Mass Cultivation of Microalgae III: A Philosophical and Economic Exploration of Carbon Capture and Utilization
Abstract
:1. Introduction
2. The Diatom Mass Cultivation Project
2.1. Diatom Cultivation Process
2.2. Diatom Project Results
3. Discussion
3.1. Diatom Project, CO2 Uptake and Sustainability
3.2. Sustainable Stakeholder Value
“We said we are going to be the first ferrosilicon producer without CO2 emissions. What we are doing here is straining nature: we are consuming a lot of resources, we are consuming a lot of electricity, we are emitting a lot of CO2, sulfur dioxide. there is a certain amount of environmental pressure when you are producing ferrosilicon.”
3.2.1. Environmental Value
3.2.2. Social Value
3.2.3. Economic Value
3.3. Synergies between Environmental, Economic, and Societal Aspects of Carbon Capture and Utilization at the Micro, Meso and Macro Levels
3.3.1. Macro-Level: Global Policy
“There might be a case for using the HDI [human development index] as one of a very few measures to summarize progress towards the 2030 Agenda. Many of the SDGs relate directly to the HDI: poverty, health, education, and work, for example. Others—such as peace and hunger—relate indirectly. And if the HDI is moving in the right direction, it is rather likely that those SDGs are progressing too” [101].
3.3.2. Meso/Micro-Level: Firm-Level and Industrial Symbiosis
3.4. Circular Economy: One Step towards Strong Sustainability
“The weak sustainability paradigm … assumes substitutability between human-made capital and natural capital, as long as the aggregated income does not decrease over time. The proponents of the strong sustainability paradigm, on the other hand, have raised questions about the substitutability of natural capital. They stress the need to preserve the stock of natural capital in order to ensure a non-decreasing flow of income for future generations [118]. According to the weak sustainability perspective, any form of capital—including all forms of natural capital—is ‘negotiable’ as far as the aggregated income does not decrease. Trade-offs between economic activity and the quality of the environment seem unlimited according to this view” [115].
3.5. Viewing Algae-Based CCU through Environmental Virtue Ethics
3.5.1. Environmental Virtue Ethics and the Role of Environmental Goods
“The natural environment is the basis for all human life on earth because it provides the foundations for its existence, such as air to breathe, food, temperate climate which constitutes the atmosphere, and many more direct and indirect benefits. Through a variety of different channels, the natural environment favours human life. So, in terms of economic theory, the natural environment clearly generates utility for individuals both directly by providing accurate space for their existence, and indirectly by allowing for the production of consumption and investment goods, such as food and inorganic natural resources. Those indirect and direct benefits of the natural environment can be referred to as environmental goods”.
3.5.2. Assessing a Particular Technology by an External Goods Criterion
3.5.3. Environmental Challenges of Ferrosilicon Production and Salmon Aquaculture, and the Potential of Algae-Based CCU
3.5.4. Promoting Environmental Goods Using Algae-Based CCU
3.5.5. Algae-Based CCU: Not a Quick Fix but Part of a Comprehensive Approach
3.5.6. Consumerism vs. Sustainable Consumption
4. Conclusions
- The partial inclusion or whole replacement of nutritious microalgae biomass in salmon feed can have both fish and human health advantages and can improve the overall environmental sustainability of salmon aquaculture.
- If traditional salmon feed based on fish and terrestrial plant material is replaced by microalgae that takes up factory fume CO2, a feed with substantially lower CO2 footprint can be achieved. This since here CO2 is not reduced, but does not increase either. Further gains in sustainability may be achieved in that algae feed can replace feed ingredients with a higher overall environmental footprint. Eventual removal of NOx from factory fumes is, though, largely permanent.
- The Carbon Capture and Utilization project in collaboration between UiT the Arctic University of Norway and Finnfjord AS is an example of a nexus that can contribute to operationalization of the SDGs.
- Carbon Capture and Utilization, and the inclusion of microalgae in fish feed, can significantly contribute to addressing environmental degradation and climate change, though they are not quick fixes.
- The implementation of these technologies must go hand in hand with a fundamental shift in consumption patterns, ensuring that our consumption does not unnecessarily disrupt the environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guiry, M.D. How Many Species of Algae Are There? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Armbrust, E.V. The Life of Diatoms in the World’s Oceans. Nature 2009, 459, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Borowitzka, M.A. Energy from Microalgae: A Short History. In Algae for Biofuels and Energy; Springer: Dordrecht, The Netherlands, 2013; pp. 1–15. [Google Scholar]
- Beijierinck, M. Kulturversuche Mit Zoochloren, Lichenenggonidien und Anderen Niederen Algen. Physis 1890, 48, 725–785. [Google Scholar]
- Jørgensen, J.; Convit, J.; de Cabo Blanco, L.; Maiquetia, D. Cultivation of Complexes of Algae with Other Fresh-Water Microorganisms in the Tropics. In Algal Culture—From Laboratory to Pilot Plant; Burlew, J.S., Ed.; Carnegie Institution of Washington Publication: Washington, DC, USA, 1953; p. 190. [Google Scholar]
