Strategy for Developing Whiteleg Shrimp (Litopenaeus vannamei) Culture Using Intensive/Super-Intensive Technology in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Location and Time
2.2. Data Collection
2.3. Data Analysis
3. Results and Discussion
3.1. Pond Culture Profile
3.2. Development Strategy
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Marine Affairs and Fisheries MMAF’s Strategy to Pursue Target to Increase Shrimp Exports by 250% by 2024. 2020. Available online: https://kkp.go.id/artikel/35537-strategi-kkp-kejar-target-peningkatan-ekspor-udang-250-hingga-tahun-2024 (accessed on 5 December 2022). (In Indonesian).
- Gusmawati, N.; Soulard, B.; Selmaoui-Folcher, N.; Proisy, C.; Mustafa, A.; Le Gendre, R.; Laugier, T.; Lemonnier, H. Surveying Shrimp Aquaculture Pond Activity Using Multitemporal VHSR Satellite Images—Case Study from the Perancak Estuary, Bali, Indonesia. Mar. Pollut. Bull. 2018, 131, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Marine Affairs and Fisheries. Aquaculture Production Center Map; Ministry of Marine Affairs and Fisheries: Jakarta, Indonesia, 2015. (In Indonesian)
- Marine and Fisheries Service. South Sulawesi Fisheries Statistics Report 2019; Marine and Fisheries Service of South Sulawesi Province: Makassar, Indonesia, 2020. (In Indonesian) [Google Scholar]
- Whiteleg Shrimp Culture. Available online: http://trobosaqua.com/detail-berita/2013/07/15/13/4019/budidaya-udang-supra-intensif (accessed on 12 December 2022). (In Indonesian).
- Syah, R.; Fahrur, M.; Suwoyo, H.S.; Makmur, M. Performance of Super-intensive Pond Wastewater Treatment Plant. Media Akuakultur 2017, 12, 95–103. (In Indoneisan) [Google Scholar] [CrossRef] [Green Version]
- Athirah, A. Determination of Land Suitability for Super-Intensive Technology Whiteleg Shrimp (Litopenaeus vannamei) Culture in Bulukumba Regency, South Sulawesi Province; Hasanuddin University: Makassar, Indonesia, 2016. (In Indonesian) [Google Scholar]
- Fakhri, M.; Budianto, B.; Yuniarti, A.; Hariati, A.M. Variation in Water Quality at Different Intensive Whiteleg Shrimp, Litopenaeus vannamei, Farms in East Java, Indonesia. Nat. Environ. Pollut. Technol. 2015, 14, 65–70. [Google Scholar]
- Shrimp Toilet: A Novel Way for Disposal of Organic Waste in Aquaculture Systems. Available online: https://www.researchgate.net/profile/Md-Idrish-Raja-Khan/publication/327582437_Shrimp_Toilet_A_novel_way_for_disposal_of_organic_waste_in_Aquaculture_systems/links/5b982201299bf14ad4cea310/Shrimp-Toilet-A-novel-way-for-disposal-of-organic-waste-in-Aquaculture-systems.pdf (accessed on 12 December 2022).
