Environmental Credit Constraints and the Enterprise Choice of Environmental Protection Behavior
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Hypothesis
4. Research Design
4.1. Variable Selection
4.2. Model Setting
5. Results
5.1. Benchmark Regression
5.2. Robustness Test
5.3. Heterogeneity Analysis
6. Working Channels and Further Discussion
6.1. Working Channels
6.2. Further Discussion
7. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaiser, J.; Lerch, M. Sedimentary faecal lipids as indicators of Baltic Sea sewage pollution and population growth since 1860 AD. Environ. Res. 2022, 204, 112305. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Ma, H.; Ozturk, I. Sustainable development and pollution: The effects of CO2 emission on population growth, food production, economic development, and energy consumption in Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 17319–17330. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Zhang, A. Can government environmental regulation promote low-carbon development in heavy polluting industries? Evidence from China’s new environmental protection law. Environ. Impact Assess. Rev. 2023, 99, 106991. [Google Scholar] [CrossRef]
- Goud, N.N. Corporate governance: Does it matter management of carbon emission performance? An empirical analyses of Indian companies. J. Clean. Prod. 2022, 379, 134485. [Google Scholar] [CrossRef]
- Farooq, U.; Ahmed, J.; Akhter, W.; Tabash, M.I. Environmental regulations and trade credit activities of corporate sector: A new panel data evidence. J. Clean. Prod. 2022, 363, 132307. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, T.; Gao, W.; Xie, W.; Yu, Z. How does environmental regulation affect real green technology innovation and strategic green technology innovation? Sci. Total Environ. 2023, 872, 162221. [Google Scholar] [CrossRef]
- Ghosh, D.; Dutta, M. Environmental behaviour under credit constraints—Evidence from panel of Indian manufacturing firms. Struct. Chang. Econ. Dyn. 2022, 63, 490–500. [Google Scholar] [CrossRef]
- Chen, Z.; Yin, M.; Zhou, M. Does environmental regulatory pressure affect corporate debt financing? Resour. Conserv. Recycl. 2022, 184, 106405. [Google Scholar] [CrossRef]
- Testa, F.; Iraldo, F.; Frey, M. The effect of environmental regulation on firms’ competitive performance: The case of the building & construction sector in some EU regions. J. Environ. Manag. 2011, 92, 2136–2144. [Google Scholar]
- Marquis, C.; Zhang, J.; Zhou, Y. Regulatory uncertainty and corporate responses to environmental protection in China. Calif. Manag. Rev. 2011, 54, 39–63. [Google Scholar] [CrossRef]
- Perrow, C. Organizing for environmental destruction. Organ. Environ. 1997, 10, 66–72. [Google Scholar] [CrossRef]
- Borowski, P.F. Adaptation strategy on regulated markets of power companies in Poland. Energy Environ. 2019, 30, 3–26. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R. Effects of environmental regulation on CO2 emissions: An empirical analysis of 282 cities in China. Sustain. Prod. Consum. 2022, 29, 259–272. [Google Scholar] [CrossRef]
- Ma, H.; Li, L. Could environmental regulation promote the technological innovation of China’s emerging marine enterprises? Based on the moderating effect of government grants. Environ. Res. 2021, 202, 111682. [Google Scholar] [CrossRef]
- Vangeli, A.; Małecka, A.; Mitręga, M.; Pfajfar, G. From greenwashing to green B2B marketing: A systematic literature review. Ind. Mark. Manag. 2023, 115, 281–299. [Google Scholar] [CrossRef]
- Lapologang, S.; Zhao, S. The impact of environmental policy mechanisms on green innovation performance: The roles of environmental disclosure and political ties. Technol. Soc. 2023, 75, 102332. [Google Scholar] [CrossRef]
- Li, M.; Du, W.; Tang, S. Assessing the impact of environmental regulation and environmental co-governance on pollution transfer: Micro-evidence from China. Environ. Impact Assess. Rev. 2021, 86, 106467. [Google Scholar] [CrossRef]
