Coupling Nexus and Circular Economy to Decouple Carbon Emissions from Economic Growth
Abstract
:1. Introduction
1.1. Discerning Resource Exploitation in the Age of Anthropocene
1.2. Rationale for Assessing the Coupling of Nexus Approach and Circular Economy
2. Research Approach
- Determine the significance of combining WEF in a single structure.
- Analyze previous paradigms and perspectives of nexus study in the context of developing countries.
- Investigate the results of the coupling nexus and CE policy.
3. Background Study
3.1. WEF Nexus Thinking
3.2. Significance of Nexus Study
3.3. Circular Economy
3.4. Significance of Circular Economy
4. Nexus and Circular Approach
4.1. WEF Nexus
4.2. Role of WEF Nexus
4.3. Existing Practices of WEF Nexus in Developing Countries
4.4. Circular Economy Approach
Relative Case Scenario | WEF tools in Songwe River Basin of Tanzania and north of Malawi [115] | The WEF nexus in the Red River Basin in Vietnam [116] | Water Energy Agriculture nexus in Central Asia [117] | Transboundary water supervision creates three major sectors, e.g., Upstream Beneficiaries, Downstream Beneficiaries, and no Beneficiaries [118] | Integrated Natural Resource Management (INRM) [119] |
Current Status of Implication | Significant change was detected in WEF sectors but the ratio was uneven with energy since the key move was to improve water and food deficiency. | Application of initiatives was gradual considering regional magnitude | Improvement trends were seen regarding coping with climatic vulnerabilities | Significant trend is observed increasing energy and economic security, bilateral conflict may cause downward trends between water–agriculture nexus | Significant changes were observed from both social and ecological perspectives, more codependency required to reach decisive progress |
Adopted WEF Nexus Integration Policy | The state governance issued balanced and sustainable uses of resources, significant focus on SDG2, 6, and 7 and interaction between WEF nexus and SDGs. [80,120] | Considerable integrated approaches such as “Crop per drop “and “crop per Kwh” were developed, IWRM was introduced at regional scale [121] | The complexity of Aral Basin water management and its demographic trends was further studied by EC-IFAS and UNRCCA and a scenario thinking approach was adopted towards socio-economic benefit | Transboundary water administration between Afghanistan, Tajikistan, Turkmenistan, and Uzbekistan through Rogun Hydropower Plant [100] | Significant anomaly in the field of matter-element study, developing WEF nexus approach at regional scale [122,123] |
Identified Complexity | food security and water efficiency | Fresh-water supply scarcity | Shortage of water energy, environmental degradation | Access to equitable energy and water resource | Downward resource trend affecting upward social economy |
Africa | Mediterranean | Aral Sea Basin (Central Asia) | Amu-Darya Basin (Central Asia) | China |
4.5. Role of Circular Economy towards Emissions Reduction Policy
5. Coupling Nexus and Circular Economy
5.1. Coupling Initiatives
5.2. System Dynamics Model Corroborating Nexus Approach and Circular Economy
6. Conclusions
- Significant nexus formulations are generally regarded as less practical and frequently obstruct the fundamental path toward sustainability.
- Both natural and anthropogenic factors need to be taken into account to reduce the limitations of transferring the theoretical nexus approach to an integrated policy.
- The potential of the WEF nexus is similar to that of the CE, and coupling the nexus and CE approaches can enhance sustainability for the growing world population.
- Restructuring the manufacturing supply chain is one way to do this. It is also important to include both ideas in policymaking to ensure resource security and sustainable development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, I.; Massard, G.; Agarwal, A. Waste management policies for industrial symbiosis development: Case studies in European countries. J. Clean. Prod. 2010, 18, 815–822. [Google Scholar] [CrossRef]
- FAO. Water-Energy-Food Nexus for the Review of SDG 7. 2018. Available online: https://sustainabledevelopment.un.org/EnergyConference/documentation (accessed on 8 November 2021).
- Geng, Y.; Doberstein, B. Developing the circular economy in China: Challenges and opportunities for achieving ‘leapfrog development’. Int. J. Sustain. Dev. World Ecol. 2008, 15, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbac-Cotoara-zamfir, R.; Colantoni, A.; Mosconi, E.M.; Poponi, S.; Fortunati, S.; Salvati, L.; Gambella, F. From Historical Narratives to Circular Economy: De-Complexifying the “Desertification” Debate. Int. J. Environ. Res. Public Health 2020, 17, 5398. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Del Borghi, A.; Moreschi, L.; Gallo, M. Circular economy approach to reduce water–energy–food nexus. Curr. Opin. Environ. Sci. Health 2020, 13, 23–28. [Google Scholar] [CrossRef]
- Laso, J.; Margallo, M.; García-Herrero, I.; Fullana, P.; Bala, A.; Gazulla, C.; Polettini, A.; Kahhat, R.; Vázquez-Rowe, I.; Irabien, A.; et al. Combined application of Life Cycle Assessment and linear programming to evaluate food waste-to-food strategies: Seeking for answers in the nexus approach. Waste Manag. 2018, 80, 186–197. [Google Scholar] [CrossRef]
- Sharma, S.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Sci. Total Environ. 2020, 713, 136633. [Google Scholar] [CrossRef]
- Hamilton, C. The anthropocene. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 239–246. [Google Scholar]
- Lehmann, S. Conceptualizing the Urban Nexus Framework for a Circular Economy: Linking Energy, Water, Food, and Waste (EWFW) in Southeast-Asian cities. In Urban Energy Transition; Elsevier: Amsterdam, The Netherlands, 2018; pp. 371–398. [Google Scholar]
- Ruddiman, W.F. The anthropogenic greenhouse era began thousands of years ago. Clim. Chang. 2003, 61, 261–293. [Google Scholar] [CrossRef]
- Steffen, W.; Persson, Å.; Deutsch, L.; Zalasiewicz, J.; Williams, M.; Richardson, K.; Crumley, C.; Crutzen, P.; Folke, C.; Gordon, L.; et al. The anthropocene: From global change to planetary stewardship. Ambio 2011, 40, 739–761. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Molden, D. Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture; International Water Management Institute: Colombo, Sri Lanka, 2007. [Google Scholar]
- Xue, J.; Liu, G.; Casazza, M.; Ulgiati, S. Development of an urban FEW nexus online analyzer to support urban circular economy strategy planning. Energy 2018, 164, 475–495. [Google Scholar] [CrossRef]
- FAO. Water-Energy-Food Nexus Energy Food and Agriculture Organization of the United Nations. 2019. Available online: https://web.archive.org/web/20190311113340/http://www.fao.org/energy/water-food-energy-nexus/en/ (accessed on 12 January 2021).