- Daneshvar, E.; Wicker, R.J.; Show, P.L.; Bhatnagar, A. Biologically-Mediated Carbon Capture and Utilization by Microalgae towards Sustainable CO2 Biofixation and Biomass Valorization—A Review. Chem. Eng. J. 2022, 427, 130884. [Google Scholar] [CrossRef]
- Eldiehy, K.S.H.; Bardhan, P.; Borah, D.; Gohain, M.; Rather, M.A.; Deka, D.; Mandal, M. A Comprehensive Review on Microalgal Biomass Production and Processing for Biodiesel Production. Fuel 2022, 324, 124773. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Wang, J.; Liu, T. Attached Cultivation of Haematococcus pluvialis for Astaxanthin Production. Bioresour. Technol. 2014, 158, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Norsker, N.-H.; Barbosa, M.J.; Vermuë, M.H.; Wijffels, R.H. Microalgal Production—A Close Look at the Economics. Biotechnol. Adv. 2011, 29, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Borowitzka, M.A. Commercial Production of Microalgae: Ponds, Tanks, Tubes and Fermenters. J. Biotechnol. 1999, 70, 313–321. [Google Scholar] [CrossRef]
- Cheng, P.; Shan, S.; Zhu, Z.; Liu, K.; Namsaraev, Z.; Dubovskiy, I.; Xu, Q. The Role of Microalgae Culture Modes in Aquaculture: A Brief Opinion. Front. Bioeng. Biotechnol. 2023, 11, 1196948. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef]
- Dalheim, L.; Svenning, J.B.; Olsen, R.L. In Vitro Intestinal Digestion of Lipids from the Marine Diatom Porosira glacialis Compared to Commercial LC N-3 PUFA Products. PLoS ONE 2021, 16, e0252125. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, J.P.; Wu, C.F.; Wang, J.H. Fucoxanthin, a Marine Carotenoid Present in Brown Seaweeds and Diatoms: Metabolism and Bioactivities Relevant to Human Health. Mar. Drugs 2011, 9, 1806. [Google Scholar] [CrossRef]
- Mimouni, V.; Ulmann, L.; Pasquet, V.; Mathieu, M.; Picot, L.; Bougaran, G.; Cadoret, J.-P.; Morant-Manceau, A.; Schoefs, B. The Potential of Microalgae for the Production of Bioactive Molecules of Pharmaceutical Interest. Curr. Pharm. Biotechnol. 2012, 13, 2733–2750. [Google Scholar] [CrossRef] [PubMed]
- De Jesus Raposo, M.F.; De Morais, R.M.S.C.; De Morais, A.M.M.B. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae. Mar. Drugs 2013, 11, 233. [Google Scholar] [CrossRef]
- Ingebrigtsen, R.A.; Hansen, E.; Andersen, J.H.; Eilertsen, H.C. Light and Temperature Effects on Bioactivity in Diatoms. J. Appl. Phycol. 2016, 28, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.; Romano, G.; Ianora, A. Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities. Front. Mar. Sci. 2016, 3, 68. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.; Maroneze, M.M.; Deprá, M.C.; Sartori, R.B.; Dias, R.R.; Zepka, L.Q. Bioactive Food Compounds from Microalgae: An Innovative Framework on Industrial Biorefineries. Curr. Opin. Food Sci. 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Blanco, M.V.; Renman, V.; Vullum-Bruer, F.; Svensson, A.M. Nanostructured Diatom Earth SiO2 Negative Electrodes with Superior Electrochemical Performance for Lithium Ion Batteries. RSC Adv. 2020, 10, 33490–33498. [Google Scholar] [CrossRef]
- Khan, M.J.; Pugazhendhi, A.; Schoefs, B.; Marchand, J.; Rai, A.; Vinayak, V. Perovskite-Based Solar Cells Fabricated from TiO2 Nanoparticles Hybridized with Biomaterials from Mollusc and Diatoms. Chemosphere 2022, 291, 132692. [Google Scholar] [CrossRef]
- Terracciano, M.; De Stefano, L.; Rea, I. Diatoms Green Nanotechnology for Biosilica-Based Drug Delivery Systems. Pharmaceutics 2018, 10, 242. [Google Scholar] [CrossRef]
- Stachowiak, B.; Szulc, P. Astaxanthin for the Food Industry. Molecules 2021, 26, 2666. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Duan, C.; Yi, S.; Gao, Z.; Xiao, C.; Agathos, S.N.; Wang, G.; Li, J. Biotechnological Production of Astaxanthin from the Microalga Haematococcus pluvialis. Biotechnol. Adv. 2020, 43, 107602. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, H.; Loganathan, B. Third-Generation Biofuels from Microalgae: A Review. Curr. Opin. Green Sustain. Chem. 2019, 20, 39–44. [Google Scholar] [CrossRef]
- Rafa, N.; Ahmed, S.F.; Badruddin, I.A.; Mofijur, M.; Kamangar, S. Strategies to Produce Cost-Effective Third-Generation Biofuel from Microalgae. Front. Energy Res. 2021, 9, 749968. [Google Scholar] [CrossRef]
- Yen, H.W.; Ho, S.H.; Chen, C.Y.; Chang, J.S. CO2, NOx and SOx Removal from Flue Gas via Microalgae Cultivation: A Critical Review. Biotechnol. J. 2015, 10, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Borowitzka, M.A.; Vonshak, A. Scaling up Microalgal Cultures to Commercial Scale. Eur. J. Phycol. 2017, 52, 407–418. [Google Scholar] [CrossRef]
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the Potential of Microalgae for New Biotechnology Applications and beyond: A Review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar] [CrossRef]
- di Visconte, G.S.; Spicer, A.; Chuck, C.J.; Allen, M.J. The Microalgae Biorefinery: A Perspective on the Current Status and Future Opportunities Using Genetic Modification. Appl. Sci. 2019, 9, 4793. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Goswami, S. Microalgae—A Green Multi-Product Biorefinery for Future Industrial Prospects. Biocatal. Agric. Biotechnol. 2020, 25, 101580. [Google Scholar] [CrossRef]
- Beigbeder, J.B.; Sanglier, M.; De Medeiros Dantas, J.M.; Lavoie, J.M. CO2 Capture and Inorganic Carbon Assimilation of Gaseous Fermentation Effluents Using Parachlorella kessleri Microalgae. J. CO2 Util. 2021, 50, 101581. [Google Scholar] [CrossRef]
- Bibi, F.; Jamal, A.; Huang, Z.; Urynowicz, M.; Ishtiaq Ali, M. Advancement and Role of Abiotic Stresses in Microalgae Biorefinery with a Focus on Lipid Production. Fuel 2022, 316, 123192. [Google Scholar] [CrossRef]
- FAO. Global Fishery and Aquaculture Production Statistics. Available online: www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 5 April 2023).
