Growth Performance, Meat Quality, Welfare and Behavior Indicators of Broilers Fed Diets Supplemented with Yarrowia lipolytica Yeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Biomass Production
2.2. Animals, Diets and the Experimental Design
2.3. Production Traits
2.4. Welfare and Behavior Indicators
2.5. Meat Analysis
2.5.1. Materials and Reagents
2.5.2. Physicochemical Analysis
2.5.3. Lipid Oxidation
2.5.4. Fatty Acid Composition
- Σ = Summatory,
- MUFAs = monounsaturated FAs and
- PUFAs = polyunsaturated FAs
2.6. Sensory Evaluation Testing
2.6.1. Participants
2.6.2. Meat Samples
2.6.3. Sensory Evaluation Testing
2.7. Statistical Analysis
3. Results
3.1. Performance Parameters
3.2. Welfare and Behavior Indicators
3.3. Meat Analysis
3.4. Sensory Evaluation Test
3.4.1. Breast Meat
3.4.2. Thigh Meat
3.4.3. Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working paper No. 12-03; FAO: Rome, Italy, 2012. [Google Scholar]
- Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushik, S.J.; Lei, X.G. Meeting Global Feed Protein Demand: Challenge, Opportunity, and Strategy. Annu. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef] [PubMed]
- HighQuest Partners. How the Global Oilseed and Grain Trade Works; U.S. Soybean Export Council: St. Louis, MI, USA, 2008. [Google Scholar]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On Our Plates or Eating at Our Table? A New Analysis of the Feed/Food Debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Tallentire, C.W.; Mackenzie, S.G.; Kyriazakis, I. Can Novel Ingredients Replace Soybeans and Reduce the Environmental Burdens of European Livestock Systems in the Future? J. Clean. Prod. 2018, 187, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Patsios, S.I.; Dedousi, A.; Sossidou, E.Ν.; Zdragas, A. Sustainable Animal Feed Protein through the Cultivation of YARROWIA Lipolytica on Agro-Industrial Wastes and by-Products. Sustainability 2020, 12, 1398. [Google Scholar] [CrossRef] [Green Version]
- Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J.C.; Gerds, M.L.; Hammes, W.P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A.; et al. Food Fermentations: Microorganisms with Technological Beneficial Use. Int. J. Food Microbiol. 2012, 154, 87–97. [Google Scholar] [CrossRef]
- Czech, A.; Smolczyk, A.; Ognik, K.; Kiesz, M. Nutritional Value of Yarrowia Lipolytica Yeast and Its Effect on Growth Performance Indicators n Piglets. Ann. Anim. Sci. 2016, 16, 1091–1100. [Google Scholar] [CrossRef] [Green Version]
- Rywińska, A.; Juszczyk, P.; Wojtatowicz, M.; Robak, M.; Lazar, Z.; Tomaszewska, L.; Rymowicz, W. Glycerol as a Promising Substrate for Yarrowia Lipolytica Biotechnological Applications. Biomass Bioenergy 2013, 48, 148–166. [Google Scholar] [CrossRef]
- Michalik, B.; Biel, W.; Lubowicki, R.; Jacyno, E. Chemical Composition and Biological Value of Proteins of the Yeast Yarrowia Lipolytica Growing on Industrial Glycerol. Can. J. Anim. Sci. 2014, 94, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Groenewald, M.; Boekhout, T.; Neuvéglise, C.; Gaillardin, C.; van Dijck, P.W.M.; Wyss, M. Yarrowia Lipolytica: Safety Assessment of an Oleaginous Yeast with a Great Industrial Potential. Crit. Rev. Microbiol. 2014, 40, 187–206. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2017/1017 of 15 June 2017 Amending Regulation (EU) No 68/2013 on the Catalogue of Feed Materials; European Commission: Brussels, Belgium, 2017; pp. 48–119. Available online: https://eur-lex.europa.eu/eli/reg/2017/1017/oj (accessed on 2 July 2022).
- European Commission. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001; European Commission: Brussels, Belgium, 2015; pp. 1–22. Available online: http://data.europa.eu/eli/reg/2015/2283/oj (accessed on 27 July 2022).
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of Yarrowia Lipolytica Yeast Biomass as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFS2 2019, 17, e05594. [Google Scholar] [CrossRef]
- Czech, A.; Merska, M.; Ognik, K. Blood Immunological and Biochemical Indicators in Turkey Hens Fed Diets With a Different Content of the Yeast Yarrowia Lipolytica. Ann. Anim. Sci. 2014, 14, 935–946. [Google Scholar] [CrossRef] [Green Version]
- Merska, M.; Czech, A.; Ognik, K. The Effect of Yeast Yarrowia Lipolytica on the Antioxidant Indices and Macro-and Microelements in Blood Plasma of Turkey Hens. Pol. J. Vet. Sci. 2015, 18, 709–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merska, M.; Czech, A.; Ognik, K. The Effect of Different Doses of Dried Yeast Yarrowia Lipolytica on Production Effects of Turkey Hens and Hematological Indicators of Blood. Ann. Univ. Mariae Curie-Skłodowska. Sect. EE Zootech. 2013, 31, 35–41. [Google Scholar]
- Czech, A.; Merska-Kazanowska, M.; Całyniuk, Z. Redox Status, Biochemical Parameters and Mineral Elements Content in Blood of Turkey Hens Fed a Diet Supplemented with Yarrowia Lipolytica Yeast and Two Bacillus Species. Animals 2020, 10, 459. [Google Scholar] [CrossRef] [Green Version]
- Czech, A.; Merska-Kazanowska, M.; Ognik, K.; Zięba, G. Effect of the Use of Yarrowia Lipolytica or Saccharomyces Cerevisiae Yeast with a Probiotic in the Diet of Turkey Hens on Growth Performance and Gut Histology. Ann. Anim. Sci. 2020, 20, 1047–1063. [Google Scholar] [CrossRef] [Green Version]
