Spatio-Temporal Dynamics of Forest Fires in Poland and Consequences for Fire Protection Systems: Seeking a Balance between Efficiency and Costs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Preparation
2.2. Statistical Analysis
2.3. Network Analysis
3. Results
3.1. Variation in the Number of Fires and Size of Burned Area over Time
3.2. Spatial Variation in the Number of Fires and Size of Burned Area
3.3. Determination of the Fire Season
3.4. Distribution of the Largest Fires
3.5. Relationship between the Number and Size of Forest Fires and the Allocation of Firefighting Units
4. Discussion
- (1)
- Continuous fire forecasting should be conducted to address the possibility of large fires in the winter. Forecasting should be maintained all year round and forecasters should react ad hoc on individual days during the winter, sending warnings to the public and a signal to fire units. As we have proven, in periods not currently covered by forecasting (late autumn and winter), not only do a relatively large number of fires break out (which, in practice, means economic, social, and other losses), but they are also, on average, larger than fires in other periods of the year. Extending the forecast period to the whole year will allow units to be dispatched faster, as at-risk areas can be identified on an ongoing basis, even in winter.
- (2)
- The fire season should be modified, i.e., the period during which firefighting units are kept on standby in order to allocate human resources and firefighting equipment quickly enough. Based on the analysis of the histograms of the frequency of fires in individual weeks of the year, we propose possible approaches to changing the fire season depending on the region of the country. The optimal solution seems to be the adoption of the first percentile as the beginning of the fire season, because then there is a high increase in the frequency of fires. At the same time, we suggest a local approach and modification for each voivodeship due to the spatial variability within the country. In half of the voivodeships, we suggest extending or shortening the fire season in order to adapt to real fire conditions. The concentration of fires in specific regions of Poland indicates a need for targeted interventions and resource allocation in those areas to mitigate the risks and prevent large losses caused by fire.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; De Rigo, D.; Ferrari, D.; Maianti, P.; Artes Vivancos, T.; Pfeiffer, H.; et al. Forest Fires in Europe, Middle East and North Africa 2018; EUR 29856 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-12591-4. JRC117883. [Google Scholar] [CrossRef]
- Tedim, F.; Xanthopoulos, G.; Leone, V. Forest fires in Europe: Facts and challenges. In Wildfire Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 77–99. [Google Scholar] [CrossRef]
- Tsakov, H.R.; Alexandrov, A.L.; Delkov, A.L. Forest fires in Bulgaria-assessment and ecological consequences. Nauka Za Gorata 2020, 56, 65–73. [Google Scholar]
- NFFIS. Polish National Forest Fire Information System. Available online: http://bazapozarow.ibles.waw.pl:8080/ibl-ppoz-web/export.xhtml (accessed on 1 October 2018).
- Sutanto, S.J.; Vitolo, C.; Di Napoli, C.; D’Andrea, M.; Van Lanen, H.A. Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 2020, 134, 105276. [Google Scholar] [CrossRef] [PubMed]
- Krikken, F.; Lehner, F.; Haustein, K.; Drobyshev, I.; van Oldenborgh, G.J. Attribution of the role of climate change in the forest fires in Sweden 2018. Nat. Hazards Earth Syst. Sci. 2019, 21, 2169–2179. [Google Scholar] [CrossRef]
- Kula, E.; Jankovská, Z. Forest fires and their causes in the Czech Republic (1992–2004). J. For. Sci. 2013, 59, 41–53. [Google Scholar] [CrossRef]
- Berčák, R.; Holuša, J.; Trombik, J.; Resnerová, K.; Hlásny, T. A combination of human activity and climate drives forest fire occurrence in Central Europe: Case of the Czech Republic. Res. Sq. Preprint 2023. [Google Scholar] [CrossRef]
- Matsoukis, A.; Kamoutsis, A.; Chronopoulos, K. Estimation of the meteorological forest fire risk in a mountainous region by using remote air temperature and relative humidity data. Int. Lett. Nat. Sci. 2018, 67, 1–8. [Google Scholar] [CrossRef]