- USDA. USDA IPAD. Available online: https://ipad.fas.usda.gov (accessed on 10 October 2023).
- Eilertsen, H.C.; Eriksen, G.K.; Bergum, J.S.; Strømholt, J.; Elvevoll, E.; Eilertsen, K.E.; Heimstad, E.S.; Giæver, I.H.; Israelsen, L.; Svenning, J.B.; et al. Mass Cultivation of Microalgae: I. Experiences with Vertical Column Airlift Photobioreactors, Diatoms and CO2 Sequestration. Appl. Sci. 2022, 12, 3082. [Google Scholar] [CrossRef]
- Verdelho Vieira, V.; Cadoret, J.-P.; Acien, F.G.; Benemann, J. Clarification of Most Relevant Concepts Related to the Microalgae Production Sector. Processes 2022, 10, 175. [Google Scholar] [CrossRef]
- Sirohi, R.; Kumar Pandey, A.; Ranganathan, P.; Singh, S.; Udayan, A.; Kumar Awasthi, M.; Hoang, A.T.; Chilakamarry, C.R.; Kim, S.H.; Sim, S.J. Design and Applications of Photobioreactors—A Review. Bioresour. Technol. 2022, 349, 126858. [Google Scholar] [CrossRef]
- Cashion, T.; Le Manach, F.; Zeller, D.; Pauly, D. Most Fish Destined for Fishmeal Production Are Food-grade Fish. Fish Fish. 2017, 18, 837–844. [Google Scholar] [CrossRef]
- Eilertsen, H.C.; Elvevoll, E.; Giæver, I.H.; Svenning, J.B.; Dalheim, L.; Svalheim, R.A.; Vang, B.; Siikavuopio, S.; Dragøy, R.; Ingebrigtsen, R.A.; et al. Inclusion of Photoautotrophic Cultivated Diatom Biomass in Salmon Feed Can Deter Lice. PLoS ONE 2021, 16, e0255370. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L. The Weak Sustainability of the Salmon Feed Transition in Norway—A Bioeconomic Case Study. Front. Mar. Sci. 2019, 6, 764. [Google Scholar] [CrossRef]
- Hamre, K.; Yúfera, M.; Rønnestad, I.; Boglione, C.; Conceição, L.E.C.; Izquierdo, M. Fish Larval Nutrition and Feed Formulation: Knowledge Gaps and Bottlenecks for Advances in Larval Rearing. Rev. Aquac. 2013, 5, S26–S58. [Google Scholar] [CrossRef]
- Midtbø, L.K.; Borkowska, A.G.; Bernhard, A.; Rønnevik, A.K.; Lock, E.J.; Fitzgerald, M.L.; Torstensen, B.E.; Liaset, B.; Brattelid, T.; Pedersen, T.L.; et al. Intake of Farmed Atlantic Salmon Fed Soybean Oil Increases Hepatic Levels of Arachidonic Acid-Derived Oxylipins and Ceramides in Mice. J. Nutr. Biochem. 2015, 26, 585–595. [Google Scholar] [CrossRef]
- Sistiaga, M.; Herrmann, B.; Forås, E.; Frank, K.; Sunde, L.M. Prediction of Size-Dependent Risk of Salmon Smolt (Salmo Salar) Escape through Fish Farm Nets. Aquac. Eng. 2020, 89, 102061. [Google Scholar] [CrossRef]
- Grimnes, A.; Jakobsen, P.J. The Physiological Effects of Salmon Lice Infection on Post-smolt of Atlantic Salmon. J. Fish Biol. 1996, 48, 1179–1194. [Google Scholar]
- Overton, K.; Dempster, T.; Oppedal, F.; Kristiansen, T.S.; Gismervik, K.; Stien, L.H. Salmon Lice Treatments and Salmon Mortality in Norwegian Aquaculture: A Review. Rev. Aquac. 2019, 11, 1398–1417. [Google Scholar] [CrossRef]
- Kaldheim, O.; Nordbotn, S. Quantifying the Economic Impacts of Sea Lice and Sea Lice Mitigation Efforts on Norwegian Salmonid Aquaculture. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2019. [Google Scholar]
- Eilertsen, H.C.; Strømholt, J.; Bergum, J.-S.; Eriksen, G.K.; Ingebrigtsen, R. Mass Cultivation of Microalgae: II. A Large Species Pulsing Blue Light Concept. BioTech 2023, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Gjøsund, S.H.; Skjermo, J.; Forbord, S.; Jafarzadeh, S.; Sletta, H.; Aasen, I.M.; Hagemann, A.; Chauton, M.S.; Aursand, I.G.; Evjemo, J.O.; et al. Bærekraftig Fôr Til Norsk Laks; SINTEF Ocean AS: Trondheim, Norway, 2020; Volume 119. [Google Scholar]
- Lee, C.G. Calculation of Light Penetration Depth in Photobioreactors. Biotechnol. Bioprocess Eng. 1999, 4, 78–81. [Google Scholar] [CrossRef]
- Tennessen, D.J.; Bula, R.J.; Sharkey, T.D. Efficiency of Photosynthesis in Continuous and Pulsed Light Emitting Diode Irradiation. Photosynth. Res. 1995, 44, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Putt, R.; Singh, M.; Chinnasamy, S.; Das, K.C. An Efficient System for Carbonation of High-Rate Algae Pond Water to Enhance CO2 Mass Transfer. Bioresour. Technol. 2011, 102, 3240–3245. [Google Scholar] [CrossRef] [PubMed]
- Norwegian Ministry of Health and Welfare. Regulation on Certain Pollutants in Foodstuffs. 2023. Available online: https://lovdata.no/dokument/SF/forskrift/2015-07-03-870 (accessed on 10 May 2023).
