Thermodynamics Analysis of a Membrane Distillation Crystallization Ion Recovery System for Hydroponic Greenhouses Assisted with Renewable Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Description
2.2. Analysis
3. Results and Discussion
3.1. Results of Integrated System
3.2. Sensitivity Analysis
3.2.1. Results Validation and Efficiencies
3.2.2. Steam Rankine Cycle (SRC)
3.2.3. Chlor-Alkali System (CAS)
3.2.4. Dual Evaporator Vapor Compression Refrigeration (DEVCR)
3.2.5. Direct Contact Membrane Distillation Crystallization (DCMDC-CR)
4. Conclusions
- The generated heat by a PTC solar collector is 2988 kW, with exergy efficiency and energy efficiency of 47.3% and 90%, respectively.
- The SRC system’s generated power is 1086 kW, with exergy efficiency and energy efficiency of 34.76% and 36.34%, respectively.
- The desired thermal and electrical powers for the DCMDC-CR subsystem to recover the following amounts of ions: SO4 = 170 mg/s, Mg = 81.28 mg/s, Ca = 25.48 mg/s, and K = 24.16 mg/s, from a seawater mass flow rate of 5 kg/s, are 2326 kW and 12.43 kW, with exergy efficiency and energy efficiency of 60.81% and 52.95%, respectively.
- The hydrogen produced from the DCMDC-CR-rejected brine using the CAS is 0.93 g/s with an input power of 420 kW, and exergy efficiency and energy efficiency of 25.79% and 27.25%, respectively.
- The total generated power using the SRC and PEMFC systems satisfies the total desired power of the overall system, which equals 1182.69 kW.
- The overall exergy efficiency and energy efficiency are 41.39% and 39.80%, respectively.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
COP | Coefficient of performance | Cl2 | Chlorine |
i | Exergy destruction rate (kW) | ||
exi | Specific exergy (kJ/kg) | DCMDC | Direct contact membrane distillation crystallization |
hi | Specific enthalpy (kJ/kg) | DEVCR | Dual evaporator vapor compression refrigeration |
Isun | Solar irradiance (kW/m2) | ExpV# | Expansion valve |
i | Mass flow rate (kg/s) | Evap# | Evaporator |
Pi | Pressure (kPa) | FWT | Fresh water tank |
P0 | Ambient pressure (kPa) | HSP | Hydroponic solution |
i | Heating rate (kW) | HPT | High-pressure turbine |
Re | Recovery Ratio | HT | Heater |
si | Specific entropy (kJ/kg.K) | HST | Hydrogen short storage tank |
gen,i | Entropy generation rate (kW/K) | H2 | Hydrogen |
Ti | Temperature (K) | K | Potassium |
T0 | Ambient temperature (K) | LPT | Low-pressure turbine |
i | Power (kW) | MC# | Mixing chamber |
Mg | Magnesium | ||
Greek letters | N2 | Nitrogen | |
Efficiency (%) | NaOH | Sodium hydroxide | |
Na | Sodium | ||
Acronyms | NaCl | Sodium chloride | |
Br | Boiler | O2 | Oxygen |
CFWH | Closed feed water heater | OFWH | Open feed water heater |
Cond# | Condenser | P# | Pump |
Comp | Compressor | PEMFC | Proton exchange membrane fuel cell |
CO | Cooler | PTC | Parabolic trough collectors |
CAS | Chlor-alkali system | PVF | Polyvinylidene fluoride |
CR | Crystallizer | RH | Reheating |
CAR | Chlor-alkali reactor | SRC | Steam Rankine cycle |
Ca | Calcium | SO4 | Sulfate |
References
- Al-Thani, H.; Koç, M.; Isaifan, R.J.; Bicer, Y. A Review of the Integrated Renewable Energy Systems for Sustainable Urban Mobility. Sustainability 2022, 14, 10517. [Google Scholar] [CrossRef]
- Šare, A.; Krajačić, G.; Pukšec, T.; Duić, N. The Integration of Renewable Energy Sources and Electric Vehicles into the Power System of the Dubrovnik Region. Energy Sustain. Soc. 2015, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Abedrabboh, O.; Koç, M.; Biçer, Y. Modelling and Analysis of a Renewable Energy-Driven Climate-Controlled Sustainable Greenhouse for Hot and Arid Climates. Energy Convers. Manag. 2022, 273, 116412. [Google Scholar] [CrossRef]
- Méndez, C.; Bicer, Y. Integrated System Based on Solar Chimney and Wind Energy for Hybrid Desalination via Reverse Osmosis and Multi-Stage Flash with Brine Recovery. Sustain. Energy Technol. Assess. 2021, 44, 101080. [Google Scholar] [CrossRef]
- Security, C. on WF Sustainable Agricultural Development for Food Security and Nutrition: What Roles for Livestock? Available online: http://www.fao.org/3/am307e/am307e00.pdf (accessed on 31 August 2022).