- FAO. FAOSTAT; FAO: Rome, Italy, 2015. [Google Scholar]
- UN. World Urbanization Prospects the 2014 Revision; UN: New York, NY, USA, 2014. [Google Scholar]
- GIZ. Integrated Resource Management in Asian Cities: The Urban Nexus; GIZ: Bonn, Germany, 2015. [Google Scholar]
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Ill, W.W.B. Limits to Growth; Universe Books: New York, NY, USA, 1972. [Google Scholar]
- Meadows, D.; Randers, J.; Meadows, D. Limits to Growth, the 30-Year Update; Earthscan: London, UK, 2004; pp. 1–15. [Google Scholar]
- Mohtar, R.H.; Daher, B. Water, Energy, and Food: The Ultimate Nexus. Encycl. Agric. Food Biol. Eng. 2012, 1, 1–5. [Google Scholar] [CrossRef]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus: Background Paper for the Bonn 2011 Nexus Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011; p. 51. Available online: https://publications.pik-potsdam.de/pubman/faces/ViewItemFullPage.jsp?itemId=item_17278_1&view=EXPORT (accessed on 28 May 2021).
- Kim, H.; Yoon, S.; Cho, E.; Kim, J. A Study on Policy Directions for the Water-Food-Energy Nexus (I) Water-Energy Nexus; Network of Institutions for Sustainable Development: Yeongi-gun, South Korea, 2015. [Google Scholar]
- UN. Water, Food and Energy; UN-Water: Geneva, Switzerland, 2021. [Google Scholar]
- Stahel, W.R. The circular economy. Nature 2016, 531, 435–438. [Google Scholar] [CrossRef] [Green Version]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Springer Topics in Signal Processing; Springer Science and Business Media B.V.: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. [Google Scholar]
- Reinhard, S.; Verhagen, J.; Wolters, W.; Ruben, R. Water-Food-Energy Nexus: A Quick Scan; Wageningen Economic Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Bhaduri, A.; Ringler, C.; Dombrowski, I.; Mohtar, R.; Scheumann, W. Sustainability in the water–energy–food nexus. Water Int. 2015, 40, 723–732. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Z.; Wang, X.; Xue, X. Transportation de-carbonization pathways and effect in China: A systematic analysis using STIRPAT-SD model. J. Clean. Prod. 2021, 288, 125574. [Google Scholar] [CrossRef]
- Rasul, G.; Sharma, B. The nexus approach to water–energy–food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef] [Green Version]
- Schwab, K. The Global Competitiveness Report 2011–2012; World Economic Forum: Geneva, Switzerland, 2011. [Google Scholar]
- Rockstrom, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.I.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A Safe Operating Space for Humanity: Identifying and Quantifying Planetary Boundaries that must not Be Transgressed could Help Prevent Human Activities from Causing Unacceptable Environmental Change, Argue Johan Rockstrom and Colleagues. Nature 2009, 461, 472–476. Available online: https://go.gale.com/ps/i.do?p=HRCA&sw=w&issn=00280836&v=2.1&it=r&id=GALE%7CA209404108&sid=googleScholar&linkaccess=fulltext (accessed on 23 May 2021). [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; Van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Hermann, S.; Welsch, M.; Segerstrom, R.E.; Howells, M.I.; Young, C.; Alfstad, T.; Rogner, H.H.; Steduto, P. Climate, land, energy and water (CLEW) interlinkages in Burkina Faso: An analysis of agricultural intensification and bioenergy production. Nat. Resour. Forum 2012, 36, 245–262. [Google Scholar] [CrossRef]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Nhamo, L.; Mpandeli, S.; Nhemachena, C.; Senzanje, A.; Sobratee, N.; Chivenge, P.P.; Slotow, R.; Naidoo, D.; Liphadzi, S.; et al. The water–energy–food nexus as a tool to transform rural livelihoods and well-being in Southern Africa. Int. J. Environ. Res. Public Health 2019, 16, 2970. [Google Scholar] [CrossRef] [Green Version]
- Cansino-Loeza, B.; Sánchez-Zarco, X.G.; Mora-Jacobo, E.G.; Saggiante-Mauro, F.E.; González-Bravo, R.; Mahlknecht, J.; Ponce-Ortega, J.M. Systematic Approach for Assessing the Water-Energy-Food Nexus for Sustainable Development in Regions with Resource Scarcities. ACS Sustain. Chem. Eng. 2020, 8, 13734–13748. [Google Scholar] [CrossRef]
- UNESCO. IHP-VIII: Water Security: Responses to Regional and Global Challenges (2014–2021); UNESCO Digital Library: Paris, France, 2020; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000225103 (accessed on 23 November 2021).
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Energy Information Administration. International Energy Outlook 2021; Energy Information Administration: Washington, DC, USA, 2021. Available online: https://www.eia.gov/outlooks/ieo/pdf/IEO2021_Narrative.pdf (accessed on 23 November 2021).
