Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets
Abstract
:1. Introduction
- To design and develop a lab-scale dryer for observing the drying behavior of woodchips, pellets, and sawdust in a combined dryer.
- To calculate the solar drying system’s thermal energy, exergy, and overall efficiency.
- To develop an artificial neural network (ANN) model to predict the final moisture content for comparison with experimental results.
- To train, test, and validate the experimental data via MATLAB simulations for considering the efficiency of the design ANN model.
2. Materials and Methods
2.1. Empirical Study on the Forced Convection Cabinet Solar Dryer
2.2. Energy Analysis
2.3. Exergy Analysis
2.4. Uncertainity Analysis
2.5. ANN Modelling
2.6. Structure of the ANN Model
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thees, O.; Erni, M.; Lemm, R.; Stadelmann, G.; Zenner, E.K. Future potentials of sustainable wood fuel from forests in Switzerland. Biomass Bioenergy 2020, 141, 105647. [Google Scholar] [CrossRef]
- Yi, J.; Li, X.; He, J.; Duan, X. Drying efficiency and product quality of biomass drying: A review. Dry Technol. 2020, 38, 2039–2054. [Google Scholar] [CrossRef]
- Silva, J.; Ferreira, A.; Teixeira, S.; Martins, L.; Ferreira, E.; Teixeira, J.C. Sawdust drying process in a large-scale pellets facility: An energy and exergy analysis. Clean. Environ. Syst. 2021, 2, 100037. [Google Scholar] [CrossRef]
- Raitila, J.; Tsupari, E. Feasibility of Solar-Enhanced Drying of Woody Biomass. BioEnergy Res. 2020, 13, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.M.; Peer, A. Wood Products Manufacturing Optimization: A Survey. IEEE Access 2022, 10, 121653–121683. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, G.; Hong, G.; Wang, M.; Gao, J.; Chen, Y. Energy efficiency performance enhancement of industrial conventional wood drying kiln by adding forced ventilation and waste heat recovery system: A comparative study. Maderas Cienc. Tecnol. 2019, 21, 545–558. [Google Scholar] [CrossRef]
- Lamrani, B.; Bekkioui, N.; Simo-Tagne, M.; Ndukwu, M.C. Recent progress in solar wood drying: An updated review. Dry. Technol. 2022, 2022, 2112048. [Google Scholar] [CrossRef]
- Rudra Solar Energy. Available online: https://www.rudrasolarenergy.com/ (accessed on 4 January 2023).
- S. Kiln Kit, Wood Mizer. Available online: https://woodmizer.com.au/ (accessed on 4 January 2023).
- Hangzhou Tech Drying Equipment CO., LTD. Solar Wood Drying Kiln. Available online: https://www.wooddryingequipment.com/ (accessed on 4 January 2023).
- Solar Dryers Australia Pty LTD. Available online: http://www.solardry.com.au/solardry/index.html (accessed on 5 January 2023).
- Kumar, B.; Berényi, L.; Szamosi, Z.; Szepesi, G.L. Business model analysis for the scope of entrepreneurship in a solar drying field in the European region. In Entrepreneurship in the Raw Materials Sector; CRC Press: Boca Raton, FL, USA, 2022; pp. 85–92. [Google Scholar] [CrossRef]
- Sehrawat, R.; Chandra, A.; Nema, P.; Kumar, V. Drying of Fruits and Vegetables in a Developed Multimode Drying Unit and Comparison with Commercially Available Systems. J. Inst. Eng. Ser. A 2019, 100, 381–386. [Google Scholar] [CrossRef]
- Alakoski, E.; Jämsén, M.; Agar, D.; Tampio, E.; Wihersaari, M. From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass—A short review. Renew. Sustain. Energy Rev. 2016, 54, 376–383. [Google Scholar] [CrossRef]
- Stasiak, M.; Molenda, M.; Bańda, M.; Gondek, E. Mechanical properties of sawdust and woodchips. Fuel 2015, 159, 900–908. [Google Scholar] [CrossRef]
- Stenström, S. Drying of biofuels from the forest—A review. Dry. Technol. 2017, 35, 1167–1181. [Google Scholar] [CrossRef]
- Perea-Moreno, A.-J.; Juaidi, A.; Manzano-Agugliaro, F. Solar greenhouse dryer system for wood chips improvement as biofuel. J. Clean. Prod. 2016, 135, 1233–1241. [Google Scholar] [CrossRef]
- Khouya, A. Modelling and analysis of a hybrid solar dryer for woody biomass. Energy 2021, 216, 119287. [Google Scholar] [CrossRef]