- Zhang, J.; Chen, Q. The Impact of Farmland Tenure Security on China’s Agricultural Production Efficiency: A Perspective of Agricultural Production Factors. Sustainability 2022, 14, 16266. [Google Scholar] [CrossRef]
- Ma, L.; Long, H.; Tang, L.; Tu, S.; Zhang, Y.; Qu, Y. Analysis of the Spatial Variations of Determinants of Agricultural Production Efficiency in China. Comput. Electron. Agric. 2021, 180, 105890. [Google Scholar] [CrossRef]
- Gollin, D.; Parente, S.; Rogerson, R. The Role of Agriculture in Development. Am. Econ. Rev. 2002, 92, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Chen, Y. The Potential of Absorbing Foreign Agricultural Investment to Improve Food Security in Developing Countries. Sustainability 2020, 12, 2481. [Google Scholar] [CrossRef] [Green Version]
- Asian Development Bank (ADB) Operational Plan for Agriculture and Natural Resources; Asian Development Bank: Mandaluyong, Philippines, 2015; Volume 3, ISBN 9789292571078.
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural Land Systems Importance for Supporting Food Security and Sustainable Development Goals: A Systematic Review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- McNeill, K.; Macdonald, K.; Singh, A.; Binns, A.D. Food and Water Security: Analysis of Integrated Modeling Platforms. Agric. Water Manag. 2017, 194, 100–112. [Google Scholar] [CrossRef]
- Loganathan, P.; Naidu, G.; Vigneswaran, S. Mining Valuable Minerals from Seawater: A Critical Review. Environ. Sci. Water Res. Technol. 2017, 3, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Labhasetwar, P.K.; Shahi, V.K. Membrane Distillation Crystallization Technology for Zero Liquid Discharge and Resource Recovery: Opportunities, Challenges and Futuristic Perspectives. Sci. Total Environ. 2022, 806, 143192. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Tufa, R.A.; Macedonio, F.; Curcio, E.; Drioli, E. Membrane Technology in Renewable-Energy-Driven Desalination. Renew. Sustain. Energy Rev. 2018, 81, 1–21. [Google Scholar] [CrossRef]
- Li, Z.; Siddiqi, A.; Anadon, L.D.; Narayanamurti, V. Towards Sustainability in Water-Energy Nexus: Ocean Energy for Seawater Desalination. Renew. Sustain. Energy Rev. 2018, 82, 3833–3847. [Google Scholar] [CrossRef] [Green Version]
- Mavukkandy, M.O.; Chabib, C.M.; Mustafa, I.; Al Ghaferi, A.; AlMarzooqi, F. Brine Management in Desalination Industry: From Waste to Resources Generation. Desalination 2019, 472, 114187. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Khalil, A.; Hilal, N. Emerging Desalination Technologies: Current Status, Challenges and Future Trends. Desalination 2021, 517, 115183. [Google Scholar] [CrossRef]
- González, D.; Amigo, J.; Suárez, F. Membrane Distillation: Perspectives for Sustainable and Improved Desalination. Renew. Sustain. Energy Rev. 2017, 80, 238–259. [Google Scholar] [CrossRef]
- Ravi, J.; Othman, M.H.D.; Matsuura, T.; Ro’il Bilad, M.; El-badawy, T.H.; Aziz, F.; Ismail, A.F.; Rahman, M.A.; Jaafar, J. Polymeric Membranes for Desalination Using Membrane Distillation: A Review. Desalination 2020, 490, 114530. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, S.; Zhang, X.; Wen, B.; Su, Z. The Future of Freshwater Access: Functional Material-Based Nano-Membranes for Desalination. Mater. Today Energy 2021, 22, 100856. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J. Integration Design of Heat Exchanger Networks into Membrane Distillation Systems to Save Energy. Ind. Eng. Chem. Res. 2012, 51, 6798–6810. [Google Scholar] [CrossRef]