- Chaikaew, P.; Rugkarn, N.; Pongpipatwattana, V.; Kanokkantapong, V. Enhancing Ecological-Economic Efficiency of Intensive Shrimp Farm through in-out Nutrient Budget and Feed Conversion Ratio. Sustain. Environ. Res. 2019, 29, 28. [Google Scholar] [CrossRef] [Green Version]
- Iber, B.T.; Kasan, N.A. Recent Advances in Shrimp Aquaculture Wastewater Management. Heliyon 2021, 7, E08283. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.A.T.; Nguyen, K.A.T.; Jolly, C. Is Super-Intensification the Solution to Shrimp Production and Export Sustainability? Sustainability 2019, 11, 5277. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, A.; Paena, M.; Athirah, A.; Ratnawati, E.; Asaf, R.; Suwoyo, H.S.; Sahabuddin, S.; Hendrajat, E.A.; Kamaruddin, K.; Septiningsih, E.; et al. Temporal and Spatial Analysis of Coastal Water Quality to Support Application of Whiteleg Shrimp Litopenaeus vannamei Intensive Pond Technology. Sustainability 2022, 14, 2659. [Google Scholar] [CrossRef]
- Praptiwi, R.A.; Saab, R.; Setia, T.M.; Wicaksono, G.; Wulandari, P.; Sugardjito, J. Bird Diversity in Transition Zone of Taka Bonerate, Kepulauan Selayar Biosphere Reserve, Indonesia. Biodiversitas 2019, 20, 820–824. [Google Scholar] [CrossRef] [Green Version]
- Praptiwi, R.A.; Maharja, C.; Fortnam, M.; Chaigneau, T.; Evans, L.; Garniati, L.; Sugardjito, J. Tourism-Based Alternative Livelihoods for Small Island Communities Transitioning towards a Blue Economy. Sustainability 2021, 13, 6655. [Google Scholar] [CrossRef]
- Garniati, L.; Iswadi, A.; Praptiwi, R.; Sugardjito, J. Towards Sustainable Marine and Coastal Planning for Taka Bonerate Kepulauan Selayar Biosphere Reserve: Indonesian Case Study to The Global Challenge Research Fund Blue Communities Project. IOP Conf. Ser. Earth Environ. Sci. 2019, 298, 012008. [Google Scholar] [CrossRef]
- Fabricius, K.E. Effects of Terrestrial Runoff on the Ecology of Corals and Coral Reefs: Review and Synthesis. Mar. Pollut. Bull. 2005, 50, 125–146. [Google Scholar] [CrossRef] [PubMed]
- Riegl, B.M.; Sheppard, C.R.C.; Purkis, S.J. Human Impact on Atolls Leads to Coral Loss and Community Homogenisation: A Modeling Study. PLoS ONE 2012, 7, e36921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, C.; Wiedenmann, J. Impacts of Nutrient Enrichment on Coral Reefs: New Perspectives and Implications for Coastal Management and Reef Survival. Curr. Opin. Environ. Sustain. 2014, 7, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Nardiyanto, B.; Affandi, M.I.; Murniati, K. Feasibility Study and Strategy of Development of Whiteleg Shrimp (Litopenaeus vannamei) in Plastic Pond in Kaur Bengkulu District (Case study at PT XYZ). Indones. J. Socio Econ. 2019, 1, 47–60. (In Indonesian) [Google Scholar]
- Husain, N.; Rustam, R.; Rauf, A. Strategy for Developing a Sustainable Gond Culture Business in Lawallu Village, Barru Regency. J. Indones. Trop. Fish. 2020, 3, 138–150. (In Indonesian) [Google Scholar] [CrossRef]
- Macusi, E.D.; Estor, D.E.P.; Borazon, E.Q.; Clapano, M.B.; Santos, M.D. Environmental and Socioeconomic Impacts of Shrimp Farming in the Philippines: A Critical Analysis Using PRISMA. Sustainability 2022, 14, 2977. [Google Scholar] [CrossRef]
- Bolarinwa, O. Principles and Methods of Validity and Reliability Testing of Questionnaires Used in Social and Health Science Researches. Niger. Postgrad. Med. J. 2015, 22, 195. [Google Scholar] [CrossRef] [Green Version]
