Construction of Green Ecological Network in Qingdao (Shandong, China) Based on the Combination of Morphological Spatial Pattern Analysis and Biodiversity Conservation Function Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.3. Identification of Ecological Sources
2.4. Construction of Ecological Corridors
2.5. Ecological Network Evaluation and Optimization
2.6. Determination of Ecological Corridor Width
3. Results
3.1. Identification of Ecological Sources
3.2. Construction of Ecological Corridors
3.3. Evaluation and Optimization of the Potential Green Ecological Network
3.4. Determination of Ecological Corridor Width
4. Discussion
4.1. Identification of Ecological Sources
4.2. Distribution of Landscape Resistance
4.3. Characteristics of Ecological Corridors
4.4. Optimization of Potential Green Ecological Network
4.5. Suggestions for Ecological Construction of Qingdao
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knapp, S.; Aronson, M.F.J.; Carpenter, E.; Herrera-Montes, A.; Jung, K.; Kotze, D.J.; La Sorte, F.A.; Lepczyk, C.A.; MacGregor-Fors, I.; MacIvor, J.S.; et al. A Research Agenda for Urban Biodiversity in the Global Extinction Crisis. Bioscience 2021, 71, 268–279. [Google Scholar] [CrossRef]
- Nor, A.N.M.; Corstanje, R.; Harris, J.A.; Grafius, D.R.; Siriwardena, G.M. Ecological connectivity networks in rapidly expanding cities. Heliyon 2017, 3, e325. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, L.; Chi, Y. Spring phenology rather than climate dominates the trends in peak of growing season in the Northern Hemisphere. Glob. Chang. Biol. 2023, 29, 4543–4555. [Google Scholar] [CrossRef] [PubMed]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Belaire, J.A.; Higgins, C.; Zoll, D.; Lieberknecht, K.; Bixler, R.P.; Neff, J.L.; Keitt, T.H.; Jha, S. Fine-scale monitoring and mapping of biodiversity and ecosystem services reveals multiple synergies and few tradeoffs in urban green space management. Sci. Total Environ. 2022, 849, 157801. [Google Scholar] [CrossRef]
- Chen, X.; Peng, J.; Liu, Y.; Yang, Y.; Li, G. Construction of ecological security pattern of Yunfu City based on the framework of “importance-sensitivity-connectivity”. Geogr. Res. 2017, 36, 471–484. [Google Scholar]
- Yeo, O.T.S.; Mohd Yusof, M.J.; Maruthaveeran, S.; Mohd Shafri, H.Z.; Saito, K.; Yeo, L.B. ABC of green infrastructure analysis and planning: The basic ideas and methodological guidance based on landscape ecological principle. Urban For. Urban Green. 2022, 73, 127600. [Google Scholar] [CrossRef]
- Modica, G.; Praticò, S.; Laudari, L.; Ledda, A.; Di Fazio, S.; De Montis, A. Implementation of multispecies ecological networks at the regional scale: Analysis and multi-temporal assessment. J. Environ. Manag. 2021, 289, 112494. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Wang, S.; Li, Q.; Li, L.; Liu, X. Assessment of Multiple Ecosystem Services and Ecological Security Pattern in Shanxi Province, China. Int. J. Environ. Res. Public Health 2023, 20, 4819. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, F.; Wang, D.; Li, M.; Chen, D. Analysis on changes of ecological spatial connectivity in Jiangsu Province based on ecological network. Acta Ecol. Sin. 2021, 41, 3007–3020. [Google Scholar]
- Wang, Y.; Shen, C.; Jin, X.; Bao, G.; Liu, J.; Zhou, Y. Developing and optimizing ecological networks based on MSPA and MCR model. Ecol. Sci. 2019, 38, 138–145. [Google Scholar]
- Penteado, H.M. Effects of open space configurations and development patterns on future urban wildlife habitats and populations. City Environ. Interact. 2023, 19, 100106. [Google Scholar] [CrossRef]