- Mohan, G.; Dahal, S.; Kumar, U.; Martin, A.; Kayal, H. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis. Energies 2014, 7, 6358–6381. [Google Scholar] [CrossRef] [Green Version]
- Bouguecha, S.; Hamrouni, B.; Dhahbi, M. Small Scale Desalination Pilots Powered by Renewable Energy Sources: Case Studies. Desalination 2005, 183, 151–165. [Google Scholar] [CrossRef]
- Drioli, E.; Ali, A.; Macedonio, F. Membrane Distillation: Recent Developments and Perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Crowe, A.T.; Davidson, M.J.; Nokes, R.I. Modified Reduced Buoyancy Flux Model for Desalination Discharges. Desalination 2016, 378, 53–59. [Google Scholar] [CrossRef]
- Missimer, T.M.; Maliva, R.G. Environmental Issues in Seawater Reverse Osmosis Desalination: Intakes and Outfalls. Desalination 2018, 434, 198–215. [Google Scholar] [CrossRef]
- Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Integrated Membrane Desalination Systems with Membrane Crystallization Units for Resource Recovery: A New Approach for Mining from the Sea. Crystals 2016, 6, 36. [Google Scholar] [CrossRef]
- Ye, Z.L.; Ghyselbrecht, K.; Monballiu, A.; Rottiers, T.; Sansen, B.; Pinoy, L.; Meesschaert, B. Fractionating Magnesium Ion from Seawater for Struvite Recovery Using Electrodialysis with Monovalent Selective Membranes. Chemosphere 2018, 210, 867–876. [Google Scholar] [CrossRef]
- Barros, L.B.M.; Andrade, L.H.; Drewes, J.E.; Amaral, M.C.S. Investigation of Electrodialysis Configurations for Vinasse Desalting and Potassium Recovery. Sep. Purif. Technol. 2019, 229, 115797. [Google Scholar] [CrossRef]
- Lu, K.J.; Cheng, Z.L.; Chang, J.; Luo, L.; Chung, T.S. Design of Zero Liquid Discharge Desalination (ZLDD) Systems Consisting of Freeze Desalination, Membrane Distillation, and Crystallization Powered by Green Energies. Desalination 2019, 458, 66–75. [Google Scholar] [CrossRef]
- Susanto, H. Towards Practical Implementations of Membrane Distillation. Chem. Eng. Process. Process Intensif. 2011, 50, 139–150. [Google Scholar] [CrossRef]
- Tunc, C.M.; Groth, A.M. Sustainable Integrated Membrane Contactor Process for Water Reclamation, Sodium Sulfate Salt and Energy Recovery from Industrial Effluent. Desalination 2011, 283, 187–192. [Google Scholar] [CrossRef]
- Lu, H.; Wang, J.; Wang, T.; Wang, N.; Bao, Y.; Hao, H. Crystallization Techniques in Wastewater Treatment: An Overview of Applications. Chemosphere 2017, 173, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Quoilin, S.; Van Den Broek, M.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186. [Google Scholar] [CrossRef] [Green Version]
- Faisal Ahmed, S.; Khalid, M.; Vaka, M.; Walvekar, R.; Numan, A.; Khaliq Rasheed, A.; Mujawar Mubarak, N. Recent Progress in Solar Water Heaters and Solar Collectors: A Comprehensive Review. Therm. Sci. Eng. Prog. 2021, 25, 100981. [Google Scholar] [CrossRef]
- Mir, N.; Bicer, Y. Thermodynamic Modeling of a Combined Photo-Electrodialysis-Chloralkali System for Sustainable Desalination. Desalination 2021, 499, 114822. [Google Scholar] [CrossRef]
- ChemicalSafetyFacts Uses, Benefits, and Safety of Chlorine|Chemical Safety Facts. Available online: https://www.chemicalsafetyfacts.org/chlorine/ (accessed on 12 February 2022).
- NIOSH Sodium Hydroxide|NIOSH|CDC. Available online: https://www.cdc.gov/niosh/topics/sodium-hydroxide/default.html (accessed on 9 February 2022).
