Box–Behnken Design to Optimize Standardized Mangiferin-Rich Mango Peel Extract from Agro-Industrial Waste Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Plant Material
2.3. Determination of a Suitable Extraction Method
2.4. Optimization of a Suitable Extraction Method
2.5. Quantitative Analysis of Mangiferin Contents
2.6. Bioactivity Determination of Standardized Mangiferin-Rich Mango Peel Extract (SMPE)
2.6.1. Anti-Inflammatory Activity Assay (Anti-NO Production)
2.6.2. In Vitro Wound Healing Assay
Cell Proliferation
Wound-Healing Assay
Collagen Production Assay
2.6.3. In Vitro Assay for Tyrosinase Inhibition
2.7. Statistical Analysis
3. Results and Discussion
3.1. Determination of a Suitable Extraction Method
3.1.1. Determination of a Suitable Extraction Method for Mango Peel Extract
3.1.2. Optimization of a Suitable Extraction Method
3.2. Bioactivities of Standardized Mangiferin-Rich Manaifera indica Linn. Peel Extract (SMPE)
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fowomola, M.A. Some nutrients and antinutrients contents of mango (Magnifera indica) seed. Afr. J. Food Sci. 2010, 4, 472–476. [Google Scholar]
- Lauricella, M.; Emanuele, S.; Calvaruso, G.; Giuliano, M.; D’Anneo, A. Multifaceted health benefits of Mangifera indica L. (Mango): The inestimable value of orchards recently planted in sicilian rural areas. Nutrients 2017, 9, 525. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vargas, H.I.; Ballesteros Vivas, D.; Ortega Barbosa, J.; Morantes Medina, S.J.; Aristizabal Gutiérrez, F.; Parada-Alfonso, F. Bioactive Phenolic Compounds from the Agroindustrial Waste of Colombian Mango Cultivars 'Sugar Mango' and 'Tommy Atkins'-An Alternative for Their Use and Valorization. Antioxidants 2019, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Mirza, B.; Croley, C.R.; Ahmad, M.; Pumarol, J.; Das, N.; Sethi, G.; Bishayee, A. Mango (Mangifera indica L.): A magnificent plant with cancer preventive and anticancer therapeutic potential. Crit. Rev. Food Sci. Nutr. 2021, 61, 2125–2151. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Biswas, M.; Sarkar, S.; Ghosh, S. Antidiabetic activity of mango peel extract and mangiferin in alloxan-induced diabetic rats. Future J. Pharm. Sci. 2023, 9, 22. [Google Scholar] [CrossRef]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and phytochemical compounds. Front. Plant Sci. 2019, 17, 1073. [Google Scholar] [CrossRef]
- Imran, M.; Arshad, M.S.; Butt, M.S.; Kwon, J.H.; Arshad, M.U.; Sultan, M.T. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis. 2017, 16, 84. [Google Scholar] [CrossRef]
- Du, S.; Liu, H.; Lei, T.; Xie, X.; Wang, H.; He, X.; Tong, R.; Wang, Y. Mangiferin: An effective therapeutic agent against several disorders. Mol. Med. Rep. 2018, 18, 4775–4786. [Google Scholar] [CrossRef]