- Kilani, M.A.; Kobziev, V. An Overview of Research Methodology in Information System (IS). OALib 2016, 03, 1–9. [Google Scholar] [CrossRef]
- Marine and Fisheries Service. South Sulawesi Fisheries Statistics Report 2014; Marine and Fisheries Service of South Sulawesi Province: Makassar, Indonesia, 2015. (In Indonesian) [Google Scholar]
- Marine and Fisheries Service. South Sulawesi Fisheries Statistics Report 2015; Marine and Fisheries Service of South Sulawesi Province: Makassar, Indonesia, 2016. (In Indonesian) [Google Scholar]
- Marine and Fisheries Service. South Sulawesi Fisheries Statistics Report 2016; Marine and Fisheries Service of South Sulawesi Province: Makassar, Indonesia, 2017. (In Indonesian) [Google Scholar]
- Marine and Fisheries Service. South Sulawesi Fisheries Statistics Report 2017; Marine and Fisheries Service of South Sulawesi Province: Makassar, Indonesia, 2018. (In Indonesian) [Google Scholar]
- Marine and Fisheries Service. South Sulawesi Fisheries Statistics Report 2018; Marine and Fisheries Service of South Sulawesi Province: Makassar, Indonesia, 2019. (In Indonesian) [Google Scholar]
- Taber, K.S. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef] [Green Version]
- Tapsir, R.; Pa, N.A.N.; Zamri, S.N.A.B.S. Reliability and Validity of the Instrument Measuring Values in Mathematics Classrooms. Malays. Online J. Educ. Sci. 2018, 6, 37–47. [Google Scholar]
- Raharjanti, N.W.; Wiguna, T.; Purwadianto, A.; Soemantri, D.; Indriatmi, W.; Poerwandari, E.K.; Mahajudin, M.S.; Nugrahadi, N.R.; Roekman, A.E.; Saroso, O.J.D.A.; et al. Translation, Validity and Reliability of Decision Style Scale in Forensic Psychiatric Setting in Indonesia. Heliyon 2022, 8, e09810. [Google Scholar] [CrossRef] [PubMed]
- Litwin, M.S. How to Measure Survey Reliability and Validity; Sage Publication: Thousand Oaks, CA, USA, 1995; ISBN 9780803957046. [Google Scholar]
- Zijlmans, E.A.O.; Tijmstra, J.; van der Ark, L.A.; Sijtsma, K. Item-Score Reliability as a Selection Tool in Test Construction. Front. Psychol. 2019, 9, 2298. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Padmowati, R.D.L.E. Measurement of the Consistency Index in the Decision-making Process. Semin. Nas. Inform. 2015, 1, 80–84. (In Indonesian) [Google Scholar]
- Waris, M.; Panigrahi, S.; Mengal, A.; Soomro, M.I.; Mirjat, N.H.; Ullah, M.; Azlan, Z.S.; Khan, A. An Application of Analytic Hierarchy Process (AHP) for Sustainable Procurement of Construction Equipment: Multicriteria-Based Decision Framework for Malaysia. Math. Probl. Eng. 2019, 2019, 6391431. [Google Scholar] [CrossRef] [Green Version]
- Leal, J.E. AHP-Express: A Simplified Version of the Analytical Hierarchy Process Method. MethodsX 2020, 7, 100748. [Google Scholar] [CrossRef]
- Canco, I.; Kruja, D.; Iancu, T. AHP, a Reliable Method for Quality Decision Making: A Case Study in Business. Sustainability 2021, 13, 13932. [Google Scholar] [CrossRef]
- Mustafa, A.; Ratnawati, E.; Undu, M.C. Characteristics and Management of Brackishwater Pond Soil in South Sulawesi Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 564, 012021. [Google Scholar] [CrossRef]
- Directorate General of Aquaculture. Technical Instructions for Shrimp Growing Wastewater Treatment Plant; Directorate General of Aquaculture: Jakarta, Indonesia, 2016. (In Indonesian)
- Tantu, A.G.; Salam, S.; Ishak, M. Vaname Shrimp Cultivation (Litopenaeus vannamei) on High Stocking Densities in Controlled Ponds. J. Aquac. Res. Dev. 2020, 11, 1–6. [Google Scholar] [CrossRef]