- Reyes, A.; Gatica, E.; Henríquez-Vargas, L.; Pailahueque, N. Modeling of sawdust drying in spouted beds using solar energy and phase change materials. J. Energy Storage 2022, 51, 104441. [Google Scholar] [CrossRef]
- Almeida, D.; Marques, E. Solar Drying Acacia—Influence in Pellets Quality: Experimental Results. In Proceedings of the COBEM 2013, 22nd International Congress of Mechanical Engineering, Ribeirão Preto, Spain; 2013; pp. 6742–6752. [Google Scholar]
- Ndukwu, M.C.; Bennamoun, L. Potential of integrating Na2SO4 · 10H2O pellets in solar drying system. Dry. Technol. 2018, 36, 1017–1030. [Google Scholar] [CrossRef]
- Simo-Tagne, M.; Bennamoun, L. Numerical study of timber solar drying with application to different geographical and climatic conditions in Central Africa. Sol. Energy 2018, 170, 454–469. [Google Scholar] [CrossRef]
- Awadalla, H.S.F.; El-Dib, A.; Mohamad, M.; Reuss, M.; Hussein, H.M.S. Mathematical modelling and experimental verification of wood drying process. Energy Convers. Manag. 2004, 45, 197–207. [Google Scholar] [CrossRef]
- Güler, H.Ö.; Sözen, A.; Tuncer, A.D.; Afshari, F.; Khanlari, A.; Şirin, C.; Gungor, A. Experimental and CFD survey of indirect solar dryer modified with low-cost iron mesh. Sol. Energy 2020, 197, 371–384. [Google Scholar] [CrossRef]
- UNECE. Wood energy on the rise in Europe. Press Release. Available online: https://unece.org/climate-change/press/wood-energy-rise-europe#:~:text=Countries_in_the_European_Union,increased_demand_byindividual_households (accessed on 5 December 2022).
- Kumar, B.; Szepesi, G.; Čonka, Z.; Kolcun, M.; Péter, Z.; Berényi, L.; Szamosi, Z. Trendline assessment of solar energy potential in hungary and current scenario of renewable energy in the visegrád countries for future sustainability. Sustainability 2021, 13, 5462. [Google Scholar] [CrossRef]
- Khouya, A. Energy analysis of a combined solar wood drying system. Sol. Energy 2022, 231, 270–282. [Google Scholar] [CrossRef]
- Blanco-Cano, L.; Soria-Verdugo, A.; Garcia-Gutierrez, L.; Ruiz-Rivas, U. Evaluation of the Maximum Evaporation Rate in Small-Scale Indirect Solar Dryers. J. Sol. Energy Eng. Trans. ASME 2016, 138, 1–4. [Google Scholar] [CrossRef]
- Babar, O.A.; Tarafdar, A.; Malakar, S.; Arora, V.; Nema, P.K. Design and performance evaluation of a passive flat plate collector solar dryer for agricultural products. J. Food Process Eng. 2020, 43, e13484. [Google Scholar] [CrossRef]
- Alamu, O.J.; Nwaokocha, C.; Adunola, O. Design and Construction of a Domestic Passive Solar Food Dryer. Leonardo J. Sci. 2010, 16, 71–82. [Google Scholar]
- Esen, H. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Build. Environ. 2008, 43, 1046–1054. [Google Scholar] [CrossRef]
- Kurtbas, Ã.; Durmus, A. Efficiency and exergy analysis of a new solar air heater. Renew. Energy 2004, 29, 1489–1501. [Google Scholar] [CrossRef]
- Habtay, G.; Al-Neama, M.; Buzas, J.; Farkas, I. Experimental Performance of Solar Air Heaters for Drying Applications. Eur. J. Energy Res. 2021, 1, 4–10. [Google Scholar] [CrossRef]
- Hatami, S.; Payganeh, G.; Mehrpanahi, A. Energy and exergy analysis of an indirect solar dryer based on a dynamic model. J. Clean. Prod. 2020, 244, 118809. [Google Scholar] [CrossRef]
- Bahrehmand, D.; Ameri, M.; Gholampour, M. Energy and exergy analysis of different solar air collector systems with forced convection. Renew. Energy 2015, 83, 1119–1130. [Google Scholar] [CrossRef]
- Abdelkader, T.K.; Fan, Q.; Gaballah, E.; Wang, S.; Zhang, Y. Energy and Exergy Analysis of a Flat-Plate Solar Air Heater Artificially Roughened and Coated with a Novel Solar Selective Coating. Energies 2020, 13, 997. [Google Scholar] [CrossRef] [Green Version]
- Krabch, H.; Tadili, R.; Idrissi, A. Design, realization and comparison of three passive solar dryers. Orange drying application for the Rabat site (Morocco). Results Eng. 2022, 15, 100532. [Google Scholar] [CrossRef]
- Sharabiani, V.R.; Kaveh, M.; Abdi, R.; Szymanek, M.; Tanaś, W. Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling. Sci. Rep. 2021, 11, 9155. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.P.; Singh, S.; Dhaliwal, S.S. Multi-shelf domestic solar dryer. Energy Convers. Manag. 2006, 47, 1799–1815. [Google Scholar] [CrossRef]