- Czech, A.; Sembratowicz, I.; Zieba, G. Effect of the Use of Yarrowia Lipolytica and Saccharomyces Cerevisiae Yeast with a Probiotic in the Diet of Turkeys on Their Gut Microbiota and Immunity. Vet. Med. 2020, 65, 174–182. [Google Scholar] [CrossRef]
- Czech, A.; Smolczyk, A.; Grela, E.R.; Kiesz, M. Effect of Dietary Supplementation with Yarrowia Lipolytica or Saccharomyces Cerevisiae Yeast and Probiotic Additives on Growth Performance, Basic Nutrients Digestibility and Biochemical Blood Profile in Piglets. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1720–1730. [Google Scholar] [CrossRef]
- Czech, A.; Smolczyk, A.; Ognik, K.; Wlazło, Ł.; Nowakowicz-Dębek, B.; Kiesz, M. Effect of Dietary Supplementation with Yarrowia Lipolytica or Saccharomyces Cerevisiae Yeast and Probiotic Additives on Haematological Parameters and the Gut Microbiota in Piglets. Res. Vet. Sci. 2018, 119, 221–227. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Duarte, M.E.; Kim, S.W. Effects of Yarrowia Lipolytica Supplementation on Growth Performance, Intestinal Health and Apparent Ileal Digestibility of Diets Fed to Nursery Pigs. Anim. Biosci. 2022, 35, 605–613. [Google Scholar] [CrossRef]
- Stefańska, B.; Komisarek, J.; Stanisławski, D.; Gąsiorek, M.; Kasprowicz-Potocka, M.; Frankiewicz, A.; Nowak, W. The Effect of Yarrowia Lipolytica Culture on Growth Performance, Ruminal Fermentation and Blood Parameters of Dairy Calves. Anim. Feed. Sci. Technol. 2018, 243, 72–79. [Google Scholar] [CrossRef]
- Michalik, B.; Jacyno, E.; Lubowicki, R.; Biel, W. Biological Evaluation of the Protein Nutritional Value in the Diets of Rats Based on Cereals and the Yeast Yarrowia Lipolytica Growing on Industrial Glycerol. Acta Agric. Scand. Sect. A Anim. Sci. 2013, 63, 163–168. [Google Scholar] [CrossRef]
- Berge, G.M.; Hatlen, B.; Odom, J.M.; Ruyter, B. Physical Treatment of High EPA Yarrowia Lipolytica Biomass Increases the Availability of n-3 Highly Unsaturated Fatty Acids When Fed to Atlantic Salmon. Aquacult. Nutr. 2013, 19, 110–121. [Google Scholar] [CrossRef]
- Hatlen, B.; Berge, G.M.; Odom, J.M.; Mundheim, H.; Ruyter, B. Growth Performance, Feed Utilisation and Fatty Acid Deposition in Atlantic Salmon, Salmo Salar L., Fed Graded Levels of High-Lipid/High-EPA Yarrowia Lipolytica Biomass. Aquaculture 2012, 364–365, 39–47. [Google Scholar] [CrossRef]
- Caruffo, M.; Navarrete, N.; Salgado, O.; Díaz, A.; López, P.; García, K.; Feijóo, C.G.; Navarrete, P. Potential Probiotic Yeasts Isolated from the Fish Gut Protect Zebrafish (Danio Rerio) from a Vibrio Anguillarum Challenge. Front. Microbiol. 2015, 6, 1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamillo, E.; Reyes-Becerril, M.; Cuesta, A.; Angulo, C. Marine Yeast Yarrowia Lipolytica Improves the Immune Responses in Pacific Red Snapper (Lutjanus Peru) Leukocytes. Fish Shellfish. Immunol. 2017, 70, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Hamza, F.; Vaidya, A.; Apte, M.; Kumar, A.R.; Zinjarde, S. Selenium Nanoparticle-Enriched Biomass of Yarrowia Lipolytica Enhances Growth and Survival of Artemia Salina. Enzym. Microb. Technol. 2017, 106, 48–54. [Google Scholar] [CrossRef]
- Licona-Jain, A.; Campa-Córdova, Á.; Luna-González, A.; Racotta, I.S.; Tello, M.; Angulo, C. Dietary Supplementation of Marine Yeast Yarrowia Lipolytica Modulates Immune Response in Litopenaeus Vannamei. Fish Shellfish. Immunol. 2020, 105, 469–476. [Google Scholar] [CrossRef]
- Aguilar-Macías, O.L.; Ojeda-Ramírez, J.J.; Campa-Córdova, A.I.; Saucedo, P.E. Evaluation of Natural and Commercial Probiotics for Improving Growth and Survival of the Pearl Oyster, Pinctada Mazatlanica, during Late Hatchery and Early Field Culturing. J. World Aquac. Soc. 2010, 41, 447–454. [Google Scholar] [CrossRef]
- Wang, M.; Wang, B.; Jiang, K.; Liu, M.; Shi, X.; Wang, L. A Mitochondrial Manganese Superoxide Dismutase Involved in Innate Immunity Is Essential for the Survival of Chlamys Farreri. Fish Shellfish. Immunol. 2018, 72, 282–290. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Esteban, M.Á.; Angulo, C. Yarrowia Lipolytica, Health Benefits for Animals. Appl. Microbiol. Biotechnol. 2021, 105, 7577–7592. [Google Scholar] [CrossRef]
- Egermeier, M.; Russmayer, H.; Sauer, M.; Marx, H. Metabolic Flexibility of Yarrowia Lipolytica Growing on Glycerol. Front. Microbiol. 2017, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying down the Methods of Sampling and Analysis for the Official Control of Feed; European Commission: Brussels, Belgium, 2009; pp. 1–130. Available online: http://data.europa.eu/eli/reg/2009/152/oj (accessed on 4 September 2022).
- Megazyme. Validation Report: Sucrose/D-Fructose/D-Glucose Assay Kit (Cat. No. K-SUFRG); Validation Report; Ireland, 2018; pp. 1–7. Available online: https://www.megazyme.com/documents/Validation_Report/K-SUFRG_Validation_Report.pdf (accessed on 5 October 2022).
- Gerhardt, C. Soxhlet Extraction Method. Available online: https://www.gerhardt.de/en/analysis-methods/chemical-extraction/ (accessed on 12 October 2022).