- FAO. The Water-Energy-Food Nexus A New Approach in Support of Food Security and Sustainable Agriculture; UN: Rome, Italy, 2014. [Google Scholar]
- Rasul, G. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environ. Dev. 2016, 18, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Mohtar, R. The Importance of the Water-Energy-Food Nexus in the Implementation of the Sustainable Development Goals (SDGs); OCP Policy Center: Rabat, Morocco, 2016. [Google Scholar]
- Saladini, F.; Betti, G.; Ferragina, E.; Bouraoui, F.; Cupertino, S.; Canitano, G.; Gigliotti, M.; Autino, A.; Pulselli, F.M.; Riccaboni, A.; et al. Linking the water-energy-food nexus and sustainable development indicators for the Mediterranean region. Ecol. Indic. 2018, 91, 689–697. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Godfray, H.C.J.; Tilman, D.; Gleick, P.; Hoff, H.; Pahl-Wostl, C.; Xu, Z.; Chung, M.G.; Sun, J.; et al. Nexus approaches to global sustainable development. Nat. Sustain. 2018, 1, 466–476. [Google Scholar] [CrossRef]
- Biswas, A.K. Integrated Water Resources Management: Is It Working? Int. J. Water Resour. Dev. 2008, 24, 5–22. [Google Scholar] [CrossRef]
- Li, X.; Feng, K.; Siu, Y.L.; Hubacek, K. Energy-water nexus of wind power in China: The balancing act between CO2 emissions and water consumption. Energy Policy 2012, 45, 440–448. [Google Scholar] [CrossRef]
- Amón, R.; Maulhardt, M.; Wong, T.; Kazama, D.; Simmons, C.W. Waste heat and water recovery opportunities in California tomato paste processing. Appl. Therm. Eng. 2015, 78, 525–532. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature; Harper Perennial: New York, NY, USA, 1997. [Google Scholar]
- Pauli, G. The Blue Economy: 10 Years, 100 Innovations, 100 Million Jobs; Paradigm Publication: Taos, NM, USA, 2010. [Google Scholar]
- Mcdonough, W.; Braungart, M. Cradle to Cradle: Remaking the Way We Make Things; North Point Press: New York, NY, USA, 2002. [Google Scholar]
- Graedel, T.E. On the concept of industrial ecology. Annu. Rev. Energy Environ. 1996, 21, 69–98. [Google Scholar] [CrossRef] [Green Version]
- Commoner, B. The Closing Circle: Nature, Man, and Technology; Random House: New York, NY, USA, 1997. [Google Scholar]
- Stahel, W.R. The Performance Economy, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–349. [Google Scholar] [CrossRef] [Green Version]
- Lyle, J. Regenerative Design for Sustainable Development; The Wiley Series in Sustainable Design (USA): New York, NY, USA, 1996. [Google Scholar]
- Geng, Y.; Sarkis, J.; Bleischwitz, R. How to globalize the circular economy. Nature 2019, 565, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Morseletto, P. Targets for a circular economy. Resour. Conserv. Recycl. 2020, 153, 104553. [Google Scholar] [CrossRef]
- Chen, T.L.; Kim, H.; Pan, S.Y.; Tseng, P.C.; Lin, Y.P.; Chiang, P.C. Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives. Sci. Total Environ. 2020, 716, 136998. [Google Scholar] [CrossRef]
- Sauvé, S.; Bernard, S.; Sloan, P. Environmental sciences, sustainable development and circular economy: Alternative concepts for trans-disciplinary research. Environ. Dev. 2016, 17, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Dribe, M.; Helgertz, J.; van de Putte, B. Did social mobility increase during the industrialization process? A micro-level study of a transforming community in southern Sweden 1828–1968. Res. Soc. Stratif. Mobil. 2015, 41, 25–39. [Google Scholar] [CrossRef]
- Mathews, J.A.; Tan, H. Progress Toward a Circular Economy in China. J. Ind. Ecol. 2011, 15, 435–457. [Google Scholar] [CrossRef]
- Lacy, P.; Rutqvist, J. Waste to Wealth: The Circular Economy Advantage; Palgrave Macmillan: London, UK, 2016. [Google Scholar]
- Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Jawahir, I.S.; Bradley, R. Technological Elements of Circular Economy and the Principles of 6R-Based Closed-loop Material Flow in Sustainable Manufacturing. In Procedia CIRP; Elsevier B.V.: Amsterdam, The Netherlands, 2016; Volume 40, pp. 103–108. [Google Scholar]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Sanders, K.T. Critical review: Uncharted waters? the future of the electricity-water nexus. Environ. Sci. Technol. 2015, 49, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Rosegrant, M.W.; Cline, S.A. Global Food Security: Challenges and Policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhang, L.; Chang, Y.; Xu, M.; Hao, Y.; Liang, S.; Liu, G.; Yang, Z.; Wang, C. Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review. Resour. Conserv. Recycl. 2019, 142, 215–224. [Google Scholar] [CrossRef]
- Brandoni, C.; Bošnjakovic, B. Energy, food and water nexus in the European Union: Towards a circular economy. Proc. Inst. Civ. Eng. Energy 2018, 171, 140–144. [Google Scholar] [CrossRef]
- Newell, P.T.; Gjerloev, J.W. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. J. Geophys. Res. Space Phys. 2011, 116, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Hanjra, M.A. Footprints of water and energy inputs in food production—Global perspectives. Food Policy 2009, 34, 130–140. [Google Scholar] [CrossRef]
- Bizikova, L.; Roy, D.; Swanson, D.; David, H.; Mccandless, V.M. The Water-Energy-Food Security Nexus: Towards a Practical Planning and Decision-Support Framework for Landscape Investment and Risk Management. 2013. Available online: www.iisd.org (accessed on 22 May 2021).