- Svenning, J.B.; Dalheim, L.; Eilertsen, H.C.; Vasskog, T. Temperature dependent growth rate, lipid content and fatty acid composition of the marine cold-water diatom Porosira glacialis. Algal Res. 2019, 37, 11–16. [Google Scholar] [CrossRef]
- Matos, Â.P.; Feller, R.; Moecke, E.H.S.; de Oliveira, J.V.; Junior, A.F.; Derner, R.B.; Sant’Anna, E.S. Chemical Characterization of Six Microalgae with Potential Utility for Food Application. J. Am. Oil Chem. Soc. 2016, 93, 963–972. [Google Scholar] [CrossRef]
- Matthews, H.; Scott, C.T.H.; Deanna, H.M. Life Cycle Assessment: Quantitative Approaches for Decisions That Matter; Everand: San Fransisco, USA, 2014. [Google Scholar]
- Hognes, E.S.; Ziegler, F.; Sund, V. Carbon Footprint and Area Use of Farmed Norwegian Salmon; SINTEF: Trondheim, Norway, 2011; Volume 30. [Google Scholar]
- Boyd, C.E. Overview of Aquaculture Feeds: Global Impacts of Ingredient Use. In Feed and Feeding Practices in Aquaculture; Davis, D.A., Ed.; Woodhead Publishing: Thorston, UK, 2015; pp. 3–25. [Google Scholar] [CrossRef]
- Rotabakk, B.T.; Bergman, K.; Ziegler, F.; Skåra, T.; Iversen, A. Climate Impact, Economy and Technology of Farmed Atlantic Salmon–Documentation of the Current State for Fresh and Frozen Products to Asia and Fresh Products to Europe; Nofima AS: Tromsø, Norway, 2020. [Google Scholar]
- Platt, T.; Jassby, A.D. The Relationship between Photosynthesis and Light for Natural Assemblages of Coastal Marine Phytoplankton 1. J. Phycol. 1976, 12, 421–430. [Google Scholar] [CrossRef]
- Albrektsen, S.; Kortet, R.; Skov, P.V.; Ytteborg, E.; Gitlesen, S.; Kleinegris, D.; Mydland, L.; Hansen, J.Ø.; Lock, E.; Mørkøre, T. Future Feed Resources in Sustainable Salmonid Production: A Review. Rev. Aquac. 2022, 14, 1790–1812. [Google Scholar] [CrossRef]
- Artamonova, E.Y.; Vasskog, T.; Eilertsen, H.C. Lipid Content and Fatty Acid Composition of Porosira glacialis and Attheya longicornis in Response to Carbon Dioxide (CO2) Aeration. PLoS ONE 2017, 12, e0177703. [Google Scholar] [CrossRef] [PubMed]
- Giæver, I.H. Diatom Protein and Amino Acids—A Mass Cultivated Northern Diatom and Its Potential for Utilization as Protein Source in Fish Feed 2020. Master’s Thesis, UiT—The Arctic University of Norway, Tromso, Norway, 2019. [Google Scholar]
- Mueller, J.; Pauly, M.; Molkentin, J.; Ostermeyer, U.; van Muilekom, D.R.; Rebl, A.; Goldammer, T.; Lindemeyer, J.; Schultheiß, T.; Seibel, H. Microalgae as Functional Feed for Atlantic Salmon: Effects on Growth, Health, Immunity, Muscle Fatty Acid and Pigment Deposition. Front. Mar. Sci. 2023, 10, 1273614. [Google Scholar] [CrossRef]
- Aalto, N.J.; Campbell, K.; Eilertsen, H.C.; Bernstein, H.C. Drivers of Atmosphere-Ocean CO2 Flux in Northern Norwegian Fjords. Front. Mar. Sci. 2021, 8, 841. [Google Scholar] [CrossRef]
- Agwu, U.J.; Oftedal, E.M.; Bertella, G. Why Not Use the Sea? A Shared Value Approach to Sustainable Value Creation When Using Carbon Dioxide as a Valuable Resource in Manufacturing. Front. Sustain. 2022, 3, 47. [Google Scholar] [CrossRef]
- Walde, C.S.; Bang Jensen, B.; Stormoen, M.; Asche, F.; Misund, B.; Pettersen, J.M. The Economics of Preventing, Replacing or Improving Current Methods for Delousing Farmed Atlantic Salmon in Norway. Prev. Vet. Med. 2023, 221, 106062. [Google Scholar] [CrossRef]
- Artamonova, E.Y.; Svenning, J.B.; Vasskog, T.; Hansen, E.; Eilertsen, H.C. Analysis of Phospholipids and Neutral Lipids in cThree Common Northern Cold Water Diatoms: Coscinodiscus concinnus, Porosira glacialis, and Chaetoceros socialis, by Ultra-High Performance Liquid Chromatography-Mass Spectrometry. J. Appl. Phycol. 2017, 29, 1241–1249. [Google Scholar] [CrossRef]
- Remmers, I.M.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P. Dynamics of Triacylglycerol and EPA Production in Phaeodactylum tricornutum under Nitrogen Starvation at Different Light Intensities. PLoS ONE 2017, 12, e0175630. [Google Scholar] [CrossRef]
- Haimeur, A.; Ulmann, L.; Mimouni, V.; Guéno, F.; Pineau-Vincent, F.; Meskini, N.; Tremblin, G. The Role of Odontella aurita, a Marine Diatom Rich in EPA, as a Dietary Supplement in Dyslipidemia, Platelet Function and Oxidative Stress in High-Fat Fed Rats. Lipids Health Dis. 2012, 11, 147. [Google Scholar] [CrossRef]
- Vílchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M. Marine Carotenoids: Biological Functions and Commercial Applications. Mar. Drugs 2011, 9, 319. [Google Scholar] [CrossRef]
- Kusaikin, M.I.; Ermakova, S.P.; Shevchenko, N.M.; Isakov, V.V.; Gorshkov, A.G.; Vereshchagin, A.L.; Grachev, M.A.; Zvyagintseva, T.N. Structural Characteristics and Antitumor Activity of a New Chrysolaminaran from the Diatom Alga Synedra acus. Chem. Nat. Compd. 2010, 46, 1–4. [Google Scholar] [CrossRef]
- Bhadury, P.; Wright, P.C. Exploitation of Marine Algae: Biogenic Compounds for Potential Antifouling Applications. Planta 2004, 219, 561–578. [Google Scholar] [CrossRef] [PubMed]