- Dedousi, A.; Kritsa, M.-Z.; Đukić Stojčić, M.; Sfetsas, T.; Sentas, A.; Sossidou, E. Production Performance, Egg Quality Characteristics, Fatty Acid Profile and Health Lipid Indices of Produced Eggs, Blood Biochemical Parameters and Welfare Indicators of Laying Hens Fed Dried Olive Pulp. Sustainability 2022, 14, 3157. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Guidelines for the Validation of Chemical Methods for the FDA Foods Program, 3rd ed.; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2019. Available online: https://www.fda.gov/ (accessed on 10 September 2022).
- ISO 21528:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Methods for the Detection and Enumeration of Enterobacteriaceae. International Organization for Standardization (ISO): Ginebra, Switzerland, 2004.
- ISO 16649:2001; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia Coli. International Organization for Standardization (ISO): Ginebra, Switzerland, 2001.
- ISO 7954:1987; Microbiology—General Guidance for Enumeration of Yeasts and Moulds—Colony Count Technique at 25 Degrees C. International Organization for Standardization (ISO): Ginebra, Switzerland, 1987.
- ISO 6579:2002; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella Spp. International Organization for Standardization (ISO): Ginebra, Switzerland, 2002.
- ISO 11290:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria Spp. International Organization for Standardization (ISO): Ginebra, Switzerland, 2017.
- EUR-lex. Council Directive 2007/43/EC of 28 June 2007 Laying down Minimum Rules for the Protection of Chickens Kept for Meat Production. 2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32007L0043&from=EN (accessed on 25 October 2022).
- Aviagen, W. Ross 308: Broiler’s Management and Nutrition Specification. ROSS An Aviagen Brand 2018. Available online: https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerHandbook2018-EN (accessed on 20 September 2022).
- Welfare Quality. Welfare Quality®Assessment Protocol for Poultry (Broilers, Laying Hens); Welfare Quality® Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- Ioannidou, M.D.; Maggira, M.; Samouris, G. Physicochemical Characteristics, Fatty Acids Profile and Lipid Oxidation during Ripening of Graviera Cheese Produced with Raw and Pasteurized Milk. Foods 2022, 11, 2138. [Google Scholar] [CrossRef] [PubMed]
- Nitrogen in Meat; Kjeldahl Method; Association of Official Analytical Chemists (AOAC): Rockville, MD, USA, 1974.
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Eleftheriadou, A.; Samouris, G.; Ioannidou, M.; Kasapidou, E. Changes in Lipid Oxidation and Fatty Acid Composition in Pork and Poultry Meat during Refrigerated and Frozen Storage. Arch. Lebensm. 2010, 61, 173–178. [Google Scholar] [CrossRef]
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Ko, E.-Y.; Saini, R.K.; Keum, Y.-S.; An, B.-K. Age of Laying Hens Significantly Influences the Content of Nutritionally Vital Lipophilic Compounds in Eggs. Foods 2020, 10, 22. [Google Scholar] [CrossRef]
- JASP. Computer Software, Version 0.16.3; JASP Team: Amsterdam, The Netherlands, 2020.
- Swiatkiewicz, S.; Arczewska-Wlosek, A.; Jozefiak, D. The Nutrition of Poultry as a Factor Affecting Litter Quality and Foot Pad Dermatitis - an Updated Review. J. Anim. Physiol. Anim. Nutr. 2017, 101, e14–e20. [Google Scholar] [CrossRef]
- Amer, M.M. REVIEW: Footpad Dermatitis (FPD) in Chickens. Korean J. Food Health Converg. 2020, 6, 11–16. [Google Scholar] [CrossRef]
- Freeman, N.; Tuyttens, F.A.M.; Johnson, A.; Marshall, V.; Garmyn, A.; Jacobs, L. Remedying Contact Dermatitis in Broiler Chickens with Novel Flooring Treatments. Animals 2020, 10, 1761. [Google Scholar] [CrossRef] [PubMed]
- Grimes, J.L.; Smith, J.; Williams, C.M. Some Alternative Litter Materials Used for Growing Broilers and Turkeys. World’s Poult. Sci. J. 2002, 58, 515–526. [Google Scholar] [CrossRef]
- Kaukonen, E.; Norring, M.; Valros, A. Effect of Litter Quality on Foot Pad Dermatitis, Hock Burns and Breast Blisters in Broiler Breeders during the Production Period. Avian Pathol. 2016, 45, 667–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayne, R.K. A Review of the Aetiology and Possible Causative Factors of Foot Pad Dermatitis in Growing Turkeys and Broilers. World’s Poult. Sci. J. 2005, 61, 256–267. [Google Scholar] [CrossRef]