- Cui, G.; Zhang, Y.; Ma, J.; Yao, W. Does environmental regulation affect the labor income share of manufacturing enterprises? Evidence from China. Econ. Model. 2023, 123, 106251. [Google Scholar] [CrossRef]
- Rilling, B.; Herbes, C. Invisible, intangible, irrelevant, yet inevitable? Qualitative insights into consumer perceptions of heating tariffs and drop-in renewable gases in the German domestic heating market. Energy Res. Soc. Sci. 2022, 91, 102744. [Google Scholar] [CrossRef]
- Ntanos, S.; Kyriakopoulos, G.; Chalikias, M. Public perceptions and willingness to pay for renewable energy: A case study from Greece. Sustainability 2018, 10, 687. [Google Scholar] [CrossRef]
- Armenio, S.; Bergantino, A.S.; Intini, M.; Morone, A. Cheaper or eco-friendly cars: What do consumers prefer? An experimental study on individual and social preferences. Ecol. Econ. 2022, 193, 107323. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.; Ntanos, S.; Asonitou, S. Investigating the environmental behavior of business and accounting university students. Int. J. Sustain. High. Educ. 2020, 21, 819–839. [Google Scholar] [CrossRef]
- Ye, F.; Ouyang, Y.; Li, Y. Digital investment and environmental performance: The mediating roles of production efficiency and green innovation. Int. J. Prod. Econ. 2023, 259, 108822. [Google Scholar] [CrossRef]
- Du, J.; Shen, Z.; Song, M.; Vardanyan, M. The role of green financing in facilitating renewable energy transition in China: Perspectives from energy governance, environmental regulation, and market reforms. Energy Econ. 2023, 120, 106595. [Google Scholar] [CrossRef]
- Kavehei, E.; Jenkins, G.A.; Adame, M.F.; Lemckert, C. Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure. Renew. Sustain. Energy Rev. 2018, 94, 1179–1191. [Google Scholar] [CrossRef]
- Dzikriansyah, M.A.; Masudin, I.; Zulfikarijah, F.; Jihadi, M.; Jatmiko, R.D. The role of green supply chain management practices on environmental performance: A case of Indonesian small and medium enterprises. Clean. Logist. Supply Chain 2023, 6, 100100. [Google Scholar] [CrossRef]
- Zhu, Z.; Tan, Y. Can green industrial policy promote green innovation in heavily polluting enterprises? Evidence from China. Econ. Anal. Policy 2022, 74, 59–75. [Google Scholar] [CrossRef]
- Ntanos, S.; Kyriakopoulos, G.L.; Arabatzis, G. Environmental behavior of secondary education students: A case study at central Greece. Sustainability 2018, 10, 1663. [Google Scholar] [CrossRef]
- Ntanos, S.; Kyriakopoulos, G.L.; Anagnostopoulos, T. Investigating the Environmental and the Energy Saving Behavior among School Principals through Classification Algorithms. Int. J. Renew. Energy Dev. 2022, 11, 449. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, Y.; Yang, J.; Han, Z.; Wang, H. Can green finance improve China’s haze pollution reduction? The role of energy efficiency. Environ. Dev. 2023, 45, 100833. [Google Scholar] [CrossRef]
- Acheampong, A.O. Governance, credit access and clean cooking technologies in Sub-Saharan Africa: Implications for energy transition. J. Policy Model. 2023, 45, 445–468. [Google Scholar] [CrossRef]
- Song, J.; Wu, D. An innovative transboundary pollution control model using water credit. Comput. Ind. Eng. 2022, 171, 108235. [Google Scholar] [CrossRef]
- Lee, M.K.K. Plastic pollution mitigation–net plastic circularity through a standardized credit system in Asia. Ocean. Coast. Manag. 2021, 210, 105733. [Google Scholar] [CrossRef]
- Lin, Y.H.; Zhang, H. Impact of contractual governance and guanxi on contractors’ environmental behaviors: The mediating role of trust. J. Clean. Prod. 2023, 382, 135277. [Google Scholar] [CrossRef]
- Paul, S.; Adhikari, A.; Bose, I. White knight in dark days? Supply chain finance firms, blockchain, and the COVID-19 pandemic. Inf. Manag. 2022, 59, 103661. [Google Scholar] [CrossRef]