- Hopkins, J.S.; Sandifer, P.A.; DeVoe, M.R.; Holland, A.F.; Browdy, C.L.; Stokes, A.D. Environmental Impacts of Shrimp Farming with Special Reference to the Situation in the Continental United States. Estuaries 1995, 18, 25–42. [Google Scholar] [CrossRef]
- Islam, M.S.; Milstein, A.; Wahab, M.A.; Kamal, A.H.M.; Dewan, S. Production and Economic Return of Shrimp Aquaculture in Coastal Ponds of Different Sizes and with Different Management Regimes. Aquac. Int. 2005, 13, 489–500. [Google Scholar] [CrossRef]
- Islam, M.S. From Pond to Plate: Towards a Twin-Driven Commodity Chain in Bangladesh Shrimp Aquaculture. Food Policy 2008, 33, 209–223. [Google Scholar] [CrossRef]
- Brummett, R.E. Comparison of African Tilapia Partial Harvesting Systems. Aquaculture 2002, 214, 103–114. [Google Scholar] [CrossRef]
- Kam, L.E.; Yu, R.; Leung, P. Shrimp Partial Harvesting Model: Decision Support System User Manual; CTSA Publication No. 153; Center for Tropical and Subtropical Aquaculture: Honolulu, HI, USA, 2008. [Google Scholar]
- Da Silveira, L.G.P.; Krummenauer, D.; Poersch, L.H.; Fóes, G.K.; Rosas, V.T.; Wasielesky, W. The Effect of Partial Harvest on Production and Growth Performance of Litopenaeus vannamei Reared in Biofloc Technologic System. Aquaculture 2022, 546, 737408. [Google Scholar] [CrossRef]
- Prakoso, A.A.; Elfitasari, T.; Basuki, F. Business analysis study and prospects for the development of intensive system whiteleg shrimp (Litopenaeus vannamei) culture in Sluke District, Rembang Regency. In Proceedings of the 5th Annual National Seminar on Fisheries and Marine Research Results, Diponegoro University, Semarang, Indonesia, 7 November 2015. (In Indonesian). [Google Scholar]
- Makarov, R.; Lomelí-Ortega, C.O.; Zermeño-Cervantes, L.A.; García-Álvarez, E.; Gutiérrez-Rivera, J.N.; Cardona-Félix, C.S.; Martínez-Díaz, S.F. Evaluation of a Cocktail of Phages for the Control of Presumptive Vibrio parahaemolyticus Strains Associated to Acute Hepatopancreatic Necrosis Disease. Aquac. Res. 2019, 50, 3107–3116. [Google Scholar] [CrossRef]
- Paena, M.; Tampangallo, B.R.; Kamariah, K.; Asaf, R.; Athirah, A.; Hasnawi, H.; Tarunamulia, T.; Asaad, A.I.J.; Ratnawati, E.; Mustafa, A. Population Analysis of Total Vibrio and Heterotrophic Bacteria in Water and Sediment to Support Intensive Shrimp Culture Expansion in Pasangkayu Regency, West Sulawesi Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 860, 012028. [Google Scholar] [CrossRef]
- Ghauri, P.N.; Grønhaug, K. Research Methods in Business Studies: A Practical Guide; Financial Times Prentice Hall: Hoboken, NJ, USA, 2005; ISBN 9781108486743. [Google Scholar]
- Taherdoost, H. Validity and Reliability of the Research Instrument; How to Test the Validation of a Questionnaire/Survey in a Research. SSRN Electron. J. 2018, 5, 28–36. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS, 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2005; ISBN 0-7619-4452-4. [Google Scholar]
- Nawi, F.A.M.; Tambi, A.M.A.; Samat, M.F.; Mustapha, W.M.W. A Review on the Internal Consistency of a Scale: The Empirical Example of the Influence of Human Capital Investment on Malcom Baldridge Quality Principles in TVET Institutions. Asian People J. 2020, 3, 19–29. [Google Scholar] [CrossRef]
- Yusof, Z.Y.M.; Jaafar, N. A Malay Version of the Child Oral Impacts on Daily Performances (Child-OIDP) Index: Assessing Validity and Reliability. Health Qual. Life Outcomes 2012, 10, 63. [Google Scholar] [CrossRef] [Green Version]