- Choi, J.; Kim, W.K. Dietary Application of Tannins as a Potential Mitigation Strategy for Current Challenges in Poultry Production: A Review. Animals 2020, 10, 2389. [Google Scholar] [CrossRef]
- Olsen, R.H.; Christensen, H.; Kabell, S.; Bisgaard, M. Characterization of Prevalent Bacterial Pathogens Associated with Pododermatitis in Table Egg Layers. Avian Pathol. 2018, 47, 281–285. [Google Scholar] [CrossRef]
- Michalak, M.; Pierzak, M.; Kręcisz, B.; Suliga, E. Bioactive Compounds for Skin Health: A Review. Nutrients 2021, 13, 203. [Google Scholar] [CrossRef]
- de Jong, I.C.; Gunnink, H.; van Harn, J. Wet Litter Not Only Induces Footpad Dermatitis but Also Reduces Overall Welfare, Technical Performance, and Carcass Yield in Broiler Chickens. J. Appl. Poult. Res. 2014, 23, 51–58. [Google Scholar] [CrossRef]
- Saraiva, S.; Saraiva, C.; Stilwell, G. Feather Conditions and Clinical Scores as Indicators of Broilers Welfare at the Slaughterhouse. Res. Vet. Sci. 2016, 107, 75–79. [Google Scholar] [CrossRef]
- Göransson, L.; Yngvesson, J.; Gunnarsson, S. Bird Health, Housing and Management Routines on Swedish Organic Broiler Chicken Farms. Animals 2020, 10, 2098. [Google Scholar] [CrossRef]
- Rehman, K.; Haider, K.; Jabeen, K.; Akash, M.S.H. Current Perspectives of Oleic Acid: Regulation of Molecular Pathways in Mitochondrial and Endothelial Functioning against Insulin Resistance and Diabetes. Rev. Endocr. Metab. Disord. 2020, 21, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Chen, Y.P.; Cheng, Y.F.; Yang, W.L.; Wen, C.; Zhou, Y.M. Effect of Yeast Cell Wall Powder with Different Particle Sizes on the Growth Performance, Serum Metabolites, Immunity and Oxidative Status of Broilers. Anim. Feed. Sci. Technol. 2016, 212, 81–89. [Google Scholar] [CrossRef]
- Gou, Z.Y.; Cui, X.Y.; Li, L.; Fan, Q.L.; Lin, X.J.; Wang, Y.B.; Jiang, Z.Y.; Jiang, S.Q. Effects of Dietary Incorporation of Linseed Oil with Soybean Isoflavone on Fatty Acid Profiles and Lipid Metabolism-Related Gene Expression in Breast Muscle of Chickens. Animal 2020, 14, 2414–2422. [Google Scholar] [CrossRef]
- Zanetti, E.; De Marchi, M.; Dalvit, C.; Molette, C.; Remignon, H.; Cassandro, M. Carcase Characteristics and Qualitative Meat Traits of Three Italian Local Chicken Breeds. Br. Poult. Sci. 2010, 51, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betti, M.; Perez, T.I.; Zuidhof, M.J.; Renema, R.A. Omega-3-Enriched Broiler Meat: 3. Fatty Acid Distribution between Triacylglycerol and Phospholipid Classes. Poult. Sci. 2009, 88, 1740–1754. [Google Scholar] [CrossRef]
- Hernández-Sánchez, J.; Amills, M.; Pena, R.N.; Mercadé, A.; Manunza, A.; Quintanilla, R. Genomic Architecture of Heritability and Genetic Correlations for Intramuscular and Back Fat Contents in Duroc Pigs1. J. Anim. Sci. 2013, 91, 623–632. [Google Scholar] [CrossRef]
- Gregory, M.K.; Gibson, R.A.; Cook-Johnson, R.J.; Cleland, L.G.; James, M.J. Elongase Reactions as Control Points in Long-Chain Polyunsaturated Fatty Acid Synthesis. PLoS ONE 2011, 6, e29662. [Google Scholar] [CrossRef] [Green Version]
- Ogłuszka, M.; Szostak, A.; te Pas, M.F.W.; Poławska, E.; Urbański, P.; Blicharski, T.; Pareek, C.S.; Juszczuk-Kubiak, E.; Dunkelberger, J.R.; Horbańczuk, J.O.; et al. A Porcine Gluteus Medius Muscle Genome-Wide Transcriptome Analysis: Dietary Effects of Omega-6 and Omega-3 Fatty Acids on Biological Mechanisms. Genes Nutr. 2017, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Dal Bosco, A.; Cartoni Mancinelli, A.; Vaudo, G.; Cavallo, M.; Castellini, C.; Mattioli, S. Indexing of Fatty Acids in Poultry Meat for Its Characterization in Healthy Human Nutrition: A Comprehensive Application of the Scientific Literature and New Proposals. Nutrients 2022, 14, 3110. [Google Scholar] [CrossRef]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty Acid Profiles and Health Lipid Indices in the Breast Muscles of Local Polish Goose Varieties. Poultry Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. IJMS 2020, 21, 5695. [Google Scholar] [CrossRef]
