Effects of Counter Tillage and Slope Gradient on Nutrient Losses on Sloping Farmland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil
2.2. Rainfall Simulations
2.3. Soil Sample Collection and Analysis
2.4. Statistical Analysis
2.4.1. Runoff and Sediment Analysis
2.4.2. AP, NO3−-N and NH4+-N Analysis
2.4.3. Analysis Methods
3. Results
3.1. Runoff and Sediment Generation
3.2. Nutrient Losses in the Runoff
3.3. Nutrient Losses in the Sediment
3.4. Nutrient Reduction Benefits
3.5. Relationship between Nutrient Losses Rate and RR or SR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, K.L. Varieties of Erosion and Runoff Sediment in Yellow River Basin; Chinese Sciences and Technique Press: Beijing, China, 1993; pp. 12–13. (In Chinese) [Google Scholar]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2004, 124, 3–22. [Google Scholar] [CrossRef]
- Xu, G.C.; Cheng, Y.T.; Li, P.; Li, Z.B. Effects of natural rainfall on soil and nutrient erosion on sloping cropland in a small watershed of the Dan River, China. Quat. Int. 2015, 380–381, 327–333. [Google Scholar] [CrossRef]
- Guo, S.S.; Zhu, Z.R.; Leting, L. Effects of climate change and human activities on soil erosion in the xihe river basin, China. Water 2018, 10, 1085. [Google Scholar] [CrossRef] [Green Version]
- Jane, Q. China faces up to groundwater crisis. Nature 2010, 466, 308. [Google Scholar]
- Liu, Y.; Tao, Y.; Wan, K.Y.; Zhang, G.S.; Liu, D.B.; Xiong, G.Y.; Chen, F. Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China. Agric. Water Manag. 2012, 110, 34–40. [Google Scholar] [CrossRef]
- Li, Z.W.; Liu, C.; Dong, Y.T. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China. Soil Tillage Res. 2017, 166, 1–9. [Google Scholar] [CrossRef]
- Kladivko, E.J.; Donald, R.J.; Mannering, J.V. Conservation tillage effects on soil properties and yield of corn and soya beans in Indiana. Soil Tillage Res. 1986, 8, 277–287. [Google Scholar] [CrossRef]
- Yang, S.Q.; Han, R.Y.; Xing, L.; Liu, H.Y.; Wu, H.J.; Yang, Z.L. Effect of slope farmland soil and water and soil nitrogen and phosphorus loss based on different crop and straw applications and ridge patterns in the basin of the main stream of the Songhua River. Acta Ecol. Sin. 2018, 38, 42–47. [Google Scholar] [CrossRef]
- Zhao, L.S.; Hou, R.; Wu, F.Q.; Keesstra, S. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil Tillage Res. 2018, 179, 47–53. [Google Scholar] [CrossRef]
- Huo, J.Y.; Liu, C.J.; Yu, X.X.; Chen, L.H.; Zheng, W.G.; Yang, Y.H.; Yin, C.W. Direct and indirect effects of rainfall and vegetation coverage on runoff, soil loss, and nutrient loss in a semi-humid climate. Hydrol. Process. 2020, 35, 1085–1099. [Google Scholar] [CrossRef]
- Sharpley, A.N. The Enrichment of Soil Phosphorus in Runoff Sediments. J. Environ. Qual. 1980, 9, 521–526. [Google Scholar] [CrossRef]
- Qian, X.Y.; Shen, G.X.; Huang, L.H. Characteristics of nitrogen and phosphorus losses with rainfall-runoff from sandy dry field in Chongming Dongtan. J. Soil Water Conserv. 2010, 24, 11–14. [Google Scholar]
- Baker, J.L.; Laflen, J.M.; Johnson, H.P. Effects of tillage systems on runoff losses of pesticides: A rainfall simulation study. Am. Soc. Agric. Biol. Eng. 1978, 21, 0886–0892. [Google Scholar] [CrossRef]