- Liu, P.J.; Song, C.; Xin, J. Does green governance affect financing constraints? Evidence from China’s heavily polluting enterprises. China J. Account. Res. 2022, 15, 100267. [Google Scholar] [CrossRef]
- Becerra-Vicario, R.; Ruiz-Palomo, D.; Fernández-Miguélez, S.M.; Gutiérrez-Ruiz, A.M. Examining the effects of hotel reputation in the relationship between environmental performance and hotel financial performance. J. Hosp. Tour. Manag. 2022, 53, 10–20. [Google Scholar] [CrossRef]
- Xie, D.; Li, X.; Zhou, D. Does environmental information disclosure increase firm exports? Econ. Anal. Policy 2022, 73, 620–638. [Google Scholar] [CrossRef]
- Nazir, R.; Gillani, S.; Shafiq, M.N. Realizing direct and indirect impact of environmental regulations on pollution: A path analysis approach to explore the mediating role of green innovation in G7 economies. Environ. Sci. Pollut. Res. 2023, 30, 44795–44818. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, K. Does environmental labeling exacerbate heavily polluting firms’ financial constraints? Evidence from China. China J. Account. Res. 2020, 13, 147–174. [Google Scholar] [CrossRef]
- Yang, L. An environmental, social, and governance strategic model for managing pharmaceutical supply chains with financial obstacles. Decis. Anal. J. 2023, 7, 100203. [Google Scholar] [CrossRef]
- Borowski, P.F. New technologies and innovative solutions in the development strategies of energy enterprises. HighTech Innov. J. 2020, 1, 39–58. [Google Scholar] [CrossRef]
- Lv, C.; Fan, J.; Lee, C.C. Can green credit policies improve corporate green production efficiency? J. Clean. Prod. 2023, 397, 136573. [Google Scholar] [CrossRef]
- Yang, S.; Jahanger, A.; Hossain, M.R. How effective has the low-carbon city pilot policy been as an environmental intervention in curbing pollution? Evidence from Chinese industrial enterprises. Energy Econ. 2023, 118, 106523. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y. China’s regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution. Energy Econ. 2015, 49, 239–256. [Google Scholar] [CrossRef]
- Tang, Z.; Yu, H.; Zou, J. Neighbor impacts of environmental regulation: The case of low-carbon pilot program in China. Energy 2023, 276, 127509. [Google Scholar] [CrossRef]
- Ning, J.; Jiang, X.; Luo, J. Relationship between enterprise digitalization and green innovation: A mediated moderation model. J. Innov. Knowl. 2023, 8, 100326. [Google Scholar] [CrossRef]
- Zhang, D.; Kong, Q. Credit policy, uncertainty, and firm R&D investment: A quasi-natural experiment based on the Green Credit Guidelines. Pac.-Basin Financ. J. 2022, 73, 101751. [Google Scholar]
- Colenbrander, S.; Vaze, P.; Vikas, C.; Ayer, S.; Kumar, N.; Vikas, N.; Burge, L. Low-carbon transition risks for India’s financial system. Glob. Environ. Change 2023, 78, 102634. [Google Scholar] [CrossRef]
- Ma, X.; He, J. Air pollution and corporate green innovation in China. Econ. Model. 2023, 124, 106305. [Google Scholar] [CrossRef]
- Ramzan, M.; Abbasi, K.R.; Salman, A.; Dagar, V.; Alvarado, R.; Kagzi, M. Towards the dream of go green: An empirical importance of green innovation and financial depth for environmental neutrality in world’s top 10 greenest economies. Technol. Forecast. Soc. Chang. 2023, 189, 122370. [Google Scholar] [CrossRef]
- Matisoff, D.C. Different rays of sunlight: Understanding information disclosure and carbon transparency. Energy Policy 2013, 55, 579–592. [Google Scholar] [CrossRef]
- Ma, Y.; Sha, Y.; Wang, Z.; Zhang, W. The effect of the policy mix of green credit and government subsidy on environmental innovation. Energy Econ. 2023, 118, 106512. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Liu, N. Does environmental regulation narrow the north-south economic gap?-Empirical evidence based on panel data of 285 prefecture-level cities. J. Environ. Manag. 2023, 340, 117849. [Google Scholar] [CrossRef]