- Watson, T.; Shantsila, E.; Lip, G.Y. Mechanisms of Thrombogenesis in Atrial Fibrillation: Virchow’s Triad Revisited. Lancet 2009, 373, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs. Livestock Production Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Zdanowska-Sasiadek, Z.; Michalczuk, M.; Marcinkowska-Lesiak; Damaziak, K. Factors Determining the Course of Lipid Oxidation in Poultry Meat. Zesz. Probl. Post. Nauk. Roln. 2013, 574, 77–84. [Google Scholar]
- Zheng, J.-S.; Hu, X.-J.; Zhao, Y.-M.; Yang, J.; Li, D. Intake of Fish and Marine N-3 Polyunsaturated Fatty Acids and Risk of Breast Cancer: Meta-Analysis of Data from 21 Independent Prospective Cohort Studies. BMJ 2013, 346, f3706. [Google Scholar] [CrossRef] [Green Version]
- Gerber, M. Omega-3 Fatty Acids and Cancers: A Systematic Update Review of Epidemiological Studies. Br. J. Nutr. 2012, 107, S228–S239. [Google Scholar] [CrossRef] [Green Version]
- Bosire, C.; Stampfer, M.J.; Subar, A.F.; Park, Y.; Kirkpatrick, S.I.; Chiuve, S.E.; Hollenbeck, A.R.; Reedy, J. Index-Based Dietary Patterns and the Risk of Prostate Cancer in the NIH-AARP Diet and Health Study. Am. J. Epidemiol. 2013, 177, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Hulan, H.W.; Ackman, R.G.; Ratnayake, W.M.N.; Proudfoot, F.G. Omega-3 Fatty Acid Levels and General Performance of Commercial Broilers Fed Practical Levels of Redfish Meal. Poult. Sci. 1989, 68, 153–162. [Google Scholar] [CrossRef]
- Ratnayake, W.M.N.; Ackman, R.G.; Hulan, H.W. Effect of Redfish Meal Enriched Diets on the Taste Andn-3 Pufa of 42-Day-Old Broiler Chickens. J. Sci. Food Agric. 1989, 49, 59–74. [Google Scholar] [CrossRef]
- Betti, M.; Schneider, B.L.; Wismer, W.V.; Carney, V.L.; Zuidhof, M.J.; Renema, R.A. Omega-3-Enriched Broiler Meat: 2. Functional Properties, Oxidative Stability, and Consumer Acceptance. Poult. Sci. 2009, 88, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, P.; Czauderna, M.; Rozbicka-Wieczorek, A.; Smulikowska, S. The Effect of Dietary Fat, Vitamin E and Selenium Concentrations on the Fatty Acid Profile and Oxidative Stability of Frozen Stored Broiler Meat. J. Anim. Feed Sci. 2015, 24, 244–251. [Google Scholar] [CrossRef]
Items | Dried YLP |
---|---|
Moisture and Volatiles (g/100 g) | 3.21 |
Ash (g/100 g) | 10.96 |
Fat (g/100 g) | 5.52 |
Proteins (g/100 g) | 48.77 |
Crude Fibers % (g/100 g) | 2.20 |
Carbohydrates (g/100 g) | 29.34 |
Sugars (g/100 g) | <0.30 * |
Energy (kcal/100 g) | 362.1 |
Lysine % | 11.4 |
Threonine % | 5.6 |
Fatty Acids (% of total fats) | |
Eicosapentaenoic acid (C20:5 n3) | ND |
Behenic acid (C22:0) | ND |
Linoleic acid (C18:2 n6c) | 35.2% |
Arachidic acid (C20:0) | ND |
Eicosenic acid (C20:1) | 0.9% |
α -linolenic acid (C18:3 n3) | 4.5% |
Margaric acid (C17:0) | 0.5% |
Heptadecenoic acid (C17:1) | 1.6% |
Stearic acid (C18:0) | 2.2% |
Palmitic acid (C16:0) | 9.6% |
Elaidic acid (C18:1 n9t) | 0.5% |
Oleic acid (C18:1 n9c) | 42.5% |
Pentadecanoic acid (C15:0) | 0.5% |
Palmitoleic acid (C16:1) | 1.8% |
Heavy Metals (mg/kg) | |
Arsenic | 0.23 |
Cadmium | 0.004 |
Lead | <0.04 * |
Mercury | <0.10 * |
Microbiological Characterization (cfu/g) | |
Enterobacteriaceae | 4.8 × 106 |
E. coli | 2.1 × 105 |
Yeasts and Molds | 6.8 × 108 |
Salmonella spp. | ND |
Listeria monocytogenes | ND |
Grower (13–20 Days) | Finisher 1 (21–32 Days) | Finisher 2 (33–41 Days) | |||||||
---|---|---|---|---|---|---|---|---|---|
Items | CON | YLP3 | YLP5 | CON | YLP3 | YLP5 | CON | YLP3 | YLP5 |
Ingredients | |||||||||
Wheat | 47.15 | 46.88 | 47.03 | 36.583 | 36.743 | 36.593 | 40.46 | 40.59 | 39.15 |
Corn | 15.0 | 15.2 | 15.03 | 30.0 | 29.9 | 30.08 | 30.0 | 29.95 | 31.4 |
Soybean Meal 46.5% | 30.43 | 27.7 | 25.85 | 25.93 | 23.1 | 21.23 | 21.93 | 19.1 | 17.31 |
Yarrowia Lipolytica | 0 | 3.0 | 5.0 | 0 | 3.0 | 5.0 | 0 | 3.0 | 5.0 |
Sunflower Oil | 4.4 | 4.2 | 4.07 | 5.0 | 4.77 | 4.61 | 5.0 | 4.75 | 4.53 |
MCP * | 0.4 | 0.4 | 0.4 | 0.18 | 0.18 | 0.18 | 0.14 | 0.14 | 0.14 |
Limestone | 1.08 | 1.08 | 1.08 | 0.89 | 0.89 | 0.89 | 0.92 | 0.92 | 0.92 |
