Upcycling of FGD Gypsum into a Product to Reduce Interrill Erosion: A Study Assessing Methods of Soil Surface Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Soil Conditioners and Upcycling of FGD Gypsum
2.3. Experimental Setup
2.4. Rainfall Simulation
2.5. Thin Section Preparation and Analysis
2.6. Data Analysis
3. Results and Discussion
3.1. Soil Erosion Evaluation
3.2. Micromorphological Observations of Surfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cochrane, B.H.; Reichert, J.M.; Eltz, F.L.; Norton, L.D. Controlling soil erosion and runoff with polyacrylamide and phosphogypsum on subtropical soil. Trans. ASABE 2005, 48, 149–154. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Norton, L.D.; Shainberg, I. Effect of water chemistry and soil amendments on a silt loam soil—Part 1: Infiltration and runoff. Trans. ASABE 1997, 40, 1549–1554. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Norton, L.D.; Shainberg, I. Effect of water chemistry and soil amendments on a silt loam soil—Part 2: Soil erosion. Trans. ASABE 1997, 40, 1555–1561. [Google Scholar] [CrossRef]
- Dontsova, K.M.; Norton, L.D. Clay dispersion, infiltration, and erosion as influenced by exchangeable Ca and Mg. Soil Sci. 2002, 167, 184–193. [Google Scholar] [CrossRef]
- Norton, L.D.; Zhang, X.C. Liming to improve chemical and physical properties of soil. In Handbook of Soil Conditioners; Wallace, A., Terry, R.E., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Cogo, N.P.; Moldenhauer, W.C.; Foster, G.R. Soil Loss Reductions from Conservation Tillage Practices. Soil Sci. Soc. Am. J. 1984, 48, 368–373. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); USDA—ARS, U.S. Government Printing Office: Washington, DC, USA, 1997.
- Darboux, F.; Huang, C.H. Does Soil Surface Roughness Increase or Decrease Water and Particle Transfers? Soil Sci. Soc. Am. J. 2005, 69, 748–756. [Google Scholar] [CrossRef] [Green Version]
- Acuña-Guzman, S.F.; Norton, L.D. Interrill erosion on random and geometrically ordered rough surfaces. In Proceedings of the ASA-CSSA-SSSA Annual Meeting, Indianapolis, IN, USA, 12–16 November 2006. [Google Scholar]
- Favaretto, N.; Norton, L.D.; Joern, B.C.; Brouder, S.M. Gypsum amendment and exchangeable calcium and magnesium affecting phosphorus and nitrogen in runoff. Soil Sci. Soc. Am. J. 2006, 70, 1788–1796. [Google Scholar] [CrossRef] [Green Version]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Levy, G.J.; Torrento, J.R. Clay dispersion and macroaggregate stability as affected by exchangeable potassium and sodium. Soil Sci. 1995, 160, 352–358. [Google Scholar] [CrossRef]
- Armstrong, A.S.B.; Tanton, T.W. Gypsum applications to aggregated saline-sodic clay topsoils. Eur. J. Soil Sci. 1992, 43, 249–260. [Google Scholar] [CrossRef]
- Hu, W.; Cheng, W.C.; Wang, L.; Xue, Z.F. Micro-structural characteristics deterioration of intact loess under acid and saline solutions and resultant macro-mechanical properties. Soil Tillage Res. 2022, 220, 105382. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, W.C.; Xue, Z.F. Investigating microscale structural characteristics and resultant macroscale mechanical properties of loess exposed to alkaline and saline environments. Bull. Eng. Geol. Environ. 2022, 81, 146. [Google Scholar] [CrossRef]
- Ahmad, S.; Ghafoor, A.; Akhtar, M.E.; Khan, M.Z. Implication of gypsum rates to optimize hydraulic conductivity for variable-texture saline–sodic soils reclamation. Land Degrad. Dev. 2015, 27, 550–560. [Google Scholar] [CrossRef]
- Norton, D.; Shainberg, I.; Cichacek, L.; Edwards, J.H. Erosion and soil chemical properties. In Soil Quality and Soil Erosion; Lal, R., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 39–56. [Google Scholar]