- Amjath-Babu, T.S.; Sharma, B.; Brouwer, R.; Rasul, G.; Wahid, S.M.; Neupane, N.; Bhattarai, U.; Sieber, S. Integrated modelling of the impacts of hydropower projects on the water-food-energy nexus in a transboundary Himalayan river basin. Appl. Energy 2019, 239, 494–503. [Google Scholar] [CrossRef]
- Hussien, W.A.; Memon, F.A.; Savic, D.A. An integrated model to evaluate water-energy-food nexus at a household scale. Environ. Model. Softw. 2017, 93, 366–380. [Google Scholar] [CrossRef] [Green Version]
- Nhamo, L.; Mabhaudhi, T.; Mpandeli, S.; Dickens, C.; Nhemachena, C.; Senzanje, A.; Naidoo, D.; Liphadzi, S.; Modi, A.T. An integrative analytical model for the water-energy-food nexus: South Africa case study. Environ. Sci. Policy 2020, 109, 15–24. [Google Scholar] [CrossRef]
- Cook, B.R.; Spray, C.J. Ecosystem services and integrated water resource management: Different paths to the same end? J. Environ. Manag. 2012, 109, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Stephan, R.M.; Mohtar, R.H.; Daher, B.; Irujo, A.E.; Hillers, A.; Ganter, J.C.; Karlberg, L.; Martin, L.; Nairizi, S.; Rodriguez, D.J.; et al. Water–energy–food nexus: A platform for implementing the Sustainable Development Goals. Water Int. 2018, 43, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Saidmamatov, O.; Rudenko, I.; Pfister, S.; Koziel, J. Water–Energy–Food Nexus Framework for Promoting Regional Integration in Central Asia. Water 2020, 12, 1896. [Google Scholar] [CrossRef]
- Miller-Robbie, L.; Ramaswami, A.; Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: Exploring the food, energy, water, and health nexus in Hyderabad, India. Environ. Res. Lett. 2017, 12, 075005. [Google Scholar] [CrossRef] [Green Version]
- Woolf, D.; Lehmann, J.; Lee, D.R. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nat. Commun. 2016, 7, 13160. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.A.; Chowdhury, S.R.; Mitra, B.; Mozumder, M.S.; Elhaj, A.I.; Salami, B.A.; Rahman, M.M.; Rahman, S.M. Analysis of industrial symbiosis case studies and its potential in Saudi Arabia. J. Clean. Prod. 2022, 385, 135536. [Google Scholar] [CrossRef]
- Xenarios, S.; Shenhav, R.; Abdullaev, I.; Mastellari, A. Current and future challenges of water security in central Asia. In Water Resources Development and Management; Springer: Berlin/Heidelberg, Germany, 2018; pp. 117–142. [Google Scholar]
- Mertz, O.; Halsnæs, K.; Olesen, J.E.; Rasmussen, K. Adaptation to Climate Change in Developing Countries. Environ. Manag. 2009, 43, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.M.Q. Climate change and extreme weather events: Can developing countries adapt? Clim. Policy 2003, 3, 233–248. [Google Scholar] [CrossRef]
- Thornton, P.K.; Gerber, P.J. Climate change and the growth of the livestock sector in developing countries. Mitig. Adapt. Strat. Glob. Chang. 2010, 15, 169–184. [Google Scholar] [CrossRef]
- Yi, J.; Guo, J.; Ou, M.; Pueppke, S.G.; Ou, W.; Tao, Y.; Qi, J. Sustainability assessment of the water-energy-food nexus in Jiangsu Province, China. Habitat Int. 2020, 95, 102094. [Google Scholar] [CrossRef]
- Navarro, T. Water reuse and desalination in Spain—Challenges and opportunities. J. Water Reuse Desalination 2018, 8, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, R.K.; Meyer, L.A.; Core Writing Team. Climate Change 2014 Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Simpson, G.B.; Jewitt, G.P.W. The development of the water-energy-food nexus as a framework for achieving resource security: A review. Front. Environ. Sci. 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Yu, B.; Zhu, T.; Breisinger, C.; Manh Hai, N. Examine the Agriculture, Poverty, and Climate Change Nexus in Vietnam; AgEcon Search: St. Paul, MN, USA, 2012. [Google Scholar] [CrossRef]
- Clark, W.C. From the Environment and Human Security to Sustainable Security and Development. J. Hum. Dev. 2003, 4, 289–313. [Google Scholar] [CrossRef]
- European Court of Auditors. Integration of EU Water Policy Objectives with the CAP: A Partial Success; European Court of Auditors: Luxembourg, 2014.
- EIP. The European Innovation Partnership on Water—Water, Energy Nexus Priorities; EIP: Brussels, Belgium, 2018. [Google Scholar]
- Jalilov, S.-M.; Varis, O.; Keskinen, M. Sharing Benefits in Transboundary Rivers: An Experimental Case Study of Central Asian Water-Energy-Agriculture Nexus. Water 2015, 7, 4778–4805. [Google Scholar] [CrossRef]
- Mander, Ü.; Mikk, M.; Külvik, M. Ecological and low intensity agriculture as contributors to landscape and biological diversity. Landsc. Urban Plan. 1999, 46, 169–177. [Google Scholar] [CrossRef]
- Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Zhang, J.; Liang, S.; Lee, D.J.; Nguyen, P.D.; Bui, X.T. Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: Potential and obstacles. Bioresour. Technol. 2014, 169, 750–762. [Google Scholar] [CrossRef]
- Xiao, X.; Roh, B.M.; Zhu, F. Strength Enhancement in Fused Filament Fabrication via the Isotropy Toolpath. Appl. Sci. 2021, 11, 6100. [Google Scholar] [CrossRef]
- Guta, D.D.; Jara, J.; Adhikari, N.P.; Chen, Q.; Gaur, V.; Mirzabaev, A. Assessment of the Successes and Failures of Decentralized Energy Solutions and Implications for the Water–Energy–Food Security Nexus: Case Studies from Developing Countries. Resources 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Winans, K.; Kendall, A.; Deng, H. The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- Yuan, Z.; Bi, J.; Moriguichi, Y. The circular economy: A new development strategy in China. J. Ind. Ecol. 2006, 10, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Chertow, M.; Ehrenfeld, J. Self-Organizing Systems Organizing Self-Organizing Systems: Toward a Theory of Industrial Symbiosis. J. Ind. Ecol. 2012, 16, 13–27. [Google Scholar] [CrossRef]
- Su, B.; Heshmati, A.; Geng, Y.; Yu, X. A review of the circular economy in China: Moving from rhetoric to implementation. J. Clean. Prod. 2013, 42, 215–227. [Google Scholar] [CrossRef]
- Wilson, E. Managing the Emerging Waste Crisis in Developing Countries’ Large Cities; IDS Policy Briefing 86; IDS: Brighton, UK, 2015; Available online: https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/5786 (accessed on 16 April 2022).
