | 6.4 | 196.6 | 1037.7 | 10 | 6.5 |
Field Area | Volume of Water | Total Discharge | Dynamic Head | Power of System |
---|---|---|---|---|
Acres | m3 | gpm | m | hp |
5.18 | 210 | 462 | 22.31 | 18.88 |
10.07 | 407 | 599 | 22.82 | 22.19 |
15.1 | 611 | 673 | 29.49 | 28.28 |
20.17 | 816 | 719 | 29.99 | 29.97 |
25.14 | 1017 | 747 | 33.74 | 33.57 |
30.19 | 1222 | 823 | 34.6 | 36.79 |
Motor | C Drive Gear Ratio | C Drive Output | LRDU Speed | Selected Last DU Speed | Tire Size | Rolling Radius | Key “Y“ for Tire Selection | Selected Rolling R |
---|---|---|---|---|---|---|---|---|
RPM | # | RPM | RPM | m per min. | # | Inches | # | Inches |
1458 | 51.47 | 28.3 | 0.54 | 11.2 ∗ 24″ | 130.25 | |||
1750 | 51.47 | 34.0 | 0.65 | 10R ∗ 22.5″ | 123 | |||
2880 | 51.47 | 56.0 | 1.08 | 4.00 | 11R ∗ 24.5″ | 131 | ||
3500 | 51.47 | 68.0 | 1.31 | 14.9 ∗ 24″ | 146.57 | Y | 146.57 | |
136 | 2.62 | 16.9 ∗ 24″ | 156.2 | |||||
1750 | 40.69 | 43.0 | 0.83 | 11.2 ∗ 38″ | 172.55 |
Timer Setting % | Hours per Full Irrigation Cycle | Gross Depth per Cycle | Timer Setting % | Hours per Full Irrigation Cycle | Gross Depthper Cycle | Timer Setting % | Hours per Full Irrigation Cycle | Gross Depth per Cycle |
---|---|---|---|---|---|---|---|---|
# | Hours | mm | # | Hours | mm | # | Hours | mm |
100% | 1.297 | 6.475 | 100% | 1.747 | 5.818 | 100% | 2.431 | 6.079 |
90% | 1.441 | 7.194 | 90% | 1.942 | 6.464 | 90% | 2.701 | 6.754 |
80% | 1.622 | 8.094 | 80% | 2.184 | 7.272 | 80% | 3.039 | 7.598 |
70% | 1.853 | 9.250 | 70% | 2.496 | 8.311 | 70% | 3.473 | 8.684 |
60% | 2.162 | 10.792 | 60% | 2.912 | 9.696 | 60% | 4.052 | 10.131 |
50% | 2.594 | 12.950 | 50% | 3.495 | 11.636 | 50% | 4.862 | 12.157 |
40% | 3.243 | 16.187 | 40% | 4.368 | 14.544 | 40% | 6.078 | 15.197 |
30% | 4.324 | 21.583 | 30% | 5.825 | 19.393 | 30% | 8.103 | 20.262 |
20% | 6.486 | 32.375 | 20% | 8.737 | 29.089 | 20% | 12.155 | 30.394 |
10% | 12.972 | 64.749 | 10% | 17.474 | 58.178 | 10% | 24.310 | 60.787 |
Water app. vs. Timer Setting for 5 Acres | Water app. vs. Timer Setting for 10 Acres | Water app. vs. Timer Setting for 15 Acres | ||||||
100% | 3.414 | 6.831 | 100% | 3.865 | 6.445 | 100% | 4.316 | 6.639 |
90% | 3.794 | 7.590 | 90% | 4.295 | 7.161 | 90% | 4.796 | 7.377 |
80% | 4.268 | 8.539 | 80% | 4.831 | 8.056 | 80% | 5.395 | 8.299 |
70% | 4.877 | 9.758 | 70% | 5.522 | 9.207 | 70% | 6.166 | 9.485 |
60% | 5.690 | 11.385 | 60% | 6.442 | 10.741 | 60% | 7.194 | 11.065 |
50% | 6.828 | 13.662 | 50% | 7.730 | 12.889 | 50% | 8.632 | 13.278 |
40% | 8.536 | 17.077 | 40% | 9.663 | 16.112 | 40% | 10.790 | 16.598 |
30% | 11.381 | 22.770 | 30% | 12.884 | 21.482 | 30% | 14.387 | 22.131 |
20% | 17.071 | 34.155 | 20% | 19.326 | 32.223 | 20% | 21.581 | 33.196 |
10% | 34.142 | 68.309 | 10% | 38.652 | 64.446 | 10% | 43.162 | 66.392 |