- Flora, M.; Vargiolu, T. Price dynamics in the European Union Emissions Trading System and evaluation of its ability to boost emission-related investment decisions. Eur. J. Oper. Res. 2020, 280, 383–394. [Google Scholar] [CrossRef]
- Lin, B.; Bai, R. Machine learning approaches for explaining determinants of the debt financing in heavy-polluting enterprises. Financ. Res. Lett. 2022, 44, 102094. [Google Scholar] [CrossRef]
- He, X.; Wang, C.; Yang, X.; Lai, Z. Do enterprise ownership structures affect financial performance in China’s power and gas industries? Util. Policy 2021, 73, 101303. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Wu, Z.; Xiao, Y. How do technological innovations affect corporate investment and hiring? N. Am. J. Econ. Financ. 2022, 62, 101759. [Google Scholar] [CrossRef]
- Sutton, T.; Bosse, D.A. Corporate political activity and the constraint of stakeholder reciprocity. J. Bus. Res. 2023, 164, 113948. [Google Scholar] [CrossRef]
- Chue, T.K.; Xu, J.K. Profitability, asset investment, and aggregate stock returns. J. Bank. Financ. 2022, 143, 106597. [Google Scholar] [CrossRef]
- Chen, H.; Fang, X.; Xiang, E.; Ji, X.; An, M. Do online media and investor attention affect corporate environmental information disclosure? Evidence from Chinese listed companies. Int. Rev. Econ. Financ. 2023, 86, 1022–1040. [Google Scholar] [CrossRef]
Variable | Sample | Label | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|---|
Active behavior | enterprise-level | AEB | 0.612 | 13.186 | 0.000 | 736.000 |
Evasive behavior | EAD | 1.898 | 2.773 | 0.000 | 12.430 | |
Environmental credit constraints | ECC | 0.177 | 0.381 | 0.000 | 1.000 | |
Equity concentration | TOP1 | 35.276 | 14.999 | 0.290 | 99.000 | |
Assets | SIZE | 22.004 | 1.321 | 14.758 | 28.636 | |
Operating income | SALE | 21.397 | 1.536 | 11.599 | 28.718 | |
Enterprise growth | TOBIN | 2.130 | 2.481 | 0.153 | 126.952 | |
Marketing expenses | SF | 0.071 | 0.094 | 0.000 | 4.843 | |
Bank loan | BL | 0.170 | 0.169 | 0.000 | 10.689 | |
Operating profit | OPR | −0.004 | 0.850 | −113.550 | 40.867 | |
Return on assets | ROE | 0.063 | 5.529 | −186.557 | 713.204 | |
Innovation environment | City-level | INE | 0.006 | 0.005 | 0.001 | 0.041 |
Economic development | PGDP | 2.421 | 0.051 | 2.185 | 2.569 | |
Environmental supervision | ES | 0.116 | 0.160 | 0.002 | 3.809 |
Variable | Active | Evasive |
---|---|---|
Year-7 | 0.212 (0.114) | −0.025 (0.014) |
Year-6 | 0.197 (0.126) | −0.021 (0.016) |
Year-5 | 0.218 (0.137) | 0.022 (0.017) |
Year-4 | 0.246 (0.168) | 0.005 (0.020) |
Year-3 | 0.235 (0.229) | 0.029 (0.027) |
Year-2 | 0.178 (0.333) | 0.025 (0.041) |
Year-1 | −0.234 (0.656) | 0.113 (0.083) |
Cons | −3.508 (18.225) | 1.857 ** (0.779) |
Control variables | Yes | Yes |
Time fixed effect | Yes | Yes |
Enterprise fixed effect | Yes | Yes |
City fixed effect | Yes | Yes |
Obs | 7325 | 16,372 |
R2 | 0.037 | 0.042 |
Variable | Active | Evasive |
---|---|---|
lnECC | 1.143 ** (0.486) | 0.126 ** (0.053) |
Cons | −12.179 (19.309) | −1.705 (2.615) |
Control variables | Yes | Yes |
Time fixed effect | Yes | Yes |
Enterprise fixed effect | Yes | Yes |
City fixed effect | Yes | Yes |
Obs | 7305 | 16,354 |
R2 | 0.038 | 0.046 |
Variable | Active | Evasive |
---|---|---|
lnECC | 1.107 ** (0.481) | 0.150 ** (0.052) |
Cons | −10.615 (19.718) | −0.564 (2.650) |
Control variables | Yes | Yes |
Time fixed effect | Yes | Yes |
Enterprise fixed effect | Yes | Yes |
City fixed effect | Yes | Yes |
Obs | 6833 | 15,362 |
R2 | 0.036 | 0.045 |
Variables | Sample | Active | Evasive | ||
---|---|---|---|---|---|
Sample Bias | p-Value | Sample Bias | p-Value | ||
SIZE | Before matching | −4.700 | 0.019 | −18.900 | 0.000 |
After matching | 0.800 | 0.715 | 1.000 | 0.514 | |
SALE | Before matching | 5.700 | 0.004 | −11.400 | 0.000 |
After matching | 0.700 | 0.724 | 1.300 | 0.427 | |
TOP1 | Before matching | −10.600 | 0.000 | ||
After matching | −0.300 | 0.841 | |||
TBQ | Before matching | 2.800 | 0.059 | ||
After matching | −1.800 | 0.248 |