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Magazzino, C.; Mele, M.; Schneider, N.; Sarkodie, S.A. Waste generation, wealth and GHG emissions from the waste sector: Is Denmark on the path towards circular economy? Sci. Total Environ. 2021, 755, 142510. [Google Scholar] [CrossRef] [PubMed]
- Mouillot, F.; Field, C.B. Fire history and the global carbon budget: A 1 × 1 fire history reconstruction for the 20th century. Glob. Chang. Biol. 2005, 11, 398–420. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andres, R.J.; Boden, T.; Conway, T.; Houghton, R.A.; House, J.I.; Marland, G.; Peters, G.P.; Van Der Werf, G.R.; Ahlström, A.; et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data 2013, 5, 165–185. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, S.; Chikkatur, A.; De Coninck, H.; Pacala, S.; Socolow, R.; Tavoni, M. Sharing global CO2 emission reductions among one billion high emitters. Proc. Natl. Acad. Sci. USA 2009, 106, 11884–11888. [Google Scholar] [CrossRef]
- Jalilov, S.M.; Amer, S.A.; Ward, F.A. Managing the water-energy-food nexus: Opportunities in Central Asia. J. Hydrol. 2018, 557, 407–425. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Simpson, G.; Badenhorst, J.; Senzanje, A.; Jewitt, G.P.W.; Chimonyo, V.G.P.; Mpandeli, S.; Nhamo, L. Developing a Framework for the Water-Energy-Food Nexus in South Africa. Clim. Chang. Water Resour. Afr. 2021, 407–431. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; He, G.; Li, R.; Wang, X. Evaluating sustainability of water-energy-food (WEF) nexus using an improved matter-element extension model: A case study of China. J. Clean. Prod. 2018, 202, 1097–1106. [Google Scholar] [CrossRef]
- Muller, M. Scale and consequences—The limits of the river basin as a management unit. Water Supply 2019, 19, 618–625. [Google Scholar] [CrossRef]
- Deng, H.M.; Wang, C.; Cai, W.J.; Liu, Y.; Zhang, L.X. Managing the water-energy-food nexus in China by adjusting critical final demands and supply chains: An input-output analysis. Sci. Total Environ. 2020, 720, 137635. [Google Scholar] [CrossRef] [PubMed]
- Grafton, R.Q.; Garrick, D.; Manero, A.; Do, T.N. The Water Governance Reform Framework: Overview and Applications to Australia, Mexico, Tanzania, USA and Vietnam. Water 2019, 11, 137. [Google Scholar] [CrossRef] [Green Version]
- Avellán, T.; Roidt, M.; Emmer, A.; Von Koerber, J.; Schneider, P.; Raber, W. Making the Water–Soil–Waste Nexus Work: Framing the Boundaries of Resource Flows. Sustainability 2017, 9, 1881. [Google Scholar] [CrossRef] [Green Version]
- Keskinen, M.; Guillaume, J.H.A.; Kattelus, M.; Porkka, M.; Räsänen, T.A.; Varis, O. The water-energy-food nexus and the transboundary context: Insights from large Asian rivers. Water 2016, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Markantonis, V.; Reynaud, A.; Karabulut, A.; El Hajj, R.; Altinbilek, D.; Awad, I.M.; Bruggeman, A.; Constantianos, V.; Mysiak, J.; Lamaddalena, N.; et al. Can the Implementation of the Water-Energy-Food Nexus Support Economic Growth in the Mediterranean Region? The Current Status and the Way Forward. Front. Environ. Sci. 2019, 7, 84. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Sassanelli, C.; Rosa, P.; Rocca, R.; Terzi, S. Circular economy performance assessment methods: A systematic literature review. J. Clean. Prod. 2019, 229, 440–453. [Google Scholar] [CrossRef]
- Bonviu, F. The European Economy: From a Linear to a Circular Economy. Rom. J. Eur. Aff. 2014, 14, 78. Available online: https://heinonline.org/HOL/Page?handle=hein.journals/rojaeuf14&id=329&div=&collection= (accessed on 9 April 2021).