Water app. vs. Timer Setting for 20 Acres | Water app. vs. Timer Setting for 25 Acres | Water app. vs. Timer Setting for 30 Acres |
Description | Dimension | Actual Structure | Specification |
---|---|---|---|
Span Length | ft | 200 | |
Top Chord | inches | 5 | Galvanized A36 Steel Pipe |
Bottom Chord | inches | 3/4 dia. of Rebar | Diameter of Rebar |
Ribs | inches | 2 × 2 × 1/8 | Angle Section |
Tower Members | inches | 4 × 4 × 1/4 | Angle Section |
Motor | RPM | 2880 | 0.75 hp, One Motor Required |
Pump Discharge | gpm | 461.2 | |
Rotating Mechanism | Bearings | ||
Wheels | inches | 14.9 ∗ 24″ | Diameter of Rubber Wheel |
Description | Prototype |
---|---|
Internal Diameter (mm) | 127.00 |
Outer Diameter (mm) | 140.1 |
Cross-sectional area (mm2) | 2749.52 |
MOI (mm4) | 6,144,976.42 |
Length (mm) | 10,000 |
Line load (kg/m) | 43.17 |
Axial Force | 618,642.5 |
Axial Stress | 225 |
Mechanical Properties | Material A36 |
---|---|
Modulus of Elasticity, E (Mpa) | 200,000 |
Tensile Strength (Mpa) | 400 |
Yield Strength (Mpa) | 250 |
Shear Modulus (Mpa) | 75,000 |
Poisson‘s Ratio | 0.32 |
Field Area | No. of Spans | Import Cost | Per Acre Import Cost | Local Cost | Per Acre Local Cost | Cost Difference | Per Acre Difference |
---|---|---|---|---|---|---|---|
Acres | # | Million INR | Million INR | Million INR | Million INR | Million INR | Million INR |
5 | 1 | 3.99 | 0.79 | 3.19 | 0.64 | 0.79 | 0.16 |
10 | 1 | 5.73 | 0.57 | 4.59 | 0.46 | 1.14 | 0.12 |
15 | 2 | 9.99 | 0.66 | 7.99 | 0.53 | 1.99 | 0.13 |
20 | 3 | 11.9 | 0.56 | 9.03 | 0.45 | 2.26 | 0.11 |
25 | 3 | 11.8 | 0.474 | 9.47 | 0.38 | 2.37 | 0.095 |
30 | 3 | 13.7 | 0.457 | 10.9 | 0.37 | 2.743 | 0.091 |
Field Area | No. of Spans | Towable Area | Import Towable Cost | Per Acre Import Cost | Local Towable Cost | Per Acre Local | Cost Difference | Per Acre Cost Difference |
---|---|---|---|---|---|---|---|---|
Acres | # | Acres | Million INR | Million INR | Million INR | Million INR | Million INR | Million INR |
5 | 1 | 20 | 4.99 | 0.249 | 4.241 | 0.212 | 0.748 | 0.037 |
10 | 1 | 30 | 7.1 | 0.234 | 5.978 | 0.199 | 1.055 | 0.035 |
15 | 2 | 45 | 11.5 | 0.255 | 9.764 | 0.217 | 1.723 | 0.038 |
20 | 3 | 60 | 12.9 | 0.215 | 10.949 | 0.182 | 1.932 | 0.033 |
25 | 3 | 75 | 13.8 | 0.185 | 11.767 | 0.157 | 2.076 | 0.028 |
30 | 3 | 90 | 15.8 | 0.176 | 13.444 | 0.149 | 2.373 | 0.027 |
Mainline | Name | Description | Elevation | Flow | Pressure Needed | Pressure Available |
---|---|---|---|---|---|---|
# | # | # | (m) | gpm | psi | psi |
2 | Shift #1 | Medium (50) | 122.4 | 2937.21 | 120.8 | 120.8 |
3 | Pivot 1 | Valve | 122.8 | 717.79 | 85.27 | 116 |
4 | Pivot 2 | Valve | 121.1 | 522.89 | 85.27 | 115.41 |
5 | Pivot 3 | Valve | 123.4 | 276.93 | 85.27 | 112.12 |