Variable | Placebo Test 1 | Placebo Test 2 | Placebo Test 3 | |||
---|---|---|---|---|---|---|
Active | Evasive | Active | Evasive | Active | Evasive | |
lnECC | 0.035 (5.099) | −0.781 (0.807) | −0.384 (0.405) | −0.061 (0.042) | −0.012 (0.115) | −0.061 (0.042) |
Cons | −7.759 (19.319) | −1.478 (2.618) | −6.778 (19.199) | −1.796 (2.616) | −7.647 (19.194) | −1.796 (2.616) |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Enterprise fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Obs | 7325 | 16,372 | 7325 | 16,372 | 7325 | 16,372 |
R2 | 0.029 | 0.046 | 0.031 | 0.046 | 0.029 | 0.046 |
Variable | Active | Evasive |
---|---|---|
lnECC | 0.818 * (0.500) | 0.146 *** (0.054) |
Cons | −19.669 (19.482) | −1.616 (2.624) |
Control variables | Yes | Yes |
Time fixed effect | Yes | Yes |
Enterprise fixed effect | Yes | Yes |
City fixed effect | Yes | Yes |
Obs | 7325 | 16,372 |
R2 | 0.050 | 0.047 |
Variable | State-Owned Enterprises | Private Enterprises | ||
---|---|---|---|---|
Active | Evasive | Active | Evasive | |
lnECC | 0.023 ** (0.079) | 0.245 (0.107) | 2.002 (0.854) | 0.023 ** (0.053) |
Cons | 1.579 (2.956) | 0.547 (4.405) | −29.282 (34.657) | 0.333 (2.713) |
Control variables | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes |
Enterprise fixed effect | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes |
Obs | 2817 | 7008 | 4154 | 8331 |
R2 | 0.037 | 0.047 | 0.062 | 0.079 |
Variable | High Interest Association | Low Interest Association | ||
---|---|---|---|---|
Active | Evasive | Active | Evasive | |
lnECC | 1.810 ** (0.884) | 0.059 (0.064) | 0.075 (0.078) | 0.338 *** (0.098) |
Cons | −27.692 (37.423) | 5.817 * (3.301) | −0.586 (2.746) | −17.562 *** (3.956) |
Control variables | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes |
Enterprise fixed effect | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes |
Obs | 3879 | 8722 | 3446 | 7650 |
R2 | 0.076 | 0.051 | 0.074 | 0.054 |
Variable | High Profitability | Low Profitability | ||
---|---|---|---|---|
Active | Evasive | Active | Evasive | |
lnECC | 2.738 *** (1.096) | 0.040 (0.076) | −0.115 (0.076) | 0.335 *** (0.082) |
Cons | −28.775 (41.512) | 13.973 ** (6.003) | 2.545 (2.983) | −3.526 (3.816) |
Control variables | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes |
Enterprise fixed effect | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes |
Obs | 3800 | 8546 | 3525 | 7826 |
R2 | 0.077 | 0.063 | 0.044 | 0.043 |
Variable | RDIM | FEC |
---|---|---|
lnECC | 0.343 ** (0.157) | 0.008 ** (0.003) |
Cons | 25.642 *** (3.068) | 0.066 (0.165) |
Control variables | Yes | Yes |
Time fixed effect | Yes | Yes |
Enterprise fixed effect | Yes | Yes |
City fixed effect | Yes | Yes |
Obs | 14,076 | 18,652 |
R2 | 0.088 | 0.085 |
Variable | LAWS | LAWS |
---|---|---|
lnECC × lnEAD | 0.007 ** (0.003) | 0.006 * (0.003) |
Cons | 0.229 (0.164) | 0.352 ** (0.172) |
Control variables | No | Yes |
Time fixed effect | Yes | Yes |
Enterprise fixed effect | Yes | Yes |
City fixed effect | Yes | Yes |
Obs | 20,023 | 18,113 |
R2 | 0.144 | 0.147 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Xiang, X.; Li, L.; Li, G. Environmental Credit Constraints and the Enterprise Choice of Environmental Protection Behavior. Sustainability 2023, 15, 16638. https://doi.org/10.3390/su152416638
Yan C, Xiang X, Li L, Li G. Environmental Credit Constraints and the Enterprise Choice of Environmental Protection Behavior. Sustainability. 2023; 15(24):16638. https://doi.org/10.3390/su152416638
Chicago/Turabian StyleYan, Chunrong, Xintian Xiang, Liping Li, and Guoxiang Li. 2023. "Environmental Credit Constraints and the Enterprise Choice of Environmental Protection Behavior" Sustainability 15, no. 24: 16638. https://doi.org/10.3390/su152416638
APA StyleYan, C., Xiang, X., Li, L., & Li, G. (2023). Environmental Credit Constraints and the Enterprise Choice of Environmental Protection Behavior. Sustainability, 15(24), 16638. https://doi.org/10.3390/su152416638