NaCl | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 |
Dl-Methionine | 0.34 | 0.34 | 0.34 | 0.29 | 0.29 | 0.29 | 0.25 | 0.25 | 0.25 |
L-Lysine | 0.28 | 0.28 | 0.28 | 0.26 | 0.26 | 0.26 | 0.25 | 0.25 | 0.25 |
L-Threonine | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 |
RONOZYME® HiPhos | 0.02 | 0.02 | 0.02 | 0.015 | 0.015 | 0.015 | 0.01 | 0.01 | 0.01 |
Premix 1 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Mycotoxins Binder | 0.1 | 0.1 | 0.1 | 0.01 | 0.01 | 0.01 | 0.2 | 0.2 | 0.2 |
Enzymes | 0.01 | 0.01 | 0.01 | 0.001 | 0.001 | 0.001 | 0.01 | 0.01 | 0.01 |
Coccidiostat | 0.05 | 0.05 | 0.05 | 0.001 | 0.001 | 0.001 | 0.05 | 0.05 | 0.05 |
Lipidol Ultra 0.075% | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | |||
Avatec 150 (150 g/kg) | 0.05 | 0.05 | 0.05 | ||||||
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Chemical Analysis | |||||||||
Crude Protein (%) | 20.97 | 20.99 | 21.01 | 18.80 | 18.80 | 18.79 | 17.32 | 17.32 | 17.31 |
Crude Fiber (%) | 2.91 | 2.77 | 2.68 | 2.81 | 2.67 | 2.58 | 2.70 | 2.57 | 2.48 |
Fat (%) | 6.1 | 5.90 | 5.77 | 7.05 | 6.82 | 6.67 | 7.05 | 6.80 | 6.62 |
Ash (%) | 3.0 | 3.22 | 3.37 | 2.67 | 2.89 | 3.04 | 2.67 | 2.89 | 3.04 |
Calculated Analysis | |||||||||
ME (kcal/kg) | 2939 | 2941 | 2943 | 3050 | 3051 | 3052 | 3077 | 3077 | 3077 |
Lysine (%) | 1.28 | 2.19 | 2.79 | 1.13 | 2.04 | 2.64 | 1.02 | 1.93 | 2.53 |
Methionine (%) | 0.64 | 0.84 | 0.97 | 0.57 | 0.77 | 0.90 | 0.51 | 0.71 | 0.84 |
Ca (%) | 0.84 | 0.96 | 1.04 | 0.72 | 0.84 | 0.92 | 0.70 | 0.82 | 0.90 |
P (%) | 0.64 | 0.75 | 0.83 | 0.56 | 0.67 | 0.74 | 0.51 | 0.63 | 0.70 |
Na (%) | 0.14 | 0.62 | 0.94 | 0.14 | 0.62 | 0.94 | 0.14 | 0.62 | 0.94 |
CON | YLP3 | YLP5 | |
---|---|---|---|
Body weight (g) | |||
Day 13 | 274.03 ± 2.74 | 273.89 ± 2.52 | 276.11 ± 2.38 |
Day 20 | 687.08 ± 12.31 ab | 719.31 ± 9.40 a | 679.03 ± 11.49 b |
Day 27 | 1297.92 ± 25.50 | 1320.83 ± 18.84 | 1262.36 ± 20.10 |
Day 41 | 2692.92 ± 54.77 | 2717.43 ± 47.26 | 2627.00 ± 48.83 |
Body weight gained (g) | |||
13–20 d | 413.06 ± 13.62 | 445.42 ± 15.22 | 402.92 ± 9.17 |
21–27 d | 610.833 ± 15.34 | 601.528 ± 13.66 | 583.333 ± 12.09 |
28–41 d | 1395.00 ± 37.37 | 1402.29 ± 36.19 | 1364.57 ± 34.78 |
Total period (13–41 d) | 806.30 ± 150.06 | 817.28 ± 149.43 | 784.11 ± 148.18 |
Feed consumption (g) | |||
13–20 d | 582.92 ± 10.49 | 587.36 ± 28.32 | 537.08 ± 5.29 |
21–27 d | 872.50 ± 11.47 a | 821.53 ± 14.87 b | 810.42 ± 8.32 b |
28–41 d | 2005.14 ± 18.24 | 2008.03 ± 13.50 | 2001.84 ± 41.61 |
Total period (13–41 d) | 1153.52 ± 217.08 | 1138.97 ± 220.11 | 1116.45 ± 225.18 |
FCR | |||
13–20 d | 1.41 ± 0.03 a | 1.32 ± 0.02 b | 1.33 ± 0.02 ab |
21–27 d | 1.43 ± 0.03 | 1.37 ± 0.04 | 1.39 ± 0.04 |
28–41 d | 1.44 ± 0.02 | 1.44 ± 0.04 | 1.47 ± 0.01 |
Total period (13–41 d) | 1.43 ± 0.01 | 1.37 ± 0.04 | 1.40 ± 0.02 |
Day 41 | |||
---|---|---|---|
Score 1 | CON | YLP3 | YLP5 |
Feather Cleanliness | |||
0 | 52.78 | 51.43 | 31.42 |
1 | 44.44 | 48.57 | 34.29 |
2 | 2.78 a | 0.00 a | 34.29 b |
3 | |||
Foot Pad Dermatitis | |||
0 | 63.89 a | 91.43 b | 82.86 a |
1 | 5.56 | 5.71 | 11.43 |
2 | 19.44 | 2.86 | 5.71 |
3 | 11.11 | 0.00 | 0.00 |
4 | |||
Hock Burn | |||
0 | 61.11 | 62.86 | 45.71 |
1 | 27.78 | 25.71 | 25.71 |
2 | 5.56 | 8.57 | 14.29 |
3 | 2.78 | 0.00 | 5.72 |
4 | 2.77 | 2.86 | 8.57 |
Quality Behavior Traits | Day 20 | Day 27 | Day 41 | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | YLP3 | YLP5 | CON | YLP3 | YLP5 | CON | YLP3 | YLP5 | |
Active | 36.11 | 41.67 | 27.78 | 36.11 | 19.44 | 27.78 | 5.55 | 17.14 | 8.57 |
Feeding | 22.22 a | 2.78 b | 5.55 a | 2.78 | 2.78 | 2.78 | 2.78 | 2.86 | 0 |
Fearful | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Calm | 27.78 | 47.22 | 50.00 | 58.33 | 72.22 | 63.89 | 91.67 | 80.00 | 85.71 |
Friendly | 13.89 | 8.33 | 13.89 | 2.78 | 5.56 | 5.55 | 0 | 0 | 0 |
Pecking | 0 | 0 | 2.78 | 0 | 0 | 0 | 0 | 0 | 5.72 |
Breast | CON | YLP3 | YLP5 |
---|---|---|---|
Protein % | 23.18 ± 0.34 | 22.58 ± 0.62 | 23.23 ± 0.47 |
Fat % | 0.46 ± 0.20 | 0.43 ± 0.11 | 0.33 ± 0.06 |
pH | 5.68 ± 0.03 | 5.66 ± 0.09 | 5.78 ± 0.05 |
Thigh | |||
Protein % | 20.11 ± 0.30 | 20.31 ± 0.22 | 19.85 ± 0.26 |
Fat % | 0.58 ± 0.09 | 0.78 ± 0.10 | 0.51 ± 0.10 |