- Keren, R.; Shainberg, I.; Frenkel, H.; Kalo, Y. The effect of exchangeable sodium and gypsum on surface runoff from loess soil. Soil Sci. Soc. Am. J. 1983, 47, 1001–1004. [Google Scholar] [CrossRef]
- Outbakat, M.B.; El Mejahed, K.; El Gharous, M.; El Omari, K.; Beniaich, A. Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils. Sustainability 2022, 14, 13087. [Google Scholar] [CrossRef]
- Kazman, Z.; Shainberg, I.; Gal, M. Effect of low-levels of exchangeable sodium and applied phosphogypsum on the infiltration rate of various soils. Soil Sci. 1983, 135, 184–192. [Google Scholar] [CrossRef]
- Smith, H.J.C.; Levy, G.J.; Shainberg, I. Water-droplet energy and soil amendments: Effect on infiltration and erosion. Soil Sci. Soc. Am. J. 1990, 54, 1084–1087. [Google Scholar] [CrossRef]
- Tang, Z.; Lei, T.; Yu, J.; Shainberg, I.; Mamedov, A.I.; Ben-Hur, M.; Levy, G.J. Runoff and interrill erosion in sodic soils treated with dry PAM and phosphogypsum. Soil Sci. Soc. Am. J. 2006, 70, 679–690. [Google Scholar] [CrossRef]
- Lepore, B.J.; Thompson, A.M.; Petersen, A. Impact of polyacrylamide delivery method with lime or gypsum for soil and nutrient stabilization. J. Soil Water Conserv. 2009, 64, 223–231. [Google Scholar] [CrossRef]
- Zhang, X.C.; Miller, W.P.; Nearing, M.A.; Norton, L.D. Effects of surface treatment of surface sealing, runoff, and interrill erosion. Trans. ASABE 1998, 41, 989–994. [Google Scholar] [CrossRef]
- Norton, L.D.; Dontsova, K. Use of soil amendments to prevent soil surface sealing and control erosion. Adv. GeoEcol. 1998, 31, 581–587. [Google Scholar]
- Laird, D.A. Bonding between polyacrylamide and clay mineral surfaces. Soil Sci. 1997, 162, 826–832. [Google Scholar] [CrossRef]
- Peterson, J.R.; Flanagan, D.C.; Tishmack, J.K. Polyacrylamide and gypsiferous material effects on runoff and erosion under simulated rainfall. Trans. ASABE 2002, 45, 1011–1019. [Google Scholar] [CrossRef]
- Kost, D.; Ladwig, K.J.; Chen, L.; DeSutter, T.M.; Espinoza, L.; Norton, L.D.; Smeal, D.; Torbert, H.A.; Watts, D.B.; Wolkowski, R.P.; et al. Meta-Analysis of Gypsum Effects on Crop Yields and Chemistry of Soils, Plant Tissues, and Vadose Water at Various Research Sites in the USA. J. Environ. Qual. 2018, 47, 1284–1292. [Google Scholar] [CrossRef]
- Watts, D.B.; Dick, W.A. Sustainable uses of FGD gypsum in agricultural systems: Introduction. J. Environ. Qual. 2014, 43, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Zoca, S.M.; Penn, C. An important tool with no instruction manual: A review of gypsum use in agriculture. Adv. Agron. 2017, 144, 1–44. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Cities and Circular Economy for Food. 2019. Available online: https://ellenmacarthurfoundation.org/cities-and-circular-economy-for-food (accessed on 3 November 2022).
- American Coal Ash Association. Publications—Production & Use Reports. 2022. Available online: https://acaa-usa.org/publications/production-use-reports/ (accessed on 3 November 2022).
- US Department of Agriculture—Natural Resources Conservation Service. Amending Soil Properties with Gypsum Products, Code 333 (Ac.). 2015. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-08/Amending_Soil_Properties_with_Gypsum_Products_333_CPS_June_2015_Final.pdf (accessed on 3 November 2022).
- USEPA—National Service Center for Environmental Publications (NSCEP). Agricultural Uses for Flue Gas Desulfurization (FGD) Gypsum. 2008. Available online: http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1001II9.txt (accessed on 3 November 2022).