- Das, H.S.; Chowdhury, M.F.F.; Li, S.; Tan, C.W. Fuel Cell and Hydrogen Power Plants. Hybrid Renew. Energy Syst. Microgrids 2021, 313–349. [Google Scholar] [CrossRef]
- F-Chart-Software EES: Engineering Equation Solver|F-Chart Software: Engineering Software. Available online: https://fchartsoftware.com/ees/mastering-ees.php%0Ahttp://fchartsoftware.com/ees/%0Ahttp://www.fchart.com/ees/ (accessed on 8 November 2021).
- Çengel, Y.A.; Boles, M.A. Thermodynamics: An Engineering Approach; McGraw-Hill: New York, NY, USA, 2015; ISBN 9780073398174. [Google Scholar]
- Pektezel, O.; Acar, H.I. Energy and Exergy Analysis of Combined Organic Rankine Cycle-Single and Dual Evaporator Vapor Compression Refrigeration Cycle. Appl. Sci. 2019, 9, 5028. [Google Scholar] [CrossRef] [Green Version]
- Kerme, E.D.; Orfi, J. Exergy-Based Thermodynamic Analysis of Solar Driven Organic Rankine Cycle. J. Therm. Eng. 2015, 1, 192–202. [Google Scholar] [CrossRef]
- Ali, A.; Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Application of Membrane Crystallization for Minerals’ Recovery from Produced Water. Membranes 2015, 5, 772–792. [Google Scholar] [CrossRef] [Green Version]
- HSC Chemistry. Available online: https://www.hsc-chemistry.com/webshop (accessed on 20 April 2022).
- Khan, S.A.; Bicer, Y.; Koç, M. Design and Analysis of a Multigeneration System with Concentrating Photovoltaic Thermal (CPV/T) and Hydrogen Storage. Int. J. Hydrogen Energy 2020, 45, 3484–3498. [Google Scholar] [CrossRef]
- NASA. NASA Salinity: Salinity Explained. Available online: https://salinity.oceansciences.org/science-salinity.htm (accessed on 9 December 2021).
- WA Government Understanding Salinity. Available online: https://www.water.wa.gov.au/water-topics/water-quality/managing-water-quality/understanding-salinity%0A (accessed on 8 February 2022).
- Altaee, A.; AlZainati, N. Novel Thermal Desalination Brine Reject-Sewage Effluent Salinity Gradient for Power Generation and Dilution of Brine Reject. Energies 2020, 13, 1756. [Google Scholar] [CrossRef] [Green Version]
- İnci, M.; Türksoy, Ö. Review of Fuel Cells to Grid Interface: Configurations, Technical Challenges and Trends. J. Clean. Prod. 2019, 213, 1353–1370. [Google Scholar] [CrossRef]
- Pandey, M.; Gogoi, T. Energy and Exergy Analysis of a Reheat Regenerative Vapor Power Cycle. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 427–434. [Google Scholar]
- Oyedepo, S.O.; Fakeye, B.A.; Mabinuori, B.; Babalola, P.O.; Leramo, R.O.; Kilanko, O.; Dirisu, J.O.; Udo, M.; Efemwenkiekie, U.K.; Oyebanji, J.A. Thermodynamics Analysis and Performance Optimization of a Reheat—Regenerative Steam Turbine Power Plant with Feed Water Heaters. Fuel 2020, 280, 118577. [Google Scholar] [CrossRef]
- Ullah, R.; Khraisheh, M.; Esteves, R.J.; McLeskey, J.T.; AlGhouti, M.; Gad-el-Hak, M.; Vahedi Tafreshi, H. Energy Efficiency of Direct Contact Membrane Distillation. Desalination 2018, 433, 56–67. [Google Scholar] [CrossRef]
- Cao, H.; Mao, Y.; Wang, W.; Gao, Y.; Zhang, M.; Zhao, X.; Sun, J.; Song, Z. Thermal-Exergy Efficiency Trade-off Optimization of Pressure Retarded Membrane Distillation Based on TOPSIS Model. Desalination 2022, 523, 115446. [Google Scholar] [CrossRef]
- Al-Obaidani, S.; Curcio, E.; Macedonio, F.; Di Profio, G.; Al-Hinai, H.; Drioli, E. Potential of Membrane Distillation in Seawater Desalination: Thermal Efficiency, Sensitivity Study and Cost Estimation. J. Memb. Sci. 2008, 323, 85–98. [Google Scholar] [CrossRef]