- Boonyaratana, Y.; Hansson, E.E.; Granbom, M.; Schmidt, S.M. The Psychometric Properties of the Meaning of Home and Housing-Related Control Beliefs Scales among 67–70 Year-Olds in Sweden. Int. J. Environ. Res. Public Health 2021, 18, 4273. [Google Scholar] [CrossRef] [PubMed]
- Cristobal, E.; Flavián, C.; Guinalíu, M. Perceived E-Service Quality (PeSQ): Measurement Validation and Effects on Consumer Satisfaction and Web Site Loyalty. Manag. Serv. Qual. 2007, 17, 317–340. [Google Scholar] [CrossRef]
- Carmines, E.G.; Zeller, R.A. Reliability and Validity Assessment; Sage Publications: Thousand Oaks, CA, USA, 1979. [Google Scholar]
- Mohajan, H.K. Two Criteria for Good Measurements in Research: Validity and Reliability. Ann. Spiru Haret Univ. Econ. Ser. 2017, 17, 59–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huck, S.W. Reading Statistics and Research, 6th ed.; Pearson: London, UK, 2012. [Google Scholar]
- Feng, C.K.; Yamat, H. Testing on the Validity and Reliability of Task Based Language Teaching Questionnaire. Int. J. Acad. Res. Bus. Soc. Sci. 2019, 9, 474–485. [Google Scholar] [CrossRef]
- Straub, D.; Gefen, D. Validation Guidelines for IS Positivist Research. Commun. Assoc. Inf. Syst. 2004, 13, 24. [Google Scholar] [CrossRef]
- Saidi, S.S.; Slew, N.M. Investigating the Validity and Reliability of Survey Attitude towards Statistics Instrument among Rural Secondary School Students. Int. J. Educ. Methodol. 2019, 5, 651–661. [Google Scholar] [CrossRef] [Green Version]
- Whitley, B.E., Jr.; Kite, M.E. Principles of Research in Behavioral Science, 4th ed.; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Zhu, J.; Gu, M.; Yang, L.; Xun, S.; Wan, M.; Li, J. Academic Adaptation of International Students in China: Evidence from the Grounded Theory and Structure Equation Model. Sustainability 2023, 15, 692. [Google Scholar] [CrossRef]
- Yang, W.C.; Kang, H.S.; Ri, G.S.; Kim, J.S. Consistency Improvement Method of Pairwise Matrix Based on Consistency Ratio Decreasing Rate and Attribute Weighting Method Considered Decision Makers’ Levels in Analytic Hierarchy Process: Application to Hip Joint Prosthesis Material Selection. Math. Probl. Eng. 2022, 2022, 1463006. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of United Nations. Annex 1: Highlights of the International Technical Semi-nar/Workshop: “EMS/AHPND: Government, Scientist and Farmer Responses” (22–24 June 2015, Panama City, Panama) under the FAO project TCP/INT/3502. In FAO Second International Technical Seminar/Workshop on Acute Hepatopancreatic Necrosis Disease (AHPND): There Is Away Forward” under the Auspices of the FAO Technical Cooperation Programme TCP/INT/3502 and TCP/INT/3501; Food and Agriculture Organization of United Nations: Rome, Italy, 2017. [Google Scholar]
- Ross, G.L.; Telfer, T.C.; Falconer, L.; Soto, D.; Aguilar-Manjarrez, J. Site Selection and Carrying Capacities for Inland and Coastal Aquaculture; FAO: Rome, Italy, 2013; p. 59. ISBN 9789251073889. [Google Scholar]
- Maarif, M.S.; Somamiharja, A. Strategies for Improving the Productivity of Shrimp Cultivation. J. Ilmu-Ilmu Pertan. Indones. 2000, 9, 62–76. (In Indonesian) [Google Scholar]
- Zacarias, S.; Fegan, D.; Wangsoontorn, S.; Yamuen, N.; Limakom, T.; Carboni, S.; Davie, A.; Metselaar, M.; Little, D.C.; Shinn, A.P. Increased Robustness of Postlarvae and Juveniles from Non-Ablated Pacific Whiteleg Shrimp, Penaeus Vannamei, Broodstock Post-Challenged with Pathogenic Isolates of Vibrio parahaemolyticus (VpAHPND) and White Spot Disease (WSD). Aquaculture 2021, 532, 736033. [Google Scholar] [CrossRef]