- Yu, Q.; Xie, L.; Dong, L.; Cheng, N.; Liu, Y. A conceptual framework for riparian green space planning in mountainous cities. Energy Rep. 2023, 9, 499–513. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Li, S.; Liang, H.; Lu, H. The woody plant diversity and landscape pattern of fine-resolution urban forest along a distance gradient from points of interest in Qingdao. Ecol. Indic. 2021, 122, 107326. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Qingdao Statistical Yearbook of 2016; Qingdao Municipal Bureau of Statistics NBS Survey Office: Qingdao, China, 2016. [Google Scholar]
- National Bureau of Statistics of China. Qingdao Statistical Yearbook of 2022; Qingdao Municipal Bureau of Statistics NBS Survey Office: Qingdao, China, 2022. [Google Scholar]
- Guo, X.; Hu, Y.; Ma, J.; Wang, H.; Wang, K.; Wang, T.; Jiang, S.; Jiao, J.; Sun, Y.; Jiang, X.; et al. Nitrogen Deposition Effects on Invasive and Native Plant Competition: Implications for Future Invasions. Ecotoxicol. Environ. Saf. 2023, 259, 115029. [Google Scholar] [CrossRef]
- Li, J.; Jia, K.; Zhang, N.; Wei, X.; Wang, B. Evaluation of ecological protection importance in Qingdao City based on remote sensing and ecological service model. Remote Sens. Technol. Appl. 2021, 36, 1329–1338. [Google Scholar]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Urban, D.; Keitt, T. Landscape Connectivity: A Graph-Theoretic Perspective. Ecology 2001, 82, 1205–1218. [Google Scholar] [CrossRef]
- Velázquez, J.; Gutiérrez, J.; García-Abril, A.; Hernando, A.; Aparicio, M.; Sánchez, B. Structural connectivity as an indicator of species richness and landscape diversity in Castilla y León (Spain). For. Ecol. Manag. 2019, 432, 286–297. [Google Scholar] [CrossRef]
- Gao, Y.; Mu, H.; Zhang, Y.; Tian, Y.; David, T.; Li, X. Research on construction path optimization of urban-scale green network system based on MSPA analysis method: Taking Zhaoyuan City as an example. Acta Ecol. Sin. 2019, 39, 7547–7556. [Google Scholar]
- Yang, Z.; Jiang, Z.; Guo, C.; Yang, X.; Xu, X.; Li, X.; Hu, Z.; Zhou, H. Construction of ecological network using morphological spatial pattern analysis and minimal cumulative resistance models in Guangzhou City, China. Chin. J. Appl. Ecol. 2018, 29, 3367–3376. [Google Scholar]
- Rincón, V.; Velázquez, J.; Pascual, Á.; Herráez, F.; Gómez, I.; Gutiérrez, J.; Sánchez, B.; Hernando, A.; Santamaría, T.; Sánchez-Mata, D. Connectivity of Natura 2000 potential natural riparian habitats under climate change in the Northwest Iberian Peninsula: Implications for their conservation. Biodivers. Conserv. 2022, 31, 585–612. [Google Scholar] [CrossRef]
- Yang, W.; Liu, J.; Wang, W.; Liu, X.; Hao, X. Biodiversity monitoring and assessment based on multispectral remote sensing data. Spectrosc. Spect. Anal. 2023, 43, 1282–1290. [Google Scholar]
- Milanesi, P.; Holderegger, R.; Bollmann, K.; Gugerli, F.; Zellweger, F. Three-dimensional habitat structure and landscape genetics: A step forward in estimating functional connectivity. Ecology 2017, 98, 393–402. [Google Scholar] [CrossRef]
- Betbeder, J.; Laslier, M.; Hubert-Moy, L.; Burel, F.; Baudry, J. Synthetic Aperture Radar (SAR) images improve habitat suitability models. Landsc. Ecol. 2017, 32, 1867–1879. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, J.; Liao, T.; Liang, X.; Tian, H. Simulating urban expansion and its impact on functional connectivity in the Three Gorges Reservoir Area. Sci. Total Environ. 2018, 643, 1553–1561. [Google Scholar] [CrossRef]
- Lopes, I.J.C.; Biondi, D.; Corte, A.P.D.; Reis, A.R.N.; Oliveira, T.G.S. A methodological framework to create an urban greenway network promoting avian connectivity: A case study of Curitiba City. Urban For. Urban Green. 2023, 87, 128050. [Google Scholar] [CrossRef]