pH | 6.00 ± 0.05 | 6.03 ± 0.06 | 6.04 ± 0.04 |
MDA ppb (ng/gr) | CON | YLP3 | YLP5 |
---|---|---|---|
Thigh meat lipid oxidation | |||
Day 1 of storage | 87.63 ± 9.37 a | 57.36 ± 4.72 b | 52.71 ± 8.33 b |
breast meat lipid oxidation | |||
Day 1 of storage | 46.33 ± 8.27 a | 24.81 ± 3.97 b | 30.08 ± 5.68 ab |
Item | CON | YLP3 | YLP5 |
---|---|---|---|
MUFA % | 36.78 ± 0.65 b | 41.97 ± 1.81 a | 35.46 ± 0.76 b |
PUFA % | 2.84 ± 1.18 b | 16.66 ± 4.71 a | 4.39 ± 0.92 b |
SFA % | 60.38 ± 1.17 a | 41.37 ± 6.03 b | 60.15 ± 1.23 a |
PUFA/SFA | 0.05 ± 0.02 b | 0.52 ± 0.18 a | 0.07 ± 0.02 b |
PUFA n6 | 2.72 ± 1.10 b | 16.10 ± 4.55 a | 4.04 ± 0.88 b |
PUFA n3 | 0.12 ± 0.09 | 0.35 ± 0.09 | 0.29 ± 0.07 |
PUFA n6/ PUFA n3 | 12.92 ± 1.08 b | 44.13 ± 8.86 a | 12.33 ± 2.18 b |
AI | 1.62 ± 0.08 a | 0.85 ± 0.23 b | 1.64 ± 0.10 a |
TI | 2.90 ± 0.16 a | 1.55 ± 0.42 b | 2.80 ± 0.14 a |
h/H | 0.80 ± 0.06 b | 2.07 ± 0.44 a | 0.85 ± 0.06 b |
Fatty acids | |||
Myristic acid (C14:0) | 1.930 ± 0.234 a | 1.017 ± 0.179 b | 2.415 ± 0.497 a |
Myristelic acid (C14:1) | 0.168 ± 0.059 | 0.092 ± 0.011 | 0.112 ± 0.025 |
Pentadecanoic acid (C15:0) | 0.410 ± 0.054 a | 0.227 ± 0.029 b | 0.477 ± 0.036 a |
Pentadecenoic acid (C15:1) | ND | ND | ND |
Palmitic acid (C16:0) | 40.922 ± 1.420 a | 28.717 ± 3.921 b | 39.470 ± 1.384 a |
Palmitoleic acid (C16:1) | 3.024 ± 0.333 a | 3.088 ± 0.221 a | 1.878 ± 0.081 b |
Margaric acid (C17:0) | 0.512 ± 0.071 | 0.372 ± 0.152 | 0.568 ± 0.077 |
Heptadecenoic acid (C17:1) | ND | ND | ND |
Stearic acid (C18:0) | 15.090 ± 0.841 ab | 10.358 ± 1.889 b | 15.520 ± 0.746 a |
Elaidic acid (C18:1n9t) | 0.424 ± 0.027 b | 0.413 ± 0.046 b | 0.713 ± 0.084 a |
Oleic (C18:1n9c) | 31.244 ± 0.389 b | 36.413 ± 1.650 a | 30.752 ± 0.666 b |
Vaccenic acid (C18:1n7) | 1.586 ± 0.104 | 1.562 ± 0.092 | 1.428 ± 0.149 |
Linolelaidic (C18:2n6t) | ND | ND | ND |
Linoleic acid (C18:2n6c) | 2.578 ± 1.037 b | 15.507 ± 4.407 a | 3.658 ± 0.841 b |
γ-Linolenic acid (C18:3n6) | 0.140 ± 0.069 | 0.238 ± 0.065 | 0.377 ± 0.072 |
α-Linolenic acid (C18:3n3) | 0.090 ± 0.064 | 0.328 ± 0.101 | 0.250 ± 0.070 |
Conjugated linoleic acid CLA | ND | 0.035 ± 0.087 | 0.067 ± 0.163 |
Stearidonic acid (C18:4n3) | ND | ND | ND |
Arachidic acid (C20:0) | 0.494 ± 0.099 a | 0.252 ± 0.034 b | 0.502 ± 0.066 a |
Gondoic acid (C20:1n9) | 0.338 ± 0.150 | 0.358 ± 0.030 | 0.305 ± 0.098 |
Eicosadienoic acid (C20:2) | ND | 0.135 ± 0.053 | ND |
Eicosadienoic acid (C21:0) | 0.120 ± 0.062 ab | 0.045 ± 0.021 b | 0.232 ± 0.045 a |
Dihomo-γ-linolenic acid (C20:3n6) | ND | 0.090 ± 0.041 | ND |
Arachidonic acid (C20:4n6) | ND | 0.223 ± 0.081 | ND |
Eicosatrienoic acid (C20:3n3) | ND | ND | ND |
Behenic acid (C22:0) | 0.704 ± 0.169 ab | 0.302 ± 0.035 b | 0.643 ± 0.031 a |
Eicosapentaenoic acid (EPA)(C20:5n3) | ND | ND | ND |
Docosenoic acid (C22:1n11) | ND | ND | ND |
Erucic acid (C22:1n9) | ND | ND | 0.290 ± 0.096 |
Docosadienoic acid (C22:2) | ND | ND | ND |
Tricosanoic acid (C23:0) | ND | ND | ND |
Docosatetraenoic acid (C22:4n6) | ND | 0.043 ± 0.028 | ND |
Lignoceric acid (C24:0) | 0.196 ± 0.090 ab | 0.082 ± 0.031 b | 0.323 ± 0.082 a |
Docosapentaenoic acid (C22:5n3) | ND | ND | ND |
Nervonic acid (C24:1) | ND | ND | ND |
Docosahexaenoic acid (DHA) (C22:6n3) | ND | ND | ND |
Item | CON | YLP3 | YLP5 |
---|---|---|---|
MUFA % | 38.39 ± 1.38 | 36.93 ± 4.56 | 35.54 ± 3.08 |
PUFA % | 2.71 ± 0.72 | 12.11 ± 4.49 | 13.77 ± 5.37 |
SFA % | 58.90 ± 2.03 | 50.97 ± 8.63 | 50.69 ± 7.83 |
PUFA/SFA | 0.05 ± 0.01 | 0.37 ± 0.16 | 0.42 ± 0.21 |
PUFA n6 | 2.65 ± 0.72 | 11.45 ± 4.35 | 13.03 ± 5.10 |
PUFA n3 | 0.06 ± 0.04 a | 0.45 ± 0.13 b | 0.49 ± 0.11 b |
PUFA n6/ PUFA n3 | 25.58 ± 18.23 | 28.49 ± 7.30 | 21.98 ± 5.39 |
AI | 1.56 ± 0.14 | 1.65 ± 0.61 | 1.46 ± 0.49 |
TI | 2.80 ± 0.24 | 2.58 ± 0.84 | 2.48 ± 0.81 |
h/H | 0.83 ± 0.08 | 1.49 ± 0.48 | 1.61 ± 0.53 |
Fatty acids | |||
Myristic acid (C14:0) | 1.998 ± 0.286 | 2.265 ± 0.647 | 1.727 ± 0.393 |
Myristelic acid (C14:1) | 0.114 ± 0.013 | 0.210 ± 0.083 | 0.112 ± 0.016 |
Pentadecanoic acid (C15:0) | 0.432 ± 0.120 | 0.303 ± 0.061 | 0.410 ± 0.065 |
Pentadecenoic C15:1) | ND | ND | ND |