- Kirchherr, J.; Piscicelli, L.; Bour, R.; Kostense-Smit, E.; Muller, J.; Huibrechtse-Truijens, A.; Hekkert, M. Barriers to the Circular Economy: Evidence From the European Union (EU). Ecol. Econ. 2018, 150, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Rizos, V.; Behrens, A.; van der Gaast, W.; Hofman, E.; Ioannou, A.; Kafyeke, T.; Flamos, A.; Rinaldi, R.; Papadelis, S.; Hirschnitz-Garbers, M.; et al. Implementation of Circular Economy Business Models by Small and Medium-Sized Enterprises (SMEs): Barriers and Enablers. Sustainability 2016, 8, 1212. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Joshi, S.; Cecil, J. Critical assessment of Shape Retrieval Tools (SRTs). Int. J. Adv. Manuf. Technol. 2021, 116, 3431–3446. [Google Scholar] [CrossRef]
- de Jesus, A.; Antunes, P.; Santos, R.; Mendonça, S. Eco-innovation in the transition to a circular economy: An analytical literature review. J. Clean. Prod. 2018, 172, 2999–3018. [Google Scholar] [CrossRef]
- Ranta, V.; Aarikka-Stenroos, L.; Ritala, P.; Mäkinen, S.J. Exploring institutional drivers and barriers of the circular economy: A cross-regional comparison of China, the US, and Europe. Resour. Conserv. Recycl. 2018, 135, 70–82. [Google Scholar] [CrossRef]
- Shahbazi, S.; Wiktorsson, M.; Kurdve, M.; Jönsson, C.; Bjelkemyr, M. Material efficiency in manufacturing: Swedish evidence on potential, barriers and strategies. J. Clean. Prod. 2016, 127, 438–450. [Google Scholar] [CrossRef]
- Ferreira, J.; Pinheiro, M.D.; Brito, J. de Refurbishment decision support tools review-Energy and life cycle as key aspects to sustainable refurbishment projects. Energy Policy 2013, 62, 1453–1460. [Google Scholar] [CrossRef]
- Xiao, X.; Waddell, C.; Hamilton, C.; Xiao, H. Quality Prediction and Control in Wire Arc Additive Manufacturing via Novel Machine Learning Framework. Micromachines 2022, 13, 137. [Google Scholar] [CrossRef]
- Xiao, X.; Joshi, S. Process planning for five-axis support free additive manufacturing. Addit. Manuf. 2020, 36, 101569. [Google Scholar] [CrossRef]
- World Bank. World Development Report 2017: Governance and the Law; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- IEA. OECD—World Energy Balances: Overview—Analysis; IEA: Paris, France, 2018; Available online: https://www.iea.org/reports/world-energy-balances-overview/oecd (accessed on 16 March 2022).
- Wang, N.; Ren, Y.; Zhu, T.; Meng, F.; Wen, Z.; Liu, G. Life cycle carbon emission modelling of coal-fired power: Chinese case. Energy 2018, 162, 841–852. [Google Scholar] [CrossRef]
- Lee, M.; Keller, A.A.; Chiang, P.C.; Den, W.; Wang, H.; Hou, C.H.; Wu, J.; Wang, X.; Yan, J. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Appl. Energy 2017, 205, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, R.; Liu, F.; Yong, X.; Wu, X.; Zheng, T.; Jiang, M.; Jia, H. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour. Technol. 2016, 217, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Zhang, X.; Zhou, Z.; Fan, S.; Jiang, B.; Tian, X. Experimental Study on the Treatment of 1, 4 butanediol Mixed Wastewater by Ferro-carbon Micro-electrolysis. E3S Web Conf. 2019, 83, 01015. [Google Scholar] [CrossRef]
- Leigh, M.; Li, X. Industrial ecology, industrial symbiosis and supply chain environmental sustainability: A case study of a large UK distributor. J. Clean. Prod. 2015, 106, 632–643. [Google Scholar] [CrossRef]
- Ilić, M.; Nikolić, M. Drivers for development of circular economy—A case study of Serbia. Habitat Int. 2016, 56, 191–200. [Google Scholar] [CrossRef]
- Rasch, E.D.; Köhne, M. Hydraulic fracturing, energy transition and political engagement in the Netherlands: The energetics of citizenship. Energy Res. Soc. Sci. 2016, 13, 106–115. [Google Scholar] [CrossRef]
- Xiao, X.; Roh, B.M.; Hamilton, C. Porosity management and control in powder bed fusion process through process-quality interactions. CIRP J. Manuf. Sci. Technol. 2022, 38, 120–128. [Google Scholar] [CrossRef]
- Liu, Z.; Adams, M.; Cote, R.P.; Chen, Q.; Wu, R.; Wen, Z.; Liu, W.; Dong, L. How does circular economy respond to greenhouse gas emissions reduction: An analysis of Chinese plastic recycling industries. Renew. Sustain. Energy Rev. 2018, 91, 1162–1169. [Google Scholar] [CrossRef]
- Pan, S.Y.; Du, M.A.; Huang, I.T.; Liu, I.H.; Chang, E.E.; Chiang, P.C. Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: A review. J. Clean. Prod. 2015, 108, 409–421. [Google Scholar] [CrossRef]
- Woolridge, A.C.; Ward, G.D.; Phillips, P.S.; Collins, M.; Gandy, S. Life cycle assessment for reuse/recycling of donated waste textiles compared to use of virgin material: An UK energy saving perspective. Resour. Conserv. Recycl. 2006, 46, 94–103. [Google Scholar] [CrossRef]
- Voelker, T.; Blackstock, K.; Kovacic, Z.; Sindt, J.; Strand, R.; Waylen, K. The role of metrics in the governance of the water-energy-food nexus within the European Commission. J. Rural Stud. 2019, 92, 473–481. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy—From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Ravar, Z.; Zahraie, B.; Sharifinejad, A.; Gozini, H.; Jafari, S. System dynamics modeling for assessment of water–food–energy resources security and nexus in Gavkhuni basin in Iran. Ecol. Indic. 2020, 108, 105682. [Google Scholar] [CrossRef]
- Daddi, T.; Nucci, B.; Iraldo, F. Using Life Cycle Assessment (LCA) to measure the environmental benefits of industrial symbiosis in an industrial cluster of SMEs. J. Clean. Prod. 2017, 147, 157–164. [Google Scholar] [CrossRef]
- El-Houjeiri, H.; Monfort, J.C.; Bouchard, J.; Przesmitzki, S. Life Cycle Assessment of Greenhouse Gas Emissions from Marine Fuels: A Case Study of Saudi Crude Oil versus Natural Gas in Different Global Regions. J. Ind. Ecol. 2019, 23, 374–388. [Google Scholar] [CrossRef] [Green Version]