- Lebaka, V.R.; Wee, Y.J.; Ye, W.; Korivi, M. Nutritional composition and bioactive compounds in three different parts of mango fruit. Int. J. Environ. Res. Public Health 2021, 18, 741. [Google Scholar] [CrossRef]
- Zivković, J.; Kumar, K.A.; Rushendran, R.; Ilango, K.; Fahmy, N.M.; El-Nashar, H.A.; El-Shazly, M.; Ezzat, S.M.; Melgar-Lalanne, G.; Romero-Montero, A.; et al. Pharmacological properties of mangiferin: Bioavailability, mechanisms of action and clinical perspectives. Naunyn-Schmiedeberg's Arch. Pharmacol. 2023, 1–19. [Google Scholar] [CrossRef]
- Kawakami, C.M.; Gaspar, L.R. Mangiferin and naringenin affect the photostability and phototoxicity of sunscreens containing avobenzone. J. Photochem. Photobiol. B Biol. 2015, 151, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Espinosa, L.; Garduño-Siciliano, L.; Rodriguez-Canales, M.; Hernandez-Portilla, L.B.; Canales-Martinez, M.M.; Rodriguez-Monroy, M.A. The wound-healing effect of mango peel extract on incision wounds in a murine model. Molecules 2022, 27, 259. [Google Scholar] [CrossRef] [PubMed]
- Indrati, N.; Phonsatta, N.; Poungsombat, P.; Khoomrung, S.; Sumpavapol, P.; Panya, A. Metabolic profiles alteration of Southern Thailand traditional sweet pickled mango during the production process. Front. Nutr. 2022, 9, 934842. [Google Scholar] [CrossRef] [PubMed]
- Wannapit, J. Vacuum Drying Kinetics of Mango (Mangifera indica L. Var.) Slices. Burapha Sci. J. 2019, 22, 358–373. [Google Scholar]
- Food and Agriculture Organization of the United Nations: Seeking End to LOSS and Waste of Food along Production Chain. Available online: https://www.fao.org/in-action/seeking-end-to-loss-and-waste-of-food-along-production-chain/en/ (accessed on 2 August 2023).
- Papaioannou, E.H.; Mazzei, R.; Bazzarelli, F.; Piacentini, E.; Giannakopoulos, V.; Roberts, M.R.; Giorno, L. Agri-food industry waste as resource of chemicals: The role of membrane technology in their sustainable recycling. Sustainability 2022, 14, 1483. [Google Scholar] [CrossRef]
- Kandemir, K.; Piskin, E.; Xiao, J.; Tomas, M.; Capanoglu, E. Fruit juice industry wastes as a source of bioactives. J. Agric. Food Chem. 2022, 70, 6805–6832. [Google Scholar] [CrossRef] [PubMed]
- Serna-Cock, L.; García-Gonzales, E.; Torres-León, C. Agro-industrial potential of the mango peel based on its nutritional and functional properties. Food Rev. Int. 2016, 32, 364–376. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Asia-Pacific Economic Cooperation: Understanding the Bio-Circular-Green (BCG) Economy Model. Available online: https://www.apec.org/publications/2022/08/understanding-the-biocircular-green-(bcg)-economy-model (accessed on 19 October 2023).