- Salazar, M.; Decock, B.; Henning, O. Ablation and Shrimp Welfare. Aqua Cult. Asia Pac. 2022, 8, 16–18. [Google Scholar]
- Makmur, M.; Taukhid, I.; Tampangallo, B.R.; Asaad, A.I.J.; Syah, R. Application of Sludge Collector in Super-Intensive Vannamei Shrimp Farms. IOP Conf. Ser. Earth Environ. Sci. 2021, 919, 012059. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R.; et al. Achieving Sustainable Aquaculture: Historical and Current Perspectives and Future Needs and Challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Taukhid, I.; Trijuno, D.D.; Karim, M.Y.; Syah, R.; Makmur, M. Effect of Power Pump and Nozzle Diameter Microbubble Generator to Increase Oxygen Concentration in Aquaculture. Isr. J. Aquac. Bamidgeh 2021, 73, 1–15. [Google Scholar] [CrossRef]
- Budhijanto, W.; Darlianto, D.; Pradana, Y.S.; Hartono, M. Application of Micro Bubble Generator as Low Cost and High Efficient Aerator for Sustainable Fresh Water Fish Farming. AIP Conf. Proc. 2017, 1840, 110008. [Google Scholar] [CrossRef]
- Emerenciano, M.G.C.; Rombenso, A.N.; Vieira, F.D.N.; Martins, M.A.; Coman, G.J.; Truong, H.H.; Noble, T.H.; Simon, C.J. Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Animals 2022, 12, 236. [Google Scholar] [CrossRef]
- Robertson, L.; Lawrence, A.L.; Castille, F.L. Effect of Feeding Frequency and Feeding Time on Growth of Penaeus vannamei (Boone). Aquac. Res. 1993, 24, 1–6. [Google Scholar] [CrossRef]
- Abdallah, S.E.; Elmessery, W.M. An Automatic Feeder with Two Different Control Systems for Intensive Mirror Carp Production. J. Agric. Eng. Biotechnol. 2014, 4, 36–48. [Google Scholar] [CrossRef]
- Darodes de Tailly, J.B.; Keitel, J.; Owen, M.A.G.; Alcaraz-Calero, J.M.; Alexander, M.E.; Sloman, K.A. Monitoring Methods of Feeding Behaviour to Answer Key Questions in Penaeid Shrimp Feeding. Rev. Aquac. 2021, 13, 1828–1843. [Google Scholar] [CrossRef]
- Molina, C.; Espinoza, M. Rising Use of Automatic Feeders in Shrimp Ponds Poses New Feed Requirements Ss—Global Aquaculture Advocate. Available online: https://www.globalseafood.org/advocate/automatic-feeders-shrimp-ponds-new-feed-requirements/,2018 (accessed on 6 December 2022).
- Rekha, P.N.; Ambasankar, K.; Stanline, S.; Sethuraman, K.; Syamadayal, J.; Panigrahi, A.; Kumaraguruvasagam, K. Design and Development of an Automatic Feeder for Penaeus vannamei Culture. Indian J. Fish. 2017, 64, 83–88. [Google Scholar] [CrossRef]
- Boyd, C.E.; Phu, T.Q. Environmental Factors and Acute Hepatopancreatic Necrosis Disease (AHPND) in Shrimp Ponds in Viet Nam: Practices for Reducing Risks. Asian Fish. Sci. 2018, 31, 121–136. [Google Scholar] [CrossRef]
- Clapano, M.B.; Diuyan, J.M.T.; Rapiz, F.G.B.; Macusi, E.D. Typology of Smallholder and Commercial Shrimp (Penaeus vannamei) Farms, Including Threats and Challenges in Davao Region, Philippines. Sustainability 2022, 14, 5713. [Google Scholar] [CrossRef]
- Damanik, H.T.S. Design of Pond Water Sterilizer with Continuous System Using Ultraviolet Radiation; Bogor Agricultural Institute: Bogor, Indonesia, 2013. (In Indonesian) [Google Scholar]
- Blatchley, E.R.; Dumoutier, N.; Halaby, T.N.; Levi, Y.; Laîné, J.M. Bacterial Responses to Ultraviolet Irradiation. Water Sci. Technol. 2001, 43, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Banaś, A.K.; Zgłobicki, P.; Kowalska, E.; Bażant, A.; Dziga, D.; Strzałka, W. All You Need is Light. Photorepair of UV-Induced Pyrimidine Dimers. Genes 2020, 11, 1304. [Google Scholar] [CrossRef]