Palmitic acid (C16:0) | 41.054 ± 1.738 | 36.408 ± 6.136 | 34.575 ± 5.296 |
Palmitoleic acid (C16:1) | 3.368 ± 0.236 a | 3.463 ± 0.606 ab | 2.562 ± 0.118 b |
Margaric acid (C17:0) | 0.312 ± 0.082 | 0.323 ± 0.085 | 0.417 ± 0.080 |
Heptadecenoic acid (C17:1) | ND | ND | ND |
Stearic acid (C18:0) | 13.972 ± 0.750 | 10.928 ± 2.162 | 12.372 ± 1.859 |
Elaidic acid (C18:1n9t) | 0.582 ± 0.167 | 0.385 ± 0.093 | 0.412 ± 0.046 |
Oleic (C18:1n9c) | 32.530 ± 1.217 | 30.955 ± 3.870 | 30.623 ± 3.002 |
Vaccenic acid (C18:1n7) | 1.450 ± 0.089 | 1.373 ± 0.157 | 1.295 ± 0.097 |
Linolelaidic (C18:2n6t) | ND | ND | ND |
Linoleic acid (C18:2n6c) | 2.574 ± 0.681 | 11.113 ± 4.284 | 12.402 ± 5.059 |
γ-Linolenic (C18:3n6) | ND | 0.188 ± 0.057 a | 0.492 ± 0.101 b |
α-Linolenic (C18:3n3) | 0.060 ± 0.040 a | 0.365 ± 0.103 b | 0.487 ± 0.105 b |
Conjugated linoleic acid CLA | ND | 0.163 ± 0.077 a | 0.203 ± 0.142 b |
Stearidonic acid (C18:4n3) | ND | ND | ND |
Arachidic acid (C20:0) | 0.468 ± 0.091 | 0.287 ± 0.049 | 0.385 ± 0.070 |
Gondoic acid (C20:1n9) | 0.342 ± 0.172 | 0.490 ± 0.111 | 0.422 ± 0.122 |
Eicosadienoic acid (C20:2) | ND | 0.047 ± 0.031 | 0.047 ± 0.031 |
Eicosadienoic acid (C21:0) | ND | ND | 0.112 ± 0.051 |
Dihomo-γ-linolenic acid (C20:3n6) | ND | ND | ND |
Arachidonic acid (C20:4n6) | ND | 0.120 ± 0.054 | 0.105 ± 0.067 |
Eicosatrienoic acid (C20:3n3) | ND | ND | ND |
Behenic acid (C22:0) | 0.430 ± 0.185 | 0.312 ± 0.084 | 0.500 ± 0.143 |
Eicosapentaenoic acid (EPA)(C20:5n3) | ND | ND | ND |
Docosenoic acid (C22:1n11) | ND | ND | ND |
Erucic acid (C22:1n9) | ND | ND | ND |
Docosadienoic acid (C22:2) | ND | ND | ND |
Tricosanoic acid (C23:0) | ND | ND | ND |
Docosatetraenoic acid (C22:4n6) | ND | ND | ND |
Lignoceric acid(C24:0) | 0.238 ± 0.129 | 0.115 ± 0.047 | 0.197 ± 0.083 |
Docosapentaenoic acid (C22:5n3) | ND | ND | ND |
Nervonic acid (C24:1) | ND | ND | ND |
Docosahexaenoic acid (DHA) (C22:6n3) | ND | ND | ND |
Type of Meat | |||||
---|---|---|---|---|---|
Tenderness | Juiciness | Flavor | Color | Overall Acceptance | |
Breast meat | |||||
CON | 3.11 ± 0.18 | 3.17 ± 0.20 | 3.11 ± 0.20 | 3.39 ± 0.18 | 3.39 ± 0.18 |
YLP3 | 3.44 ± 1.26 | 3.33 ± 0.23 | 3.44 ± 0.20 | 3.56 ± 0.17 | 3.67 ± 0.21 |
YLP5 | 3.22 ± 0.27 | 3.00 ± 0.23 | 2.94 ± 0.15 | 3.33 ± 0.18 | 3.28 ± 0.23 |
Thigh meat | |||||
CON | 3.40 ± 0.29 | 3.27 ± 0.25 | 3.27 ± 0.21 | 3.20 ± 0.28 | 3.33 ± 0.21 b |
YLP3 | 3.87 ± 0.26 | 3.67 ± 0.23 | 3.40 ± 0.21 | 3.73 ± 0.27 | 3.53 ± 0.26 ab |
YLP5 | 4.13 ± 0.22 | 3.93 ± 0.27 | 3.53 ± 0.22 | 3.87 ± 0.24 | 4.00 ± 0.20 a |
Breast Meat | Thigh Meat | |||
---|---|---|---|---|
R2 = 0.792 | R2 = 0.629 | |||
b1 | p2 | b1 | p2 | |
Tenderness | 0.489 | <0.001 | 0.44 | 0.015 |
Juiciness | 0.093 | 0.297 | 0.192 | 0.311 |
Flavor | 0.342 | <0.001 | 0.151 | 0.227 |
Color | 0.156 | 0.078 | 0.23 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dedousi, A.; Patsios, S.I.; Kritsa, M.-Z.; Kontogiannopoulos, K.N.; Ioannidou, M.; Zdragas, A.; Sossidou, E.N. Growth Performance, Meat Quality, Welfare and Behavior Indicators of Broilers Fed Diets Supplemented with Yarrowia lipolytica Yeast. Sustainability 2023, 15, 1924. https://doi.org/10.3390/su15031924
Dedousi A, Patsios SI, Kritsa M-Z, Kontogiannopoulos KN, Ioannidou M, Zdragas A, Sossidou EN. Growth Performance, Meat Quality, Welfare and Behavior Indicators of Broilers Fed Diets Supplemented with Yarrowia lipolytica Yeast. Sustainability. 2023; 15(3):1924. https://doi.org/10.3390/su15031924
Chicago/Turabian StyleDedousi, Anna, Sotiris I. Patsios, Maria-Zoi Kritsa, Konstantinos N. Kontogiannopoulos, Maria Ioannidou, Antonios Zdragas, and Evangelia N. Sossidou. 2023. "Growth Performance, Meat Quality, Welfare and Behavior Indicators of Broilers Fed Diets Supplemented with Yarrowia lipolytica Yeast" Sustainability 15, no. 3: 1924. https://doi.org/10.3390/su15031924
APA StyleDedousi, A., Patsios, S. I., Kritsa, M. -Z., Kontogiannopoulos, K. N., Ioannidou, M., Zdragas, A., & Sossidou, E. N. (2023). Growth Performance, Meat Quality, Welfare and Behavior Indicators of Broilers Fed Diets Supplemented with Yarrowia lipolytica Yeast. Sustainability, 15(3), 1924. https://doi.org/10.3390/su15031924