- Zhang, J.H.; Jia, L.T.; Zhang, Z.L. Tillage erosion effect on soil hydrological properties in a hilly landscape. J. Hydrol. Eng. 2017, 22, 04017034. [Google Scholar] [CrossRef]
- Zhao, L.S.; Fang, Q.; Hou, R. Effect of rainfall intensity and duration on soil erosion on slopes with different microrelief patterns. Geoderma 2021, 396, 115085. [Google Scholar] [CrossRef]
- Xia, L.Z.; Liu, G.H.; Ma, L.; Yang, L.Z. The effects of contour hedges and reduced tillage with ridge furrow cultivation on nitrogen and phosphorus losses from sloping arable land. J. Soils Sediments 2014, 14, 462–470. [Google Scholar] [CrossRef]
- Cherobim, V.F.; Huang, C.H.; Favaretto, N. Tillage system and time post-liquid dairy manure: Effects on runoff, sediment and nutrients losses. Agric. Water Manag. 2017, 184, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.Y.; Fang, H.Y.; Qi, D.L. A Review on Rill Erosion Process and Its Influencing Factors. Chin. Geogr. Sci. 2013, 23, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, Q.J.; Shao, M.A. Laboratory experiments of soil nutrient transfer in the loess slope with surface runoff during simulated rainfall. Trans. Chin. Soc. Agric. Eng. 2006, 6, 39–44. [Google Scholar]
- Liu, B.Z.; Li, G.L.; Wu, F.Q.; Zhao, X.G. The regular patterns of the loss of soil nutrients on Southern Loess Plateau. J. Soil Water Conserv. 1995, 9, 76–86. [Google Scholar]
- Sims, J.T.; Simard, R.R.; Joern, B.C. Phosphorus Loss in Agricultural Drainage: Historical Perspective and Current Research. J. Environ. Qual. 1998, 27, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.N.; Kleinman-Peter, J.A.; Heathwaite, A.L.; Gburek, W.J.; Weld, J.L.; Folmar, G.J. Integrating Contributing Areas and Indexing Phosphorus Loss from Agricultural Watersheds. J. Environ. Qual. 2008, 37, 1488–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.S.; Pan, C.Z.; Liu, C.L.; Luo, M.J.; Guo, Y.H. Spatiotemporal variation and tendency analysis on rainfall erosivity in the Loess Plateau of China. Hydrol. Res. 2020, 51, 1048–1062. [Google Scholar] [CrossRef]
- Bouraima, A.K.; He, B.H.; Tian, T.Q. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region. Environ. Sci. Pollut. Res. 2015, 23, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.Y.; Gong, W. The role of chemical and organic fertilizers on yield, yield variability and carbon sequestration—Results of a 19-year experiment. Plant Soil 2010, 331, 471–480. [Google Scholar] [CrossRef]
- Cai, Z.J.; Wang, B.; Xu, M.G.; Zhang, H.M.; Zhang, L.; Gao, S.D. Nitrification and acidification from urea application in red soil (Ferralic Cambisol) after different long-term fertilization treatments. J. Soils Sediments 2014, 14, 1526–1536. [Google Scholar] [CrossRef]
- Haygarth, P.M.; Condron, L.M.; Heathwaite, A.L. The phosphorus transfer continuum: Linking source to impact with an interdisciplinary and multi-scaled approach. Sci. Total Environ. 2005, 344, 5–14. [Google Scholar] [CrossRef]
- Protielje, R.; Van der Molen, D.T. Relationships between eutrophication variables: From nutrient loading to transparency. Hydrobiologia 1999, 408, 375–387. [Google Scholar] [CrossRef]
- Wang, G.Q.; Wu, B.B.; Zhang, L.; Jiang, H.; Xu, Z.X. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall. J. Hydrol. 2014, 514, 180–191. [Google Scholar] [CrossRef]
- Arnhold, S.; Ruidisch, M.; Bartsch, S.; Shope, C.