- Harwood, S.A. In search of a (WEF) nexus approach. Environ. Sci. Policy 2018, 83, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Harrou, F.; Kadri, F.; Sun, Y.; Leiknes, T. Forecasting of wastewater treatment plant key features using deep learning-based models: A case study. IEEE Access 2020, 8, 184475–184485. [Google Scholar] [CrossRef]
- Parsa, A.; Van De Wiel, M.J.; Schmutz, U. Intersection, interrelation or interdependence? The relationship between circular economy and nexus approach. J. Clean. Prod. 2021, 313, 127794. [Google Scholar] [CrossRef]
- Parshall, L.; Gurney, K.; Hammer, S.A.; Mendoza, D.; Zhou, Y.; Geethakumar, S. Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States. Energy Policy 2010, 38, 4765–4782. [Google Scholar] [CrossRef]
- Molina, A.J.; Llorens, P.; Garcia-Estringana, P.; de las Heras, M.M.; Cayuela, C.; Gallart, F.; Latron, J. Contributions of throughfall, forest and soil characteristics to near-surface soil water-content variability at the plot scale in a mountainous Mediterranean area. Sci. Total Environ. 2019, 647, 1421–1432. [Google Scholar] [CrossRef] [PubMed]
- Giama, E.; Papadopoulos, A.M. Benchmarking carbon footprint and circularity in production processes: The case of stonewool and extruded polysterene. J. Clean. Prod. 2020, 257, 120559. [Google Scholar] [CrossRef]
- Hiloidhari, M.; Vijay, V.; Banerjee, R.; Baruah, D.C.; Rao, A.B. Energy-carbon-water footprint of sugarcane bioenergy: A district-level life cycle assessment in the state of Maharashtra, India. Renew. Sustain. Energy Rev. 2021, 151, 111583. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The Water Footprint of Global Food Production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- Lampridi, M.; Kateris, D.; Sørensen, C.G.; Bochtis, D. Energy Footprint of Mechanized Agricultural Operations. Energies 2020, 13, 769. [Google Scholar] [CrossRef] [Green Version]
- Bello, M.O.; Solarin, S.A.; Yen, Y.Y. The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: The role of hydropower in an emerging economy. J. Environ. Manag. 2018, 219, 218–230. [Google Scholar] [CrossRef]
- Vlachos, D.; Aivazidou, E. Water Footprint in Supply Chain Management: An Introduction. Sustainability 2018, 10, 2045. [Google Scholar] [CrossRef] [Green Version]
- Sonune, A.; Ghate, R. Developments in wastewater treatment methods. Desalination 2004, 167, 55–63. [Google Scholar] [CrossRef]
- Kakwani, N.S.; Kalbar, P.P. Review of Circular Economy in urban water sector: Challenges and opportunities in India. J. Environ. Manag. 2020, 271, 111010. [Google Scholar] [CrossRef]
- Cwiklicki, M.; Wojnarowska, M. Circular Economy and Industry 4.0: One-Way or Two-way Relationships? Eng. Econ. 2020, 31, 387–397. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Mendoza, J.M.F.; Aznar-Sánchez, J.A.; Gallego-Schmid, A. Circular economy implementation in the agricultural sector: Definition, strategies and indicators. Resour. Conserv. Recycl. 2021, 170, 105618. [Google Scholar] [CrossRef]
- Silvestri, L.; Silvestri, C.; Forcina, A.; De Luca, C. A review of energy-based indicators for assessing sustainability and circular economy in the agri-food production. Procedia Comput. Sci. 2022, 200, 1756–1765. [Google Scholar] [CrossRef]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Ruiz-Salmón, I.; Margallo, M.; Laso, J.; Villanueva-Rey, P.; Mariño, D.; Quinteiro, P.; Dias, A.C.; Nunes, M.L.; Marques, A.; Feijoo, G.; et al. Addressing challenges and opportunities of the European seafood sector under a circular economy framework. Curr. Opin. Environ. Sci. Health 2020, 13, 101–106. [Google Scholar] [CrossRef]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability in the food-energy-water-health nexus: A new methodology and an application to food waste in a circular economy. Waste Manag. 2020, 113, 359–368. [Google Scholar] [CrossRef]
- Kılkış, Ş.; Kılkış, B. Integrated circular economy and education model to address aspects of an energy-water-food nexus in a dairy facility and local contexts. J. Clean. Prod. 2017, 167, 1084–1098. [Google Scholar] [CrossRef]
- Magrassi, F.; Del Borghi, A.; Gallo, M.; Strazza, C.; Robba, M. Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS). Energies 2016, 9, 490. [Google Scholar] [CrossRef] [Green Version]
- Govindan, K.; Hasanagic, M. A systematic review on drivers, barriers, and practices towards circular economy: A supply chain perspective. Int. J. Prod. Res. 2018, 56, 278–311. [Google Scholar] [CrossRef]
- Kaddoura, S.; El Khatib, S. Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making. Environ. Sci. Policy 2017, 77, 114–121. [Google Scholar] [CrossRef]
- Hamiche, A.M.; Stambouli, A.B.; Flazi, S. A review of the water-energy nexus. Renew. Sustain. Energy Rev. 2016, 65, 319–331. [Google Scholar] [CrossRef]
- Kibler, K.M.; Reinhart, D.; Hawkins, C.; Motlagh, A.M.; Wright, J. Food waste and the food-energy-water nexus: A review of food waste management alternatives. Waste Manag. 2018, 74, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xu, F.; Ge, X.; Li, Y. Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renew. Sustain. Energy Rev. 2018, 89, 151–167. [Google Scholar] [CrossRef]
- Avtar, R.; Tripathi, S.; Aggarwal, A.K.; Kumar, P. Population-urbanization-energy nexus: A review. Resources 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Paes, L.A.B.; Bezerra, B.S.; Deus, R.M.; Jugend, D.; Battistelle, R.A.G. Organic solid waste management in a circular economy perspective—A systematic review and SWOT analysis. J. Clean. Prod. 2019, 239, 118086. [Google Scholar] [CrossRef]
- Pruyt, E. What is System Dynamics? A Paradigmatic Inquiry; System Dynamics Society: Nijmegen, The Netherlands, 2006. [Google Scholar]