6 | Pivot 4 | Valve | 121 | 841.79 | 96.8 | 118.47 |
12 | Pivot 5 | Valve | 120.3 | 166.83 | 85.27 | 114.56 |
13 | Pivot 6 | Valve | 121.9 | 410.97 | 85.27 | 101.77 |
Pivot Number | Max. Pipe Velocity | Min. Pipe Velocity | Max. Node Pressure | Min. Node Pressure | Remarks |
---|---|---|---|---|---|
# | m/s | m/s | psi | psi | # |
Shift # 1 | 2 | 1.1 | 120.8 | 101.8 | Good |
Pivot 1 | 2 | 1.1 | 120.8 | 101.8 | Good |
Pivot 2 | 2 | 1.1 | 120.8 | 101.8 | Good |
Pivot 3 | 2 | 1.1 | 120.8 | 101.8 | Good |
Pivot 4 | 2 | 1.1 | 120.8 | 101.8 | Good |
Pivot 5 | 2 | 1.1 | 120.8 | 101.8 | Good |
Pivot 6 | 2 | 1.1 | 120.8 | 101.8 | Good |
Fitness Rank | Truss Geometry | Design Variable Plot | Parameters | Values |
---|---|---|---|---|
1-Vierendeel Type 1 Truss | Weight Kg (lbs) Max. Displacement mm (in) Max. Stress (D/C Ratio) | 1560 (3438) 237 (9.33) 0.89 | ||
2-Vierendeel Type 2 Truss | Weight Kg (lbs) Max. Displacement mm (in) Max. Stress (D/C Ratio) | 1590 (3504) 165 (6.5) 0.98 | ||
3-U Pratt Type Truss | Weight Kg (lbs) Max. Displacement mm (in) Max. Stress (D/C Ratio) | 1803 (3974) 147 (5.8) 0.99 | ||
4-Warren Type Truss | Weight Kg (lbs) Max. Displacement mm (in) Max. Stress (D/C Ratio) | 1820 (4011) 168 (6.6) 0.86 | ||
5-Pratt Type Truss | Weight Kg (lbs) Max. Displacement mm (in) Max. Stress (D/C Ratio) | 1840 (4055) 229 (9) 0.92 | ||
6-Brown Type Truss | Weight Kg (lbs) Max. Displacement mm (in) Max. Stress (D/C Ratio) | 1980 (4365) 218 (8.6) 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, M.; Haider, S.; Masood, M.U.; Pande, C.B.; Tolche, A.D.; Alshehri, F.; Costache, R.; Elkhrachy, I. Sustainable Water Management for Small Farmers with Center-Pivot Irrigation: A Hydraulic and Structural Design Perspective. Sustainability 2023, 15, 16390. https://doi.org/10.3390/su152316390
Rashid M, Haider S, Masood MU, Pande CB, Tolche AD, Alshehri F, Costache R, Elkhrachy I. Sustainable Water Management for Small Farmers with Center-Pivot Irrigation: A Hydraulic and Structural Design Perspective. Sustainability. 2023; 15(23):16390. https://doi.org/10.3390/su152316390
Chicago/Turabian StyleRashid, Muhammad, Saif Haider, Muhammad Umer Masood, Chaitanya B. Pande, Abebe Debele Tolche, Fahad Alshehri, Romulus Costache, and Ismail Elkhrachy. 2023. "Sustainable Water Management for Small Farmers with Center-Pivot Irrigation: A Hydraulic and Structural Design Perspective" Sustainability 15, no. 23: 16390. https://doi.org/10.3390/su152316390
APA StyleRashid, M., Haider, S., Masood, M. U., Pande, C. B., Tolche, A. D., Alshehri, F., Costache, R., & Elkhrachy, I. (2023). Sustainable Water Management for Small Farmers with Center-Pivot Irrigation: A Hydraulic and Structural Design Perspective. Sustainability, 15(23), 16390. https://doi.org/10.3390/su152316390