- Kaji, M.; Puttarak, P. Development of Standardized Cyanthillium cinereum (L.) H. Rob. Extract and Determination of its Biological Activities. J. Nat. Prod. 2022, 12, 46–54. [Google Scholar]
- Rachpirom, M.; Pichayakorn, W.; Puttarak, P. Preparation, development, and scale-up of standardized pentacyclic triterpenoid-rich extract from Centella asiatica (L.) Urb. and study of its wound healing activity. Heliyon 2023, 9, e17807. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.; Panesar, P.S.; Bera, M.B. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 2019, 6, 26. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Sitthimonchai, S.; Worasuttayangkurn, L.; Mahidol, C.; Ruchirawat, M.; Satayavivad, J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem. Toxicol. 2007, 45, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Lwin, O.M.; Giribabu, N.; Kilari, E.K.; Salleh, N. Topical administration of mangiferin promotes healing of the wound of streptozotocin-nicotinamide-induced type-2 diabetic male rats. J. Dermatol. Treat. 2021, 32, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.P.; Shukla, A.; Choudhury, S.; Singh, R.; Anand, M.; Prabhu, S.N. IL1β/TNFα/COX-2/VEGF axis responsible for effective healing potential of C-glucoside xanthone (mangiferin) based ointment in immunocompromised rats. Cytokine 2022, 158, 156012. [Google Scholar] [CrossRef]
- Monagas, M.; Brendler, T.; Brinckmann, J.; Dentali, S.; Gafner, S.; Giancaspro, G.; Johnson, H.; Kababick, J.; Ma, C.; Oketch-Rabah, H.; et al. Understanding plant to extract ratios in botanical extracts. Front. Pharmacol. 2022, 30, 981978. [Google Scholar] [CrossRef]
- Tomasello, B.; Malfa, G.A.; Acquaviva, R.; La Mantia, A.; Di Giacomo, C. Phytocomplex of a standardized extract from red orange (Citrus sinensis L. Osbeck) against photoaging. Cells 2022, 11, 1447. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef]
Formulations (Run) | Independent Variables with Coded Levels | |||
---|---|---|---|---|
X1 | X2 | X3 | X4 | |
F1 | 1 | 1 | 0 | 0 |
F2 | 1 | 0 | 0 | 1 |
F3 | 1 | 0 | 1 | 0 |
F4 | 0 | 0 | 1 | −1 |
F5 | 0 | 0 | −1 | −1 |
F6 | 0 | 1 | 1 | 0 |
F7 | 0 | −1 | −1 | 0 |
F8 | −1 | 0 | 0 | 1 |
F9 | 0 | 0 | 1 | 1 |
F10 | 0 | −1 | 0 | 1 |
F11 | −1 | 0 | 1 | 0 |
F12 | −1 | 0 | −1 | 0 |
F13 | 0 | 0 | 0 | 0 |
F14 | 0 | 1 | −1 | 0 |
F15 | 1 | −1 | 0 | 0 |
F16 | −1 | 1 | 0 | 0 |
F17 | 1 | 0 | 0 | −1 |
F18 | 0 | 1 | 0 | −1 |
F19 | 1 | 0 | −1 | 0 |
F20 | 0 | −1 | 0 | −1 |
F21 | 0 | 0 | −1 | 1 |
F22 | 0 | −1 | 1 | 0 |
F23 | −1 | 0 | 0 | −1 |
F24 | −1 | −1 | 0 | 0 |
F25 | 0 | 1 | 0 | 1 |
F26 | 0 | 0 | 0 | 0 |
F27 | 0 | 0 | 0 | 0 |
Names of factors | Symbol | Level of independent variables | ||
−1 | 0 | 1 | ||
Solvent ratio (volume of solvent/100 g sample) | X1 | 20 mL | 70 mL | 120 mL |