- Halbe, J.; Pahl-Wostl, C.; Lange, M.A.; Velonis, C. Governance of transitions towards sustainable development—The water-energy-food nexus in Cyprus. Water Int. 2015, 40, 877–894. [Google Scholar] [CrossRef]
Author | Review Topic | Key Findings |
---|---|---|
Pan et al. (2015) [148] | Strategies on implementing waste-to-energy (WTE) supply chain for the circular economy system: a review | WTE supply chain is key to maintaining energy security and controlling waste and GHG emissions. The contradiction between greening and growth needs to be resolved. |
Sanders (2015) [70] | Critical review: Uncharted waters? The future of the electricity–water nexus | Integrating the water and energy production framework and changing to more sustainable energy production is needed. |
Hamiche et al. (2016) [178] | A review of the water–energy nexus | From the historical perspective, proper integrative implementation is more suitable for a multidisciplinary subject such as the nexus approach. Therefore, developing the integrated methodology to enhance nexus policy regarding various dimensions is needed. |
Kaddoura & El Khatib (2017) [177] | Review of water–energy–food Nexus tools to improve the Nexus modeling approach for integrated policymaking | Addressing the individual study in a single framework is needed for it to be more robust rather than consulting it as a theoretical framework. |
Govindan & Hasanagic (2018) [176] | A systematic review on drivers, barriers, and practices towards a circular economy: a supply chain perspective | The government shows an effective strategy to establish CE policy; in contrast, a few perspectives acting as barriers must be resolved through the appropriate framework. |
Kibler et al. (2018) [179] | Food waste and the food-–energy–water nexus: A review of food waste management alternatives | Using food waste can pave the way to remedy the growing waste issue. Although, concerning environmental aspects need to draw attention, processing the waste-to-energy framework. |
Albrecht et al. (2018) [5] | The Water–Energy–Food Nexus: A systematic review of methods for nexus assessment | The nexus approach has a rich theoretical framework, but poor sectoral coordination limits this approach’s advancement. Social and political aspects need the same consideration as the water–energy–food security required. |
Lin et al. (2018) [180] | Improving the sustainability of organic waste management practices in the food–energy–water nexus: A comparative review of anaerobic digestion and composting | Reducing organic waste and creating energy sufficiency, several initiatives have been undertaken. Regarding LCA, anaerobic digestion is more suitable and sustainable. However, future research needs to enhance the procedure under some key factors. |
Zhang et al. (2019) [73] | Food–energy–water (FEW) nexus for urban sustainability: A comprehensive review | Since nexus is a multidisciplinary concept, the implementation is hard to establish within a short period. Appropriate governance needs more effort for a secure concept and constant development. |
Avtar et al. (2019) [181] | Population-urbanization-energy nexus: A review | Along with the WEF nexus, the population plays the role of concurrence of each discipline. Therefore, appropriate scientific study needs to connect the population as a resource regarding social, economic, and environmental aspects. |
Paes et al. (2019) [182] | Organic solid waste management in a circular economy perspective—A systematic review and SWOT analysis | To reduce solid waste, proper concentration is needed to eradicate the limitations. Unfortunately, few methods have been proposed concerning CE and sustainability. |
Sassanelli et al. (2019) [125] | Circular economy performance assessment methods: A systematic literature review | Despite CE gaining more concern daily, a few gaps are still available concerning LCA. Future researchers must provide Key Performance Indicators (KPIs) for suitable circularity. |
Kakwani & Kalbar (2020) [167] | Review of Circular Economy in the urban water sector: Challenges and opportunities in India | Concerning LCA, CE in water sector implementation is an emergent policy. Therefore, developing countries need a holistic approach for its effective implementation. |
Del Borghi et al. (2020) [6] | Circular economy approach to reduce water–energy–food nexus | Despite having a solid theoretical concept, poor implementation of policy hampers the possible advancement of securing resources. Therefore, CE principles are more supportive than the WEF policy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, M.S.; Mahmud, K.; Mitra, B.; Hridoy, A.-E.E.; Rahman, S.M.; Shafiullah, M.; Alam, M.S.; Hossain, M.I.; Sujauddin, M. Coupling Nexus and Circular Economy to Decouple Carbon Emissions from Economic Growth. Sustainability 2023, 15, 1748. https://doi.org/10.3390/su15031748
Uddin MS, Mahmud K, Mitra B, Hridoy A-EE, Rahman SM, Shafiullah M, Alam MS, Hossain MI, Sujauddin M. Coupling Nexus and Circular Economy to Decouple Carbon Emissions from Economic Growth. Sustainability. 2023; 15(3):1748. https://doi.org/10.3390/su15031748
Chicago/Turabian StyleUddin, Mohammed Sakib, Khaled Mahmud, Bijoy Mitra, Al-Ekram Elahee Hridoy, Syed Masiur Rahman, Md Shafiullah, Md. Shafiul Alam, Md. Ismail Hossain, and Mohammad Sujauddin. 2023. "Coupling Nexus and Circular Economy to Decouple Carbon Emissions from Economic Growth" Sustainability 15, no. 3: 1748. https://doi.org/10.3390/su15031748
APA StyleUddin, M. S., Mahmud, K., Mitra, B., Hridoy, A. -E. E., Rahman, S. M., Shafiullah, M., Alam, M. S., Hossain, M. I., & Sujauddin, M. (2023). Coupling Nexus and Circular Economy to Decouple Carbon Emissions from Economic Growth. Sustainability, 15(3), 1748. https://doi.org/10.3390/su15031748