- Nieri, P.; Carpi, S.; Esposito, R.; Costantini, M.; Zupo, V. Bioactive Molecules from Marine Diatoms and Their Value for the Nutraceutical Industry. Nutrients 2023, 15, 464. [Google Scholar] [CrossRef] [PubMed]
- Villaró, S.; Ciardi, M.; Morillas-España, A.; Sánchez-Zurano, A.; Acién-Fernández, G.; Lafarga, T. Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods 2021, 10, 2303. [Google Scholar] [CrossRef]
- Lauritano, C.; Ianora, A. Marine Organisms with Anti-Diabetes Properties. Mar. Drugs 2016, 14, 220. [Google Scholar] [CrossRef]
- Lauritano, C.; Helland, K.; Riccio, G.; Andersen, J.H.; Ianora, A.; Hansen, E.H. Lysophosphatidylcholines and Chlorophyll-Derived Molecules from the Diatom Cylindrotheca closterium with Anti-Inflammatory Activity. Mar. Drugs 2020, 18, 166. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, C.; Martín, J.; de la Cruz, M.; Reyes, F.; Romano, G.; Ianora, A. First Identification of Marine Diatoms with Anti-Tuberculosis Activity. Sci. Rep. 2018, 8, 2284. [Google Scholar] [CrossRef]
- Baskin, J. Paradigm Dressed as Epoch: The Ideology of the Anthropocene. Environ. Values 2015, 24, 9–29. [Google Scholar] [CrossRef]
- United Nations. Emerging Perspectives Environment and Vulnerability Prepared on Behalf of the UN ISDR Environment and Disaster Working Group; United Nations: New York, NY, USA, 2011. [Google Scholar]
- WCED. Report of the World Commission on Environment and Development: Our Common Future; WCED: Cape Town, South Africa, 1987. [Google Scholar]
- Dandy, N. How Long Will Business as Usual Be Sustained? Environ. Values 2021, 30, 141–146. [Google Scholar] [CrossRef]
- Davidson, J. Sustainable Development: Business as Usual or a New Way of Living? Environ. Ethics 2000, 22, 25–42. [Google Scholar] [CrossRef]
- Dyllick, T.; Muff, K. Clarifying the Meaning of Sustainable Business: Introducing a Typology From Business-as-Usual to True Business Sustainability. Organ. Environ. 2016, 29, 156–174. [Google Scholar] [CrossRef]
- Scheyvens, R.; Banks, G.; Hughes, E. The Private Sector and the SDGs: The Need to Move Beyond ‘Business as Usual’. Sustain. Dev. 2016, 24, 371–382. [Google Scholar] [CrossRef]
- Boulding, K.E. The Economics of the Coming Spaceship Earth. In Environmental Quality in A Growing Economy; Taylor & Francis: Abingdon, UK, 1966; Volume 3, pp. 3–14. ISBN 9781315064147. [Google Scholar]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and Its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Short, S.W.; Rana, P.; Evans, S. A Literature and Practice Review to Develop Sustainable Business Model Archetypes. J. Clean. Prod. 2014, 65, 42–56. [Google Scholar] [CrossRef]
- Walzberg, J.; Lonca, G.; Hanes, R.J.; Eberle, A.L.; Carpenter, A.; Heath, G.A. Do We Need a New Sustainability Assessment Method for the Circular Economy? A Critical Literature Review. Front. Sustain. 2021, 1, 620047. [Google Scholar] [CrossRef]
- Lin, B.C. ang Sustainable Growth: A Circular Economy Perspective. J. Econ. Issues 2020, 54, 465–471. [Google Scholar] [CrossRef]
- Elkington, J. Cannibals with Forks; Capstone Publishing Limited: Mankato, Minnesota, 1997; ISBN 1-900961-27-X. [Google Scholar]
- Ellen MacArthur Foundation. Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition; Ellen MacArthur Foundation location: Isle of Wight, UK, 2012. [Google Scholar]
- Al-Mamoori, A.; Krishnamurthy, A.; Rownaghi, A.A.; Rezaei, F. Carbon Capture and Utilization Update. Energy Technol. 2017, 5, 834–849. [Google Scholar] [CrossRef]
- Brown, T.; Gambhir, A.; Florin, N.; Fennell, P. Reducing CO2 Emissions from Heavy Industry: A Review of Technologies and Considerations for Policy Makers How Can We Reduce Industrial Emissions? Grantham Institute—Climate Change and Environment: London, UK, 2012. [Google Scholar]
- CDP. The Carbon Majors Database: CDP Carbon Majors Report 2017—100 Fossil Fuel Producers and Nearly 1 Trillion Tonnes of Greenhouse Gas Emissions; CDP: London, UK, 2017. [Google Scholar]
- Grasso, M.; Vladimirova, K. A Moral Analysis of Carbon Majors’ Role in Climate Change. Environ. Values 2020, 29, 175–195. [Google Scholar] [CrossRef]
- Acatech. CCU and CCS—Building Blocks for Climate Protection in Industry (Acatech POSITION Paper); Acatech: Munich, Germany, 2019. [Google Scholar]
- IEA Carbon Capture, Utilisation and Storage—Fuels & Technologies—IEA. Available online: https://www.iea.org/fuels-and-technologies/carbon-capture-utilisation-and-storage (accessed on 1 February 2021).
- Styring, P.; Jansen, D.; de Coninck, H.; Reith, H.; Armstrong, K. Carbon Capture and Utilisation in the Green Economy. Using CO2 to Manufacture Fuel, Chemicals and Materials; Centre for Low Carbon Futures: New York, NY, USA, 2011. [Google Scholar]
- United Nations. Human Development Report 2020: The Next Frontier Human Development and the Anthropocene; United Nations: New York, NY, USA, 2020. [Google Scholar]
- Conceição, P. Human Development and the SDGs. Available online: https://hdr.undp.org/content/human-development-and-sdgs (accessed on 7 July 2022).