- Pol, V.G. Upcycling: Converting Waste Plastics into Paramagnetic, Conducting, Solid, Pure Carbon Microspheres. Environ. Sci. Technol. 2010, 44, 4753–4759. [Google Scholar] [CrossRef]
- Soil Survey Staff—National Resources Conservation Service. US Department of Agriculture. Official Soil Series Descriptions. Available online: https://www.nrcs.usda.gov/resources/data-and-reports/official-soil-series-descriptions-osd. (accessed on 3 November 2022).
- Rao, A.R.; Kao, S. Statistical Analysis of Indiana Rainfall Data; Publication FHWA/IN/JTRP-2006/08. Joint Transportation Research Program; Indiana Department of Transportation: Indianapolis, IN, USA; Purdue University: West Lafayette, IN, USA, 2006. [CrossRef]
- Foster, G.R.; Eppert, E.P.; Meyer, L.D. A programmable rainfall simulator for field plots. In Agricultural Reviews and Manuals, ARM-W-10; USDA-ARS: Oakland, CA, USA, 1979; pp. 45–49. [Google Scholar]
- Innes, R.P.; Pluth, D.J. Thin section preparation using an epoxy impregnation for petrographic and electron microprobe analysis. Soil Sci. Soc. Am. J. 1970, 34, 483–485. [Google Scholar] [CrossRef]
- SAS Institute. Release 9.1 TS Level 1M3; SAS Institute: Cary, NC, USA, 2003. [Google Scholar]
- Acuña, S.F.; Norton, L.D.; Ventura, E.J. Reduction of Interrill Erosion by different application methods of Polyacrylamide and Gypsum. In Proceedings of the 21st Century Watershed Technology: Improving Water Quality and Environment Conference, Concepcion, Chile, 29 March–3 April 2008. [Google Scholar] [CrossRef]
- Norton, L.D. Micromorphological study of surface seals developed under rainfall simulation. Geoderma 1987, 40, 127–140. [Google Scholar] [CrossRef]
Property | Value |
---|---|
pH in water (1:1) | 5.6 |
Organic matter, g kg−1 | 1.4 |
Available Nitrate-N, mg kg−1 | 90 |
Available P, mg kg−1 | 14 |
Exchangeable K, mg kg−1 | 69 |
Exchangeable Mg, mg kg−1 | 252 |
Exchangeable Ca, mg kg−1 | 1077 |
Exchangeable Na, mg kg−1 | 10 |
Soluble salts (mmhos cm−1) | 0.5 |
Treatment | Sediment Concentration * gL−1 | Erosion Rate *** g m−2 h−1 | Water Discharge * g s−1 | Soil Loss *** g s−1 |
---|---|---|---|---|
GOR Control | 18.4 a | 955.4 a | 10.1 a | 11.8 a |
S-PAM + FGD | 12.1 b | 535.2 b | 9.1 b | 6.6 b |
P-PAM + FGD | 7.7 bc | 327.3 bc | 8.7 b | 4.1 bc |
Pell-PAM + FGD | 5.0 c | 217.0 c | 8.9 b | 2.7 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acuña-Guzman, S.F.; Norton, L.D. Upcycling of FGD Gypsum into a Product to Reduce Interrill Erosion: A Study Assessing Methods of Soil Surface Application. Sustainability 2023, 15, 1977. https://doi.org/10.3390/su15031977
Acuña-Guzman SF, Norton LD. Upcycling of FGD Gypsum into a Product to Reduce Interrill Erosion: A Study Assessing Methods of Soil Surface Application. Sustainability. 2023; 15(3):1977. https://doi.org/10.3390/su15031977
Chicago/Turabian StyleAcuña-Guzman, Salvador F., and L. Darrell Norton. 2023. "Upcycling of FGD Gypsum into a Product to Reduce Interrill Erosion: A Study Assessing Methods of Soil Surface Application" Sustainability 15, no. 3: 1977. https://doi.org/10.3390/su15031977
APA StyleAcuña-Guzman, S. F., & Norton, L. D. (2023). Upcycling of FGD Gypsum into a Product to Reduce Interrill Erosion: A Study Assessing Methods of Soil Surface Application. Sustainability, 15(3), 1977. https://doi.org/10.3390/su15031977