- Urban, D.L.; Minor, E.S.; Treml, E.A.; Schick, R.S. Graph models of habitat mosaics. Ecol. Lett. 2009, 12, 260–273. [Google Scholar] [CrossRef]
- Liu, X.; Yang, C.; Gao, Y.; Sun, Q.; Wang, S.; Feng, Z.; Liu, X. Identification of ecological security pattern and hierarchical management of ecological control area in Xiamen. Acta Ecol. Sin. 2023, 43, 5357–5369. [Google Scholar]
- Zhu, Q.; Yu, K.; Li, D. The width of ecological corridor in landscape planning. Acta Ecol. Sin. 2005, 25, 2406–2412. [Google Scholar]
- Díaz-Forestier, J.; Abades, S.; Pohl, N.; Barbosa, O.; Godoy, K.; Svensson, G.L.; Undurraga, M.I.; Bravo, C.; García, C.; Root-Bernstein, M.; et al. Assessing Ecological Indicators for Remnant Vegetation Strips as Functional Biological Corridors in Chilean Vineyards. Diversity 2021, 13, 447. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.; Feng, A. Typical island landscape ecological network establishmen—A case study of Chongming Island. Mar. Eviromental Sci. 2015, 34, 433–440. [Google Scholar]
- Qian, W.; Zhao, Y.; Li, X. Construction of ecological security pattern in coastal urban areas: A case study in Qingdao, China. Ecol. Indic. 2023, 154, 110754. [Google Scholar] [CrossRef]
- Staccione, A.; Candiago, S.; Mysiak, J. Mapping a Green Infrastructure Network: A framework for spatial connectivity applied in Northern Italy. Environ. Sci. Policy 2022, 131, 57–67. [Google Scholar] [CrossRef]
- Lattanzio, M.S.; Miles, D.B. Ecological divergence among colour morphs mediated by changes in spatial network structure associated with disturbance. J. Anim. Ecol. 2014, 83, 1490–1500. [Google Scholar] [CrossRef]
- Van Teeffelen, A.J.A.; Vos, C.C.; Opdam, P. Species in a dynamic world: Consequences of habitat network dynamics on conservation planning. Biol. Conserv. 2012, 153, 239–253. [Google Scholar] [CrossRef]
- Karimi, A.; Yazdandad, H.; Reside, A.E. Spatial conservation prioritization for locating protected area gaps in Iran. Biol. Conserv. 2023, 279, 109902. [Google Scholar] [CrossRef]
- Hector, A.; Joshi, J.; Lawler, S.; Spehn, E.M.; Wilby, A. Conservation implications of the link between biodiversity and ecosystem functioning. Oecologia 2001, 129, 624–628. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 2019, 231, 111218. [Google Scholar] [CrossRef]
- Qingdao “13th Five-Year” Urban Construction Plan; Qingdao Urban and rural Construction Committee: Qingdao, China, 2016.
- Liu, X.; Zeng, J.; Zeng, P. Construction and Optimization of the Green Space. Chin. Landsc. Archit. 2019, 36, 76–81. [Google Scholar]
- Dong, J.; Peng, J.; Liu, Y.; Qiu, S.; Han, Y. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landsc. Urban Plan. 2020, 199, 103815. [Google Scholar] [CrossRef]
- Beita, C.M.; Murillo, L.F.S.; Alvarado, L.D.A. Ecological corridors in Costa Rica: An evaluation applying landscape structure, fragmentation-connectivity process, and climate adaptation. Conserv. Sci. Pract. 2021, 3, e475. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.; Mei, Y.; Jian, Z.; Pan, F.; Zhang, L. Construction and Analysis of Ecological SecurityPattern of Qingdao Based on MSPAand MCR Models. Pol. J. Environ. Stud. 2023, 32, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Qing, Y.; Lu, W. Construction and optimization of the Saihanba ecological network. Ecol. Indic. 2023, 153, 110401. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Zhong, Q.; Zhang, Q.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.; Li, X.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Qingdao Park Urban Construction Plan (2021–2035) (Public notice); Qingdao Municipal Landscape Gardens and Forestry Bureau: Qingdao, China, 2023.