- Hoff, H.; Alrahaife, S.A.; El Hajj, R.; Lohr, K.; Mengoub, F.E.; Farajalla, N.; Fritzsche, K.; Jobbins, G.; Özerol, G.; Schultz, R.; et al. A Nexus Approach for the MENA Region-from Concept to Knowledge to Action. Front. Environ. Sci. 2019, 7, 48. [Google Scholar] [CrossRef]
- Leck, H.; Conway, D.; Bradshaw, M.; Rees, J. Tracing the Water–Energy–Food Nexus: Description, Theory and Practice. Geogr. Compass 2015, 9, 445–460. [Google Scholar] [CrossRef]
- Yuan, M.H.; Lo, S.L. Principles of Food-Energy-Water Nexus Governance. Renew. Sustain. Energy Rev. 2021, 155, 111937. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus. Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Palsson, G.; Szerszynski, B.; Sörlin, S.; Marks, J.; Avril, B.; Crumley, C.; Hackmann, H.; Holm, P.; Ingram, J.; Kirman, A.; et al. Reconceptualizing the ‘Anthropos’ in the Anthropocene: Integrating the Social Sciences and Humanities in Global Environmental Change Research. Environ. Sci. Policy 2013, 28, 3–13. [Google Scholar] [CrossRef]
- European Commission. The Water-Energy-Food Nexus: Foresight for Research and Innovation in the Context of Climate Change; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- IEA. Energy Technology Perspectives 2020; IEA: Paris, France, 2020. [Google Scholar]
- Olfe-Kräutlein, B. Advancing CCU Technologies Pursuant to the SDGs: A Challenge for Policy Making. Front. Energy Res. 2020, 8, 198. [Google Scholar] [CrossRef]
- Lebedev, V.V.; Deberdeeva, N.A.; Farkova, N.A.; Korobeinikova, L.S. Systemic Risk Management of Investments in Innovation Based on CSR. Risks 2022, 10, 87. [Google Scholar] [CrossRef]
- Galli, F.; Pirola, C.; Previtali, D.; Manenti, F.; Bianchi, C.L. Eco Design LCA of an Innovative Lab Scale Plant for the Production of Oxygen-Enriched Air. Comparison between Economic and Environmental Assessment. J. Clean. Prod. 2018, 171, 147–152. [Google Scholar] [CrossRef]
- Björklund, A.E. Survey of Approaches to Improve Reliability in LCA. Int. J. Life Cycle Assess. 2002, 7, 64–72. [Google Scholar] [CrossRef]
- Bilbao-Osorio, B.; Rodríguez-Pose, A. From R&D to Innovation and Economic Growth in the EU. Growth Chang. 2004, 35, 434–455. [Google Scholar] [CrossRef]
- Santoro, M.D. Success Breeds Success: The Linkage between Relationship Intensity and Tangible Outcomes in Industry–University Collaborative Ventures. J. High Technol. Manag. Res. 2000, 11, 255–273. [Google Scholar] [CrossRef]
- Janeiro, L.; Patel, M.K. Choosing Sustainable Technologies. Implications of the Underlying Sustainability Paradigm in the Decision-Making Process. J. Clean. Prod. 2015, 105, 438–446. [Google Scholar] [CrossRef]
- Holden, E.; Linnerud, K.; Banister, D. The Imperatives of Sustainable Development. Sustain. Dev. 2017, 25, 213–226. [Google Scholar] [CrossRef]
- Ekins, P.; Simon, S.; Deutsch, L.; Folke, C.; De Groot, R. A Framework for the Practical Application of the Concepts of Critical Natural Capital and Strong Sustainability. Ecol. Econ. 2003, 44, 165–185. [Google Scholar] [CrossRef]
- Costanza, R.; Daly, H. Natural Capital and Sustainable Development. Conserv. Biol. 1992, 6, 37–46. [Google Scholar] [CrossRef]
- Martinez-Alier, J. Circularity, Entropy, Ecological Conflicts and LFFU. Local Environ. 2021, 27, 1182–1207. [Google Scholar] [CrossRef]
- Malm, A. Fossil Capital: The Rise of Steam Power and the Roots of Global Warming; Verso Books: New York, NY, USA, 2016. [Google Scholar]
- Brennan, T. Exhausting Modernity: Grounds for a New Economy; Routledge: Abingdon, UK, 2000; ISBN 9780415237062. [Google Scholar]
- Strand, R.; Kovacic, Z.; Funtowicz, S.; Benini, L.; Jesus, A. Growth without Economic Growth. Eur. Environ. Agency 2021. [Google Scholar] [CrossRef]
- Roy, B.; Schaffartzik, A. Talk Renewables, Walk Coal: The Paradox of India’s Energy Transition. Ecol. Econ. 2021, 180, 106871. [Google Scholar] [CrossRef]
- Skirbekk, G. Multiple Modernities: A Tale of Scandinavian Experiences; The Chinese University Press: Hong Kong, China, 2011; ISBN 9629964872. [Google Scholar]
- Streeck, W. The Crises of Democratic Capitalism. New Left Rev. 2011, 5–29. [Google Scholar]
- Milman, O. ‘This Is a Fossil Fuel War’: Ukraine’s Top Climate Scientist Speaks out|Climate Crisis|The Guardian. Available online: https://www.theguardian.com/environment/2022/mar/09/ukraine-climate-scientist-russia-invasion-fossil-fuels (accessed on 6 June 2022).