- Suantika, G.; Situmorang, M.L.; Nurfathurahmi, A.; Taufik, I.; Aditiawati, P.; Yusuf, N.; Aulia, R. Application of Indoor Recirculation Aquaculture System for White Shrimp (Litopenaeus vannamei) Growout Super-Intensive Culture at Low Salinity Condition. J. Aquac. Res. Dev. 2018, 9, 530. [Google Scholar] [CrossRef]
- Syah, R.; Makmur, M.; Taukhid, I.; Tampangallo, B.R.; Tahe, S.; Undu, M.C. The Application of Progressive Systems in High Density Vannamei Shrimp Culture. IOP Conf. Ser. Earth Environ. Sci. 2021, 860, 012022. [Google Scholar] [CrossRef]
- Suwoyo, H.S.; Hendrajat, E.A. High Density Aquaculture of White Shrimp (Litopenaeus vannamei) in Controlled Tank. IOP Conf. Ser. Earth Environ. Sci. 2021, 777, 012022. [Google Scholar] [CrossRef]
- Kassem, T.; Shahrour, I.; El Khatabi, J.; Raslan, A. Smart and Sustainable Aquaculture Farms. Sustainability 2021, 13, 10685. [Google Scholar] [CrossRef]
Variables | Regencies | ||
---|---|---|---|
Bulukumba (n = 7) | Je’neponto (n = 6) | Takalar (n = 5) | |
Year of constructed | 2009–2017 | 2006–2019 | 1997–2018 |
Year of operational | 2010–2021 | 2016–2019 | 1998–2019 |
Total land area (ha) | 0.3–45.0 | 0.8–15.0 | 0.5–30.0 |
Reservoir pond area (ha) | 0.01–4.32 | 0.04–0.80 | 0.04–4.00 |
Wastewater treatment plant pond area (ha) | 0.01–1.50 | 0.01–0.12 | 0.004–3.00 |
Pond area (m2) | 1600–5000 | 600–4900 | 720–6000 |
Number of the pond (units) | 1–48 | 2–32 | 2–53 |
Total pond area (ha) | 0.20–17.28 | 0.24–8.50 | 0.31–18.54 |
Stocking density (ind./m2) | 100–220 | 150–270 | 120–1.250 |
Partial harvest age (days) | 60–95 | 60–97 | 60–75 |
Shrimp size at first partial harvest (ind./kg) | 60–80 | 60–80 | 80–110 |
Age of total harvest (days) | 100–120 | 90–120 | 95–120 |
Shrimp size at total harvest (ind./kg) | 26–59 | 30–60 | 25–70 |
Feed conversion ratio | 1.2:1–1.7:1 | 1.3:1–1.7:1 | 1.2:1–1.5:1 |
Scale Mean If Item Deleted | Scale Variance If Item Deleted | Corrected Item- Total Correlation | Cronbach’s Alpha If Item Deleted | |
---|---|---|---|---|
Comparison of objective criteria (A) | ||||
A1 | 18.0333 | 114.447 | 0.761 | 0.768 |
A2 | 17.4667 | 107.844 | 0.805 | 0.756 |
A3 | 18.4000 | 116.041 | 0.671 | 0.787 |
A4 | 18.7333 | 142.271 | 0.402 | 0.837 |
A5 | 17.9667 | 136.447 | 0.376 | 0.846 |
A6 | 18.0667 | 120.409 | 0.605 | 0.802 |
Comparison of alternative technical criteria (B) | ||||
B1 | 26.8333 | 199.385 | 0.391 | 0.866 |
B2 | 25.4667 | 185.016 | 0.608 | 0.833 |
B3 | 25.7333 | 184.340 | 0.736 | 0.818 |
B4 | 26.3333 | 187.126 | 0.537 | 0.845 |
B5 | 25.6667 | 183.195 | 0.652 | 0.827 |
B6 | 26.7000 | 177.597 | 0.713 | 0.818 |
B7 | 25.8667 | 177.913 | 0.716 | 0.818 |
Comparison of alternative socio-economic criteria (C) | ||||
C1 | 24.2333 | 167.082 | 0.355 | 0.808 |
C2 | 23.4667 | 165.292 | 0.428 | 0.795 |
C3 | 23.4333 | 146.599 | 0.628 | 0.759 |
C4 | 23.3000 | 154.424 | 0.506 | 0.783 |
C5 | 22.5667 | 140.668 | 0.730 | 0.740 |
C6 | 23.7333 | 160.271 | 0.482 | 0.786 |
C7 | 22.6667 | 144.782 | 0.624 | 0.760 |
Comparison of alternative regulatory criteria (D) | ||||
D1 | 23.8000 | 169.959 | 0.363 | 0.864 |
D2 | 22.0667 | 148.961 | 0.636 | 0.826 |
D3 | 22.9333 | 147.444 | 0.654 | 0.824 |
D4 | 23.9667 | 161.413 | 0.510 | 0.844 |
D5 | 22.2000 | 147.131 | 0.658 | 0.823 |
D6 | 23.4667 | 148.671 | 0.694 | 0.818 |
D7 | 21.9667 | 142.516 | 0.772 | 0.806 |
Comparison of alternative environmental criteria (E) | ||||
E1 | 26.3000 | 150.286 | 0.451 | 0.756 |