- Kushwah, A.K.; Gaur, M.; Kumar, A.; Singh, P.S. Application of ANN and prediction of drying behavior of mushroom drying in side hybrid greenhouse solar dryer: An experimental validation. J. Therm. Eng. 2022, 8, 221–234. [Google Scholar] [CrossRef]
- Sadadou, A.; Hanini, S.; Laidi, M.; Rezrazi, A. ANN-based Approach to Model MC/DR of Some Fruits Under Solar Drying. J. Chem. Chem. Eng. 2021, 70, 233–242. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Sharshir, S.; Elaziz, M.A.; Kabeel, A.; Guilan, W.; Haiou, Z. Modeling of solar energy systems using artificial neural network: A comprehensive review. Sol. Energy 2019, 180, 622–639. [Google Scholar] [CrossRef]
- Bala, B.K.; Ashraf, M.; Uddin, M.; Janjai, S. Experimental and neural network prediction of the performance of a solar tunnel drier for drying jackfruit bulbs and leather. J. Food Process Eng. 2005, 28, 552–566. [Google Scholar] [CrossRef]
- Tiwari, S. ANN and mathematical modelling for moisture evaporation with thermal modelling of bitter gourd flakes drying in SPVT solar dryer. Heat Mass Transf. 2020, 56, 2831–2845. [Google Scholar] [CrossRef]
- Kumar, B.; Szepesi, L.; Szamosi, Z. Drying behaviour observations for wood chips of grade EN14961. Multidiszcip. Tudományok 2021, 11, 151–156. [Google Scholar] [CrossRef]
- Baibhaw, K.; Szepesi, G.; Szamosi, Z. Design and Development of natural convective solar dryer. Multidiscip. Sci. 2021, 11, 144–150. [Google Scholar] [CrossRef]
- Lamrani, B.; Draoui, A. Thermal performance and economic analysis of an indirect solar dryer of wood integrated with packed-bed thermal energy storage system: A case study of solar thermal applications. Dry. Technol. 2021, 39, 1371–1388. [Google Scholar] [CrossRef]
- Malakar, S.; Arora, V.; Nema, P.K. Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove. Renew. Energy 2021, 168, 568–580. [Google Scholar] [CrossRef]
- López-Sosa, L.B.; Núñez-González, J.; Beltrán, A.; Morales-Máximo, M.; Morales-Sánchez, M.; Serrano-Medrano, M.; García, C.A. A New Methodology for the Development of Appropriate Technology: A Case Study for the Development of a Wood Solar Dryer. Sustainability 2019, 11, 5620. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, S.; Oh, J.; Choi, Y.; Oh, K.; Euh, S.; Kim, D.H. Microwave Drying of Sawdust for Pellet Production: Kinetic Study under Batch Mode. J. Biosyst. Eng. 2012, 37, 385–397. [Google Scholar] [CrossRef]
Item | Details | Units |
---|---|---|
Drying Products | Woodchips, Sawdust, Pellets | - |
Weight of Product | 1 | kg for each |
Duration of Experiment/day | 10 A.M.–3 P.M. | h |
Thickness of walls | 2.5 | cm |
Thickness of collector glass | 0.5 | cm |
Transmissivity of glass | 0.89 | Approx value |
Number of trays | 3 | - |
Holding tray | Metallic perforated | Material-Mild steel |
Capacity of Dryer | 180 | L |
Type of air flow | Forced Convection | AC power supply |
Load capacity | 6 | kg |
Drying time | 5 | h |
Parameters | Range | Units |
---|---|---|
Solar Radiation | 100–1100 | W/m2 |
Inlet Temperature | 18–32 | °C |
Outlet Temperature | 20–60 | °C |
Initial Moisture content (wet basis) | 32–36 | % |
Final moisture content (wet basis) | 16–28 | % |
Relative Humidity | 25–75 | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, B.; Szepesi, G.; Szamosi, Z.; Krámer, G. Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets. Sustainability 2023, 15, 1791. https://doi.org/10.3390/su15031791
Kumar B, Szepesi G, Szamosi Z, Krámer G. Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets. Sustainability. 2023; 15(3):1791. https://doi.org/10.3390/su15031791
Chicago/Turabian StyleKumar, Baibhaw, Gábor Szepesi, Zoltán Szamosi, and Gyula Krámer. 2023. "Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets" Sustainability 15, no. 3: 1791. https://doi.org/10.3390/su15031791
APA StyleKumar, B., Szepesi, G., Szamosi, Z., & Krámer, G. (2023). Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets. Sustainability, 15(3), 1791. https://doi.org/10.3390/su15031791