- Ali, E. Energy Efficient Configuration of Membrane Distillation Units for Brackish Water Desalination Using Exergy Analysis. Chem. Eng. Res. Des. 2017, 125, 245–256. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, Y.; Cai, N. Bridging a Bi-Directional Connection between Electricity and Fuels in Hybrid Multienergy Systems. Hybrid Syst. Multi-Energy Netw. Futur. Energy Internet 2021, 41–84. [Google Scholar] [CrossRef]
- Arshad, A.; Ali, H.M.; Habib, A.; Bashir, M.A.; Jabbal, M.; Yan, Y. Energy and Exergy Analysis of Fuel Cells: A Review. Therm. Sci. Eng. Prog. 2019, 9, 308–321. [Google Scholar] [CrossRef]
- Montazerinejad, H.; Fakhimi, E.; Ghandehariun, S.; Ahmadi, P. Advanced Exergy Analysis of a PEM Fuel Cell with Hydrogen Energy Storage Integrated with Organic Rankine Cycle for Electricity Generation. Sustain. Energy Technol. Assess. 2022, 51, 101885. [Google Scholar] [CrossRef]
State # | (mg/s) | (mg/s) | (mg/s) | (mg/s) | Sal (g/kg) |
---|---|---|---|---|---|
33 | 34.83 | 16.65 | 5.22 | 4.95 | 0.5 |
34 | 170 | 81.28 | 25.48 | 24.16 | 0.5 |
39 | 135.2 | 64.63 | 20.26 | 19.21 | 0.5 |
Unit | Type | Capacity |
---|---|---|
Power generation | Reheat-regenerative steam Rankine cycle (SRC) | 1.33 kg/s (Feed water mass flow rate) |
1086 kW (Net power generated) | ||
Fuel cell | Proton exchange membrane fuel cell (PEMFC) | 0.00083 kg/s (Feed Hydrogen mass flow rate) |
0.0067 kg/s (Feed Oxygen mass flow rate) | ||
70.62 kW (Power generated) | ||
Desalination and ions recovery | Direct contact membrane distillation crystallization system (DCMDC-CR) | 5 kg/s (Feed seawater) |
1235 kW (Operating cooling load) | ||
1092 kW (Operating heating load) | ||
Brine management | Chlor-alkali system (CAS) | 420 kW (Operating power) |
0.6 kg/s (Feed NaCl) | ||
Solar energy | Parabolic trough collectors (PTC) solar collectors | 5976 m2 (Total surface area of PTC) |
0.5 kW/m2 (Solar irradiance) | ||
2988 kW (Thermal power generated) | ||
Cooling and air conditioning | Dual evaporator vapor compression refrigeration system (DEVCR) | 1562.8 kW (Absorbed cooling load) |
2.16 COP (Energy coefficient of performance) | ||
7.4 kg/s (Feed R134a) | ||
Greenhouse | Hydroponic farming | 10 × 20 × 3 m (Greenhouse dimensions) |
4.4 kg/s (Feed hydroponic solution) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshebli, R.F.; Bicer, Y. Thermodynamics Analysis of a Membrane Distillation Crystallization Ion Recovery System for Hydroponic Greenhouses Assisted with Renewable Energy. Sustainability 2023, 15, 1876. https://doi.org/10.3390/su15031876
Alshebli RF, Bicer Y. Thermodynamics Analysis of a Membrane Distillation Crystallization Ion Recovery System for Hydroponic Greenhouses Assisted with Renewable Energy. Sustainability. 2023; 15(3):1876. https://doi.org/10.3390/su15031876
Chicago/Turabian StyleAlshebli, Ragad F., and Yusuf Bicer. 2023. "Thermodynamics Analysis of a Membrane Distillation Crystallization Ion Recovery System for Hydroponic Greenhouses Assisted with Renewable Energy" Sustainability 15, no. 3: 1876. https://doi.org/10.3390/su15031876
APA StyleAlshebli, R. F., & Bicer, Y. (2023). Thermodynamics Analysis of a Membrane Distillation Crystallization Ion Recovery System for Hydroponic Greenhouses Assisted with Renewable Energy. Sustainability, 15(3), 1876. https://doi.org/10.3390/su15031876