- Bisquert, M.; Sánchez, J.M.; Caselles, V. Modeling fire danger in Galicia and Asturias (Spain) from MODIS images. Remote Sens. 2014, 6, 540–554. [Google Scholar] [CrossRef]
- Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H. Risk of large-scale fires in boreal forests of Finland under changing climate. Nat. Hazards Earth Syst. Sci. 2016, 16, 239–253. [Google Scholar] [CrossRef]
- Venäläinen, A.; Lehtonen, I.; Laapas, M.; Ruosteenoja, K.; Tikkanen, O.P.; Viiri, H.; Ikonen, V.P.; Peltola, H. Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. Glob. Change Biol. 2020, 26, 4178–4196. [Google Scholar] [CrossRef]
- Bovio, G.; Marchetti, M.; Tonarelli, L.; Salis, M.; Vacchiano, G.; Lovreglio, R.; Elia, M.; Fiorucci, P.; Ascoli, D. Gli incendi boschivi stanno cambiando: Cambiamo le strategie per governarli. J. Silvic. For. Ecol. 2017, 14, 202–205. [Google Scholar] [CrossRef]
- Turco, M.; Bedia, J.; Di Liberto, F.; Fiorucci, P.; von Hardenberg, J.; Koutsias, N.; Llasat, M.C.; Xystrakis, F.; Provenzale, A. Decreasing fires in mediterranean Europe. PLoS ONE 2016, 11, e0150663. [Google Scholar] [CrossRef] [PubMed]
- Regulation of the Minister of the Environment of March 22, 2006 on Detailed Rules for Forest Fire Protection. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20060580405 (accessed on 13 March 2023).
- Forest Fire Danger Map. Available online: https://bazapozarow.ibles.pl/zagrozenie/ (accessed on 10 March 2023).
- Lanorte, A.; Lasaponara, R. Fire regime characterization in Mediterranean ecosystems of Southern Italy. In EGU General Assembly Conference Abstracts, Proceedings of the EGU General Assembly, Vienna, Austria, 19–24 April 2009; EGU General Assembly: Vienna, Austria, 2009; p. 9957. [Google Scholar]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Oxendine, C.; Sonwalkar, M.; Waters, N. A multi-objective, multi-criteria approach to improve situational awareness in emergency evacuation routing using mobile phone data. Trans. GIS 2012, 16, 375–396. [Google Scholar] [CrossRef]
- Nicoară, P.S.; Haidu, I.A. GIS based network analysis for the identification of shortest route access to emergency medical facilities. Geogr. Tech. 2014, 9, 60–67. [Google Scholar]
- Ahmed, S.; Ibrahim, R.F.; Hefny, H.A. GIS-Based Network Analysis for the Roads Network of the Greater Cairo Area. In Proceedings of the 2nd International Conference on Applied Research in Computer Science and Engineering ICAR’17, Babbda, Lebanon, 22 June 2017. [Google Scholar]
- Keramati, A.; Sobhani, A.; Esmaeili, S.A.H.; Lu, P. Solving the log-truck routing problem while accounting for forest road maintenance levels: A case study of Oregon. In Proceedings of the Transportation Research Board 97th Annual Meeting, Washington, DC, USA, 7–11 January 2018; p. 6. Available online: https://www.researchgate.net/publication/324953298_Solving_the_Log-Truck_Routing_Problem_Accounting_for_Forest_Road_Maintenance_Policies_A_Case_Study_of_Oregon (accessed on 10 March 2023).
- Rohr, A.; Priesmeier, P.; Tzavella, K.; Fekete, A. System criticality of road network areas for emergency management services—Spatial assessment using a tessellation approach. Infrastructures 2020, 5, 99. [Google Scholar] [CrossRef]
- Bhambulkar, A.; Khedikar, I. Municipal solid waste (MSW) collection route for Laxmi Nagar by geographical information system (GIS). Int. J. Adv. Eng. Technol. 2011, 2, 1–6. [Google Scholar]
- Karadimas, N.V.; Papatzelou, K.; Loumos, V.G. Optimal solid waste collection routes identified by the ant colony system algorithm. Waste Manag. Res. 2007, 25, 139–147. [Google Scholar] [CrossRef]
- Kharel, S.; Shivananda, P.; Ramesh, K.S.; Naga Jothi, K.; Ganesha Raj, K. Transportation network model for route and closest facility analysis in Central Bengaluru. Int. J. Appl. Or Innov. Eng. Manag. 2018, 7, 58–62. [Google Scholar]
- Mitchell, A. The ESRI Guide to GIS Analysis. Volume 2: Spatial Measurements & Statistics; ESRI Press: Redlands, CA, USA, 2005. [Google Scholar]
- BDOT10k. National Database of Topographic Objects; Polish Head Office of Geodesy and Cartography: Warszawa, Poland, 2021. Available online: http://www.gugik.gov.pl/ (accessed on 30 October 2017).