Extraction power | X2 | 450 W | 600 W | 800 W |
Extraction time | X3 | 1 min | 3 min | 5 min |
EtOH ratio (ethanol in water) | X4 | 25% | 50% | 75% |
Methods | Solvent | Mangiferin Content (mg/g) | % Yield (Dry) |
---|---|---|---|
MAE | Water | 29.34 ± 1.35 b | 18.83 ± 0.80 b |
EtOH | 38.80 ± 1.61 a | 20.86 ± 0.46 a | |
RE | Water | 15.49 ± 0.78 e | 12.95 ± 0.65 de |
EtOH | 22.78 ± 0.33 c | 12.30 ± 2.18 ef | |
ME | Water | 10.51 ± 0.23 g | 10.96 ± 0.26 f |
EtOH | 19.08 ± 0.55 d | 14.71 ± 0.37 c |
Samples | Y1: Mangiferin Content (mg/g) (Mean ± S.D.) | Y2: % Yield (100 g Fresh) |
---|---|---|
F1 | 11.66 ± 0.83 | 3.55 |
F2 | 16.87 ± 2.08 | 5.62 |
F3 | 11.87 ± 0.83 | 4.04 |
F4 | 12.69 ± 1.38 | 0.23 |
F5 | 12.19 ± 0.51 | 3.32 |
F6 | 0.00 ± 0.00 | 0 |
F7 | 14.47 ± 0.50 | 1.25 |
F8 | 8.21 ± 0.21 | 0.09 |
F9 | 11.58 ± 0.02 | 2.31 |
F10 | 18.57 ± 0.34 | 3.88 |
F11 | 0.00 ± 0.00 | 0 |
F12 | 6.61 ± 0.57 | 1.74 |
F13 | 17.28 ± 0.95 | 1.65 |
F14 | 11.70 ± 0.35 | 2.95 |
F15 | 20.22 ± 0.38 | 3.18 |
F16 | 0.00 ± 0.00 | 0 |
F17 | 16.94 ± 2.62 | 4.23 |
F18 | 8.57 ± 0.21 | 3.51 |
F19 | 16.12 ± 0.61 | 2.98 |
F20 | 13.40 ± 0.35 | 2.86 |
F21 | 11.29 ± 0.63 | 5.25 |
F22 | 16.09 ± 0.48 | 1.41 |
F23 | 54.8 ± 0.11 | 0.08 |
F24 | 0.00 ± 0.00 | 0 |
F25 | 12.22 ± 0.20 | 2.67 |
F26 | 16.22 ± 0.10 | 1.74 |
F27 | 17.59 ± 0.23 | 1.53 |
Source | DF | Adj. SS | Adj. MS | F Value | p Value |
---|---|---|---|---|---|
Model: Mangiferin Content (Y1) | 14 | 878.82 | 62.77 | 2.77 | 0.0423 |
Solvent ratio (per 100 g of sample): X1 | 1 | 450.86 | 450.86 | 19.89 | 0.0008 |
Extraction power: X2 | 1 | 124.16 | 124.16 | 5.48 | 0.0374 |
Extraction time: X3 | 1 | 120.1 | 120.1 | 5.3 | 0.0401 |
EtOH ratio (EtOH in water): X4 | 1 | 3.51 | 3.51 | 0.15 | 0.7009 |
X12 | 1 | 75.76 | 75.76 | 3.34 | 0.0925 |
X22 | 1 | 25.31 | 25.31 | 1.12 | 0.3114 |
X32 | 1 | 12.6 | 12.6 | 0.56 | 0.4703 |
X42 | 1 | 18.11 | 18.11 | 0.8 | 0.3890 |
X1X2 | 1 | 13.97 | 13.97 | 0.62 | 0.4476 |
X1X3 | 1 | 78.45 | 78.45 | 3.46 | 0.0875 |
X1X4 | 1 | 0.0012 | 0.0012 | 0.0001 | 0.9943 |
X2X3 | 1 | 42.82 | 42.82 | 1.89 | 0.1944 |
X2X4 | 1 | 0.083 | 0.083 | 3.67 × 10−3 | 0.9527 |
X3X4 | 1 | 0.011 | 0.011 | 4.86 × 10−4 | 0.9828 |
Residual | 12 | 272.01 | 22.67 | - | - |
Lack of fit | 10 | 200.41 | 20.04 | 0.56 | 0.7829 |
Pure error | 2 | 71.60 | 35.80 | - | - |
Corrected total | 26 | 1150.83 | - | - | - |
R2 = 0.7636 | - | - | - | - | - |
Adjusted R2 = 0.4879 | - | - | - | - | - |
Model: % Yield of Fresh Peel (Y2) | 14 | 63.69 | 4.52 | 5.17 | 0.0035 |
Solvent ratio (per 100 g of sample): X1 | 1 | 40.79 | 40.79 | 46.62 | <0.0001 |
Extraction power: X2 | 1 | 8.33 × 10−4 | 8.33 × 10−4 | 9.53 × 10−4 | 0.9759 |
Extraction time: X3 | 1 | 9.74 | 9.74 | 11.13 | 0.0059 |