- Jiang, J.; Zhang, H.; Huang, Q.; Liu, F.; Li, L.; Qiu, H.; Zhou, S. Diagnosis of Key Ecological Restoration Areas in Territorial Space under the Guidance of Resilience: A Case Study of the Chengdu–Chongqing Region. Land 2023, 12, 973. [Google Scholar] [CrossRef]
- Qian, M.; Huang, Y.; Gao, Y.; Wu, J.; Xiong, Y. Ecological network construction and optimization in Guangzhou from the perspective of biodiversity conservation. J. Environ. Manag. 2023, 336, 117692. [Google Scholar] [CrossRef]
- Lin, J.; Yang, W.; Yu, K.; Geng, J.; Liu, J. Identification and Construction of Ecological Nodes in the Fuzhou Ecological Corridors. Forests 2022, 13, 1837. [Google Scholar] [CrossRef]
- Zhou, S.; Song, Y.; Li, Y.; Wang, J.; Zhang, L. Construction of Ecological Security Pattern for Plateau Lake Based on MSPA–MCR Model: A Case Study of Dianchi Lake Area. Sustainability 2022, 14, 14532. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, S. Construction of urban and rural ecological network in Yanqing District of Beijing based on MSPA model. J. Beijing For. Univ. 2020, 42, 113–121. [Google Scholar]
- Tian, M.; Chen, X.; Gao, J.; Tian, Y. Identifying ecological corridors for the Chinese ecological conservation redline. PLoS ONE 2022, 17, e271076. [Google Scholar] [CrossRef]
- van Schalkwyk, J.; Pryke, J.S.; Samways, M.J.; Gaigher, R. Corridor width determines strength of edge influence on arthropods in conservation corridors. Landsc. Ecol. 2020, 35, 1175–1185. [Google Scholar] [CrossRef]
- Fried, J.H.; Levey, D.J.; Hogsette, J.A. Habitat corridors function as both drift fences and movement conduits for dispersing flies. Oecologia 2005, 143, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Dai, A.; Guo, S. Research on the Design Strategies of Wildlife Protection Facilities in Nanjing Zijin Mountain Forest Park. Landc. Plan. Des. 2020, 81–86. [Google Scholar]
- Li, X.; Zhang, S.; Huang, R.; Feng, L.; Xu, S.; Liu, B. Diversity and distribution variation of urban spontaneous vegetation with distinct frequencies along river corridors in a fast-growing city. J. Environ. Manag. 2023, 333, 117446. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Li, Y.; Tian, L.; Liu, Y.; Wang, Y. Vegetation Dynamics and Associated Driving Forces in Eastern China during 1999–2008. Remote Sens. 2015, 7, 13641–13663. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, X. Research on Landscape Ecological Security Pattern in a Eucalyptus Introduced Region Based on Biodiversity Conservation. Russ. J. Ecol. 2015, 46, 59–70. [Google Scholar] [CrossRef]
Type of Landscape | Ecological Significance |
---|---|
Core | Habitat patches with larger areas, which provide larger habitats for species, are generally used as ecological source areas in the ecological network. |
Island | Little isolated patches that are not connected to each other; the possibility of internal material and energy exchange and transfer is lower. |
Loop | The ecological corridor connecting the same core areas serves as a channel for energy exchange within the core areas. |
Bridge | The ribbon area connecting the core areas plays a corridor role in the ecological network and is an important landscape type for enhancing landscape connectivity. |
Perforation | Marginal zones of inner core patches with edge effects. |
Edge | The external boundary of the core areas protects the internal core areas from external interference and ensures normal energy flow and material exchange in the core areas. |
Branch | A linear landscape with only one end connected to bridge, loop, edge, or perforation. |
Landscape Resistance Factor | Content | Classification of Landscape Resistance | Value | Weight |
---|---|---|---|---|