- Zeng, A.; Yang, S.; Zhu, H.; Tigabu, M.; Su, Z.; Wang, G.; Guo, F. Spatiotemporal Dynamics and Climate Influence of Forest Fires in Fujian Province, China. Forests 2022, 13, 423. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, F.; Wang, Y.; Huang, X.; Ye, J. Seasonal differences in the spatial patterns of wildfire drivers and susceptibility in the southwest mountains of China. Sci. Total Environ. 2023, 869, 161782. [Google Scholar] [CrossRef]
- Vega Orozco, C.D.; Kanevski, M.; Tonini, M.; Golay, J.; Pereira, M.J. Time fluctuation analysis of forest fire sequences. In EGU General Assembly Conference Abstracts, Proceedings of the EGU General Assembly, Vienna, Austria, 7–12 April 2013; EGU General Assembly: Vienna, Austria, 2013; p. EGU2013-5518. [Google Scholar]
- Ferreira-Leite, F.; Ganho, N.; Bento-Gonçalves, A.; Botelho, F. Iberian atmospheric dynamics and large forest fires in mainland Portugal. Agric. For. Meteorol. 2017, 247, 551–559. [Google Scholar] [CrossRef]
- Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D.; Salis, M. Wildfire risk estimation in the Mediterranean area. Environmetrics 2014, 25, 384–396. [Google Scholar] [CrossRef]
- Jahdi, R.; Del Giudice, L.; Salis, M. Spatio-temporal Patterns of Wildfire Likelihood and Intensity in Ardabil Province, NW Iran. Environ. Sci. Proc. 2022, 17, 18. [Google Scholar] [CrossRef]
- Arisanty, D.; Muhaimin, M.; Rosadi, D.; Saputra, A.N.; Hastuti, K.P.; Rajiani, I. Spatiotemporal Patterns of Burned Areas Based on the Geographic Information System for Fire Risk Monitoring. Int. J. For. Res. 2021, 2021, 2784474. [Google Scholar] [CrossRef]
- Lampin-Maillet, C.; Long-Fournel, M.; Ganteaume, A.; Jappiot, M.; Ferrier, J.P. Land cover analysis in wildland–urban interfaces according to wildfire risk: A case study in the South of France. For. Ecol. Manag. 2011, 261, 2200–2213. [Google Scholar] [CrossRef]
- Larjavaara, M.; Kuuluvainen, T.; Rita, H. Spatial distribution of lightning-ignited forest fires in Finland. For. Ecol. Manag. 2005, 208, 177–188. [Google Scholar] [CrossRef]
- Erni, S.; Arseneault, D.; Parisien, M.A.; Bégin, Y. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga. Glob. Change Biol. 2017, 23, 1152–1166. [Google Scholar] [CrossRef]
- Kolanek, A.; Szymanowski, M.; Raczyk, A. Human activity affects forest fires: The impact of anthropogenic factors on the density of forest fires in Poland. Forests 2021, 12, 728. [Google Scholar] [CrossRef]
- Ciesielski, M.; Balazy, R.; Borkowski, B.; Szczesny, W.; Zasada, M.; Kaczmarowski, J.; Kwiatkowski, M.; Szczygieł, R.; Milanović, S. Contribution of anthropogenic, vegetation, and topographic features to forest fire occurrence in Poland. iForest 2022, 15, 307–314. [Google Scholar] [CrossRef]
- Milanović, S.; Kaczmarowski, J.; Ciesielski, M.; Trailović, Z.; Mielcarek, M.; Szczygieł, R.; Kwiatkowski, M.; Bałazy, R.; Zasada, M.; Milanović, S.D. Modeling and mapping of forest fire occurrence in the Lower Silesian Voivodeship of Poland based on Machine Learning methods. Forests 2022, 14, 46. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.; Gogi, C.; Stamatelos, G.; Mitsopoulos, I. Statistical analysis of the fire environment of large forest fires (>1000 ha) in Greece. Pol. J. Environ. Stud. 2011, 20, 327–332. [Google Scholar]