- Hill, T.E., Jr. Ideals of Human Excellence and Preserving Natural Environments. In Ethics of the Environment; Attfield, R., Ed.; Routhledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Sandler, R. Introduction: Environmental Virtue Ethics. In Environmental Virtue Ethics; Sandler, R., Cafaro, P., Eds.; Rowman & Littlefield Publishers, Inc: Lanham, MD, USA, 2005; pp. 1–12. [Google Scholar]
- Sandler, R. A Virtue Ethics Perspective on Genetically Modified Crops. In Environmental Virtue Ethics; Sandler, R., Cafaro, P., Eds.; Rowman & Littlefield Publishers, Inc: Oxford, UK, 2005. [Google Scholar]
- Börger, T. The Economic Valuation of Environmental Goods. In Social Desirability and Environmental Valuation; Peter Lang: Frankfurt am Main, Germany, 2012; pp. 12–52. ISBN 978-3-653-01583-6. [Google Scholar]
- Sandler, R. Character and Environment: A Virtue-Oriented Approach to Environmental Ethics; Columbia University Press: New York, NY, USA, 2007; ISBN 978-0-231-51186-5. [Google Scholar]
- Boerema, A.; Peeters, A.; Swolfs, S.; Vandevenne, F.; Jacobs, S.; Staes, J.; Meire, P. Soybean Trade: Balancing Environmental and Socio-Economic Impacts of an Intercontinental Market. PLoS ONE 2016, 11, e0155222. [Google Scholar] [CrossRef]
- Beal, C.M.; Gerber, L.N.; Thongrod, S.; Phromkunthong, W.; Kiron, V.; Granados, J.; Archibald, I.; Greene, C.H.; Huntley, M.E. Marine Microalgae Commercial Production Improves Sustainability of Global Fisheries and Aquaculture. Sci. Rep. 2018, 8, 15064. [Google Scholar] [CrossRef]
- Hursthouse, R. Environmental Virtue Ethics. In Environmental Ethics; Walker, R.L., Ivanhoe, P.J., Eds.; Oxford University Press: Oxford, UK, 2007; pp. 155–177. [Google Scholar]
- Sethi, D.; Butler, T.O.; Shuhaili, F.; Vaidyanathan, S. Diatoms for Carbon Sequestration and Bio-Based Manufacturing. Biology 2020, 9, 217. [Google Scholar] [CrossRef]
- Curry, P. Ecological Ethics: An Introduction; Polity Press: Malden, MA, USA; Cambridge, UK, 2011; ISBN 978-0-7456-5125-5. [Google Scholar]
- Cafaro, P. Thoreau’s Living Ethics: Walden and the Pursuit of Virtue; The University of Georgia Press: Athens, Greece, 2006. [Google Scholar]
- Wenz, P. Synergistic Environmental Virtues: Consumerism and Human Flourishing. In Environmental Virtue Ethics; Sandler, R., Cafaro, P., Eds.; Rowman & Littlefield Publishers, Inc: Oxford, UK, 2005. [Google Scholar]
- Barry, J. Rethinking Green Politics: Nature, Virtue and Progress; SAGE: London, UK, 1999. [Google Scholar] [CrossRef]
- Rolston, H. Environmental Ethics Duties to and Values in the Natural World I!J PHILADELPHIA; Temple University Press: Philadelphia, PA, USA, 1988; ISBN 087722501X. [Google Scholar]
Unit | Description | Function | Capacity/Units |
---|---|---|---|
Water filter system | Self-cleaning system and filter cartridges | Seawater serves as cultivation medium | 150,000 L 24 h−1 5–10 μm retention |
Inorganic nutrients | Dose pumps | Adds N, P and Si | Adjustable |
Fume injection | Compressor and rotating injector in reactor | Adds CO2 an NOx and creates mixing in reactor | 5% CO2 in fume >50,000 L fume 24 h−1 |
Reactor | Glass fibre vertical column | Algae cultivation | 300,000 L |
Illumination 1 | Natural light | Illuminates upper reactor | Mean/year ca. 12 Wm−2 |
Illumination 2 | Artificial light as W | Illuminates sub surface | Total LED light 11 kW * |
De-watering 1 | 1-stage Drum filter | 100 × concentration | 200,000 L 24 h−1 |
De-watering 2 | Bowl centrifuge | 4000 × concentration | Biomass w. 63–74% water |
Sensors in reactor | CO2, pH, temp., sal., turbidity | Logs reactor environment | %, pH, ppt, NTU |
Sensors in reactor | scalar and cosine light | Logs and monitors light in reactor and atmosphere | W m−2, μmol m−2 s−1 |
Manual monitoring | Cells L−1, Chla, O2 | Measured every workday | Cells L−1, μg L−1 |
Manual monitoring | NO3−, NO2−, PO4−, Si(OH)4 | Measured every second workday | μmol L−1 |
Variable | Present | Aim | Remark |
---|---|---|---|
Uptake efficiency of CO2 * | 51% | 70% | It is already high! |
Photosynthesis light utilization *, ** | 19.8% | Higher | High, but can it be improved? |
Efficiency of LEDs *, ** | 65% | 80% | 65 is high, but can be improved |
Uptake efficiency of fume * | 50% * | 70% | |
Production biomass (maximum) * | 0.5 g L−1 Day−1 | 1.0 g L−1 Day−1 | 63–74% water |
Production loss in de-watering * | 0.07 g L−1 Day−1 | 0.01 g L−1 Day−1 | |
Time between cleaning reactor * | 4–5 months | 4–5 months | Algae produces antifouling agent |
SO2 scrubbing | nan | nan | Must implement to stabilize CO2 |
De-watering efficiency (maximum) * | 26–37% | 50% | Longer centrifugations increase DW |
Lipid content (of DW) *, ** | 19.7% | Mean of 9 measurements | |
EPA/DHA of total lipid * | 31.6/4.9% | Mean of 9 measurements | |
Protein (of DW) * | 27.0% | Mean of 3 measurements | |
Heavy metal Cu * | 11.5 mg kg−1 | Below food safety < 10 mg kg−1 *** | |
Heavy metal Mn * | 38.0 mg kg−1 | Below food safety < 10 mg kg−1 *** | |