Land use type | Land use and land cover | Green land | 1 | 0.2 |
Water body | 2 | |||
Farm land | 3 | |||
Unused land | 4 | |||
Construction land | 5 | |||
Natural topographic factor | Altitude (m) | 0–200 | 1 | 0.15 |
200–400 | 2 | |||
400–600 | 3 | |||
600–800 | 4 | |||
>800 | 5 | |||
Slope (°) | 0–5 | 1 | 0.15 | |
5–10 | 2 | |||
10–15 | 3 | |||
15–20 | 4 | |||
>20 | 5 | |||
Distance to water body (m) | 0–200 | 1 | 0.1 | |
200–400 | 2 | |||
400–600 | 3 | |||
600–800 | 4 | |||
>800 | 5 | |||
Human activity factor | Distance to road (m) | 0–100 | 1 | 0.2 |
100–200 | 2 | |||
200–300 | 3 | |||
300–400 | 4 | |||
>400 | 5 | |||
Distance to residential area (m) | 0–200 | 1 | 0.2 | |
200–400 | 2 | |||
400–600 | 3 | |||
600–800 | 4 | |||
>800 | 5 |
Rank of Patch | Patch Number | BCF | dI | Normalized Value of Both BCF and dI |
---|---|---|---|---|
1 | 34 | 29,241.59 | 99.57 | 13.74 |
2 | 21 | 16.14 | 12.97 | 0.41 |
3 | 10 | 5.35 | 11.90 | 0.34 |
4 | 20 | 17.60 | 11.24 | 0.29 |
5 | 4 | 1.82 | 10.37 | 0.23 |
6 | 12 | 8.59 | 9.83 | 0.19 |
7 | 15 | 5.70 | 8.95 | 0.13 |
8 | 11 | 5.04 | 8.90 | 0.12 |
9 | 5 | 2.74 | 8.87 | 0.12 |
10 | 1 | 0.74 | 8.80 | 0.11 |
11 | 36 | 819.63 | 4.39 | 0.00 |
12 | 13 | 9.78 | 6.78 | −0.03 |
13 | 29 | 1.25 | 5.92 | −0.09 |
14 | 37 | 668.27 | 2.20 | −0.19 |
15 | 6 | 6.34 | 4.15 | −0.22 |
16 | 26 | 5.40 | 4.05 | −0.22 |
17 | 14 | 8.67 | 3.85 | −0.24 |
18 | 3 | 12.59 | 3.19 | −0.28 |
19 | 7 | 3.13 | 2.99 | −0.30 |
20 | 8 | 10.11 | 2.93 | −0.30 |
21 | 22 | 8.65 | 2.93 | −0.30 |
22 | 35 | 38.48 | 2.45 | −0.33 |
23 | 31 | 120.99 | 2.07 | −0.34 |
24 | 23 | 4.04 | 2.44 | −0.34 |
25 | 19 | 7.24 | 2.26 | −0.35 |
26 | 32 | 100.17 | 0.83 | −0.43 |
27 | 2 | 43.94 | 0.91 | −0.44 |
28 | 18 | 23.05 | 0.71 | −0.46 |
29 | 38 | 221.98 | 0.01 | −0.46 |
30 | 33 | 86.13 | 0.45 | −0.46 |
31 | 24 | 23.99 | 0.37 | −0.48 |
32 | 25 | 54.59 | 0.26 | −0.48 |
33 | 30 | 5.45 | 0.41 | −0.48 |
34 | 17 | 31.10 | 0.31 | −0.48 |
35 | 27 | 31.64 | 0.31 | −0.49 |
36 | 16 | 19.41 | 0.33 | −0.49 |
37 | 28 | 4.44 | 0.36 | −0.49 |
38 | 9 | 24.55 | 0.28 | −0.49 |
Average | 834.22 | 6.57 | 1.43 |
Landscape Type | Area (km2) | Proportion of Ecological Corridor Area (%) |
---|---|---|
Core | 12.67 | 58.61 |
Islet | 0.64 | 2.95 |
Perforation | 0.57 | 2.63 |
Edge | 4.77 | 22.08 |
Loop | 0.16 | 0.76 |
Bridge | 1.16 | 5.38 |
Branch | 1.64 | 7.58 |
Total area of green land | 21.61 | 79.36 |
Total area of ecological corridor | 27.23 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, L.; Chen, Y.; Chen, F.; Li, H. Construction of Green Ecological Network in Qingdao (Shandong, China) Based on the Combination of Morphological Spatial Pattern Analysis and Biodiversity Conservation Function Assessment. Sustainability 2023, 15, 16579. https://doi.org/10.3390/su152416579
Tao L, Chen Y, Chen F, Li H. Construction of Green Ecological Network in Qingdao (Shandong, China) Based on the Combination of Morphological Spatial Pattern Analysis and Biodiversity Conservation Function Assessment. Sustainability. 2023; 15(24):16579. https://doi.org/10.3390/su152416579
Chicago/Turabian StyleTao, Ling, Yanni Chen, Fang Chen, and Haifang Li. 2023. "Construction of Green Ecological Network in Qingdao (Shandong, China) Based on the Combination of Morphological Spatial Pattern Analysis and Biodiversity Conservation Function Assessment" Sustainability 15, no. 24: 16579. https://doi.org/10.3390/su152416579
APA StyleTao, L., Chen, Y., Chen, F., & Li, H. (2023). Construction of Green Ecological Network in Qingdao (Shandong, China) Based on the Combination of Morphological Spatial Pattern Analysis and Biodiversity Conservation Function Assessment. Sustainability, 15(24), 16579. https://doi.org/10.3390/su152416579