- Salvati, L. Profiling forest fires along the urban gradient: A Mediterranean case study. Urban Ecosyst. 2014, 17, 1175–1189. [Google Scholar] [CrossRef]
- Cimdins, R.; Krasovskiy, A.; Kraxner, F. Regional Variability and Driving Forces behind Forest Fires in Sweden. Remote Sens. 2022, 14, 5826. [Google Scholar] [CrossRef]
Fire Size Class | Burned Area (ha) | Frequency in Quarters | Frequency | % of Overall Frequency | |||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||||
Small | <0.1 | 1504 | 12,834 | 7692 | 1166 | 23,196 | 54.45 |
≥0.1–<0.2 | 408 | 2896 | 1379 | 159 | 4842 | 11.37 | |
≥0.2–<0.5 | 704 | 3639 | 1640 | 150 | 6133 | 14.40 | |
Medium | ≥0.5–<1 | 619 | 2412 | 1031 | 101 | 4163 | 9.77 |
≥1–<5 | 801 | 2042 | 768 | 85 | 3696 | 8.88 | |
Large | ≥5–<20 | 179 | 232 | 80 | 9 | 500 | 1.17 |
≥20–<100 | 33 | 21 | 8 | 2 | 64 | 0.15 | |
≥100 | 1 | 4 | 0 | 2 | 7 | 0.02 | |
4249 | 24,080 | 12,598 | 1674 | SUM: 42,601 |
Voivodeship | No. of Fires | No. of Units | Spearman’s Correlation S (Area vs. Distance) |
---|---|---|---|
Dolnośląskie (DŚ) | 2784 | 762 | 0.02 |
Kujawsko–Pomorskie (K-P) | 2337 | 877 | 0.08 |
Łódzkie (ŁÓD) | 3623 | 1483 | 0.04 |
Lubelskie (LUBE) | 1459 | 1761 | −0.03 |
Lubuskie (LUBU) | 4008 | 357 | 0.05 |
Małopolskie (MAŁ) | 717 | 1389 | 0.00 |
Mazowieckie (MAZ) | 6759 | 1974 | 0.06 |
Opolskie (OPO) | 982 | 535 | −0.05 |
Podkarpackie (PODK) | 2519 | 1289 | 0.01 |
Podlaskie (PODL) | 1347 | 679 | 0.06 |
Pomorskie (POM) | 1475 | 620 | 0.15 |
Śląskie (ŚL) | 2467 | 996 | 0.00 |
Świętokrzyskie (ŚW) | 1405 | 896 | −0.18 |
Warmińsko–Mazurskie (W-M) | 1034 | 540 | 0.16 |
Wielkopolskie (WLKP) | 3201 | 1864 | 0.11 |
Zachodniopomorskie (ZACH) | 2082 | 465 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolanek, A.; Szymanowski, M.; Małysz, M. Spatio-Temporal Dynamics of Forest Fires in Poland and Consequences for Fire Protection Systems: Seeking a Balance between Efficiency and Costs. Sustainability 2023, 15, 16829. https://doi.org/10.3390/su152416829
Kolanek A, Szymanowski M, Małysz M. Spatio-Temporal Dynamics of Forest Fires in Poland and Consequences for Fire Protection Systems: Seeking a Balance between Efficiency and Costs. Sustainability. 2023; 15(24):16829. https://doi.org/10.3390/su152416829
Chicago/Turabian StyleKolanek, Aleksandra, Mariusz Szymanowski, and Michał Małysz. 2023. "Spatio-Temporal Dynamics of Forest Fires in Poland and Consequences for Fire Protection Systems: Seeking a Balance between Efficiency and Costs" Sustainability 15, no. 24: 16829. https://doi.org/10.3390/su152416829
APA StyleKolanek, A., Szymanowski, M., & Małysz, M. (2023). Spatio-Temporal Dynamics of Forest Fires in Poland and Consequences for Fire Protection Systems: Seeking a Balance between Efficiency and Costs. Sustainability, 15(24), 16829. https://doi.org/10.3390/su152416829