Heavy metal Zn * | 270.7 mg kg−1 | Above food safety < 200 mg kg−1 *** | |
Heavy metal Mg * | 7511.0 mg kg−1 | Below food safety < 10 mg kg−1 *** | |
Other heavy metals * | <1.0 mg kg−1 | Below food safety < 5 mg kg−1 *** | |
PAH carcinogens * | 0.018 mg kg−1 | Below food safety < 0.05 mg kg−1 *** | |
Benzoapyren * | 0.018 mg kg−1 | Low but regulations also unclear | |
Mixing * | 0.1 m s−1 | Must be optimized utterly |
Variable | Carbon Footprint (kg CO2 kg−1 Salmon) | Field Area (m2 kg−1 Salmon) | Primary Production Area (m2 Sea kg−1 Salmon) | Energy Use (MJ kg−1 Algae) | ||||
---|---|---|---|---|---|---|---|---|
Standard Feed | Algae Biomass | Standard Feed | Algae Biomass | Standard Feed | Algae Biomass | Standard Feed | Algae Biomass | |
Compressing gas, (a) | 66.1 | |||||||
LED illumination (a) | 11.0–20.0 | |||||||
Drum filter (a) | 1.26 | |||||||
Centrifuge (a) | 0.48 | |||||||
Pumps (a) | 0.2 | |||||||
Nitrogen uptake (a) | +0.05 | 0.49 | ||||||
Phosphate uptake (a) | +0.01 | 0.004 | ||||||
Capture by algae (a) | −2.2 | 0.0037 | ||||||
Loss to air (a) | +0.1 | |||||||
Loss to sea (a) | −0.1 | |||||||
Fish meal (b) | 0.36 | 0.0075 | 58.75 | 5.25 | ||||
Fish oil (b) | 0.13 | 0.0027 | 21.15 | 1.89 | ||||
SPC (b), (a) | 0.68 | 0.7917 | 1.14 | |||||
Wheat gluten (b) | 0.36 | 0.311 | 6.216 | |||||
Wheat (b) | 0.06 | 0.171 | 0.51 | |||||
Rapeseed oil (b) | 0.13 | 0.443 | 1.138 | |||||
Soya Lecithin (b) | 0.02 | 0.024 | 0.035 | |||||
Choline chloride (b) | 0.003 | 0.025 | 0.025 | |||||
Vitamin premix (b) | 0.01 | 0.01 | 0.01 | |||||
Phosphate (b) | 0.01 | 0.0125 | 0.0125 | |||||
Carop. Pink (b) | 0.0003 | 0.0003 | 0.0003 | |||||
L-lysine (b) | 0.0003 | 0.0003 | 0.0003 | |||||
DL-Methionine (b) | 0.005 | 0.0005 | 0.0005 | |||||
Mineral premix (b) | 0.003 | 0.025 | 0.025 | |||||
Vitamin C (b) | 0.003 | 0.025 | 0.025 | |||||
Sum | +1.7728 | −2.14 | 1.857 | 0.0037 | 79.9 | 26.5826 | 79.53/88.0 |
Stakeholder | Activity | Focus for Stakeholder Engagement |
---|---|---|
Societal Stakeholders | Press releases. Negotiations on contributions to regional development Formal presentations on industrial challenge, proof of concept and long-term environmental impacts Open days and visits for the local community (schools, politicians, etc.) | Reputation development as a transparent project with potential impact on local knowledge and skills development, and viability as a sustainability project within an evolving company with purpose aspirations. |
Financial stakeholders | Formal presentations on industrial challenge, proof of concept and long-term environmental and societal impacts Open days and visitations | Obtain funding for the next milestones and gain governmental endorsement. |
Potential customers | Negotiations on best viable means of salmon fodder production with adequate nutritional benefits | Demonstrate supply chain viability and potential impact on both aquaculture and manufacturing |
Business partners | Formal presentations on industrial challenge and long-term shared impacts Workshops and seminars | Demonstrate commitment to collaboratively achieving a greener future |
Employees | Internal memos and employee mobilization on the impact of current business practices and future directions | Create a sense of belonging in the drive towards making a change in the industry |
Silent stakeholders | Negotiations on best possible outcome for environment and society, taking responsible practices, rules, and regulations into account | Demonstrate commitment to positively impacting the silent stakeholders |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersson, A.-K.M.; Stokke, Ø.; Agwu, U.J.; Strømsheim, E.W.; Ingebrigtsen, R.A.; Wintervoll, G.-H.; Aspen, T.; Eilertsen, H.C. Mass Cultivation of Microalgae III: A Philosophical and Economic Exploration of Carbon Capture and Utilization. Sustainability 2023, 15, 16826. https://doi.org/10.3390/su152416826
Andersson A-KM, Stokke Ø, Agwu UJ, Strømsheim EW, Ingebrigtsen RA, Wintervoll G-H, Aspen T, Eilertsen HC. Mass Cultivation of Microalgae III: A Philosophical and Economic Exploration of Carbon Capture and Utilization. Sustainability. 2023; 15(24):16826. https://doi.org/10.3390/su152416826
Chicago/Turabian StyleAndersson, Anna-Karin Margareta, Øyvind Stokke, Ukeje Jacob Agwu, Erik Westad Strømsheim, Richard Andre Ingebrigtsen, Geir-Henning Wintervoll, Terje Aspen, and Hans Christian Eilertsen. 2023. "Mass Cultivation of Microalgae III: A Philosophical and Economic Exploration of Carbon Capture and Utilization" Sustainability 15, no. 24: 16826. https://doi.org/10.3390/su152416826
APA StyleAndersson, A. -K. M., Stokke, Ø., Agwu, U. J., Strømsheim, E. W., Ingebrigtsen, R. A., Wintervoll, G. -H., Aspen, T., & Eilertsen, H. C. (2023). Mass Cultivation of Microalgae III: A Philosophical and Economic Exploration of Carbon Capture and Utilization. Sustainability, 15(24), 16826. https://doi.org/10.3390/su152416826