EtOH ratio (EtOH in water): X4 | 1 | 2.03 | 2.03 | 2.32 | 0.1539 |
X12 | 1 | 0.019 | 0.019 | 0.022 | 0.8848 |
X22 | 1 | 1.84 × 10−3 | 1.84 × 10−3 | 2.10 × 10−3 | 0.9642 |
X32 | 1 | 0.017 | 0.017 | 0.02 | 0.8901 |
X42 | 1 | 3.59 | 3.59 | 4.11 | 0.0655 |
X1X2 | 1 | 0.023 | 0.023 | 0.027 | 0.8730 |
X1X3 | 1 | 2.9 | 2.9 | 3.32 | 0.0935 |
X1X4 | 1 | 0.4800 | 0.4800 | 0.5400 | 0.4749 |
X2X3 | 1 | 2.29 | 2.29 | 2.62 | 0.1316 |
X2X4 | 1 | 1.09 | 1.09 | 1.24 × 100 | 0.2866 |
X3X4 | 1 | 5.63 × 10−3 | 5.63 × 10−3 | 6.43 × 10−3 | 0.9374 |
Residual | 12 | 10.5 | 0.87 | - | - |
Lack of fit | 10 | 10.47 | 1.05 | 71.22 | 0.0139 |
Pure error | 2 | 0.029 | 0.015 | - | - |
Corrected total | 26 | 73.79 | - | - | - |
R2 = 0.8577 | - | - | - | - | - |
Adjusted R2 = 0.6917 | - | - | - | - | - |
Sample | Concentration (µg/mL) | ||||
---|---|---|---|---|---|
0.25 | 0.5 | 1 | 3 | 10 | |
% Viability | |||||
Mangiferin | 175.46 ± 5.05 | 145.23 ± 0.46 | 105.31 ± 6.13 | 100.40 ± 0.46 | 103.05 ± 11.49 |
SMPE | 106.10 ± 2.45 | 110.61 ± 3.98 | 130.64 ± 1.99 | 99.73 ± 1.23 | 89.39 ± 6.43 |
% Collagen content | |||||
Mangiferin | 99.26 | 99.36 | 99.44 | 99.34 | 99.37 |
SMPE | 99.53 | 99.60 | 99.82 | 99.50 | 99.27 |
Samples | Concentration (μg/mL) | % Inhibition | IC50 (μg/mL) |
---|---|---|---|
Kojic acid | 50 | 85.84 ± 0.56 | 14.14 ± 1.47 |
25 | 69.44 ± 1.83 | ||
12.5 | 48.92 ± 1.42 | ||
6.25 | 20.97 ± 0.81 | ||
SMPE | 800 | 69.53 ± 0.31 | 132.20 ± 0.77 |
400 | 66.58 ± 0.56 | ||
200 | 57.80 ± 1.23 | ||
100 | 43.82 ± 0.97 | ||
Mangiferin | 800 | 74.28 ± 0.68 | 295.77 ± 0.58 |
400 | 61.83 ± 0.71 | ||
200 | 38.89 ± 0.41 | ||
100 | 28.23 ± 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumpavapol, P.; Waehayee, A.; Suklim, P.; Rachpirom, M.; Puttarak, P. Box–Behnken Design to Optimize Standardized Mangiferin-Rich Mango Peel Extract from Agro-Industrial Waste Product. Sustainability 2023, 15, 16629. https://doi.org/10.3390/su152416629
Sumpavapol P, Waehayee A, Suklim P, Rachpirom M, Puttarak P. Box–Behnken Design to Optimize Standardized Mangiferin-Rich Mango Peel Extract from Agro-Industrial Waste Product. Sustainability. 2023; 15(24):16629. https://doi.org/10.3390/su152416629
Chicago/Turabian StyleSumpavapol, Punnanee, Aenna Waehayee, Paranee Suklim, Mingkwan Rachpirom, and Panupong Puttarak. 2023. "Box–Behnken Design to Optimize Standardized Mangiferin-Rich Mango Peel Extract from Agro-Industrial Waste Product" Sustainability 15, no. 24: 16629. https://doi.org/10.3390/su152416629
APA StyleSumpavapol, P., Waehayee, A., Suklim, P., Rachpirom, M., & Puttarak, P. (2023). Box–Behnken Design to Optimize Standardized Mangiferin-Rich Mango Peel Extract from Agro-Industrial Waste Product. Sustainability, 15(24), 16629. https://doi.org/10.3390/su152416629