E2 | 25.1000 | 150.300 | 0.387 | 0.771 |
E3 | 25.1667 | 144.489 | 0.480 | 0.751 |
E4 | 25.4333 | 143.771 | 0.519 | 0.743 |
E5 | 23.7333 | 135.375 | 0.652 | 0.715 |
E6 | 25.9333 | 144.616 | 0.543 | 0.738 |
E7 | 23.7333 | 151.030 | 0.463 | 0.754 |
Criteria | Cronbach’s Alpha | Number of Items |
---|---|---|
Comparison of objective criteria | 0.830 | 6 |
Comparison of alternative technical criteria | 0.853 | 7 |
Comparison of alternative socio-economic criteria | 0.803 | 7 |
Comparison of alternative regulatory criteria | 0.851 | 7 |
Comparison of alternative environmental criteria | 0.775 | 7 |
Criteria Comparison Matrix | Technical | Socio-Economic | Regulatory | Environment | Weight |
---|---|---|---|---|---|
Technical | 0.279 | 0.334 | 0.292 | 0.240 | 0.286 |
Socio-economic | 0.177 | 0.213 | 0.215 | 0.251 | 0.214 |
Regulatory | 0.181 | 0.188 | 0.190 | 0.197 | 0.189 |
Environment | 0.363 | 0.265 | 0.303 | 0.313 | 0.311 |
Alternatives | Total Weight | Ranking |
---|---|---|
Protection of the aquaculture environment | 0.162 or 16.2% | 1 |
Availability of pond facilities | 0.106 or 10.6% | 7 |
Management of the aquaculture area | 0.158 or 15.8% | 2 |
Modern technological innovation | 0.156 or 15.6% | 3 |
Improvement of human resources | 0.126 or 12.6% | 6 |
Environmentally friendly culture technology | 0.155 or 15.5% | 4 |
Easy access to business and capital | 0.137 or 13.7% | 5 |
Alternative Strategies | Action Plans | Actors |
---|---|---|
Protection of the aquaculture environment | Control of the aquaculture environment:
|
|
Improvement of the aquaculture environment:
|
| |
Management of the aquaculture area | Preparation of spatial zoning plan for the location of the whiteleg shrimp farming business in the Regional Spatial Plan |
|
Disease and environmental management:
|
| |
Management of culture business:
|
| |
Institutional:
|
| |
Availability of facilities and infrastructure:
|
| |
Modern technological innovation | Seed production in the hatchery:
|
|
Shrimp production in ponds:
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, A.; Syah, R.; Paena, M.; Sugama, K.; Kontara, E.K.; Muliawan, I.; Suwoyo, H.S.; Asaad, A.I.J.; Asaf, R.; Ratnawati, E.; et al. Strategy for Developing Whiteleg Shrimp (Litopenaeus vannamei) Culture Using Intensive/Super-Intensive Technology in Indonesia. Sustainability 2023, 15, 1753. https://doi.org/10.3390/su15031753
Mustafa A, Syah R, Paena M, Sugama K, Kontara EK, Muliawan I, Suwoyo HS, Asaad AIJ, Asaf R, Ratnawati E, et al. Strategy for Developing Whiteleg Shrimp (Litopenaeus vannamei) Culture Using Intensive/Super-Intensive Technology in Indonesia. Sustainability. 2023; 15(3):1753. https://doi.org/10.3390/su15031753
Chicago/Turabian StyleMustafa, Akhmad, Rachman Syah, Mudian Paena, Ketut Sugama, Endhay Kusnendar Kontara, Irwan Muliawan, Hidayat Suryanto Suwoyo, Andi Indra Jaya Asaad, Ruzkiah Asaf, Erna Ratnawati, and et al. 2023. "Strategy for Developing Whiteleg Shrimp (Litopenaeus vannamei) Culture Using Intensive/Super-Intensive Technology in Indonesia" Sustainability 15, no. 3: 1753. https://doi.org/10.3390/su15031753
APA StyleMustafa, A., Syah, R., Paena, M., Sugama, K., Kontara, E. K., Muliawan, I., Suwoyo, H. S., Asaad, A. I. J., Asaf, R., Ratnawati, E., Athirah, A., Makmur, Suwardi, & Taukhid, I. (2023). Strategy for Developing Whiteleg Shrimp (Litopenaeus vannamei) Culture Using Intensive/Super-Intensive Technology in Indonesia. Sustainability, 15(3), 1753. https://doi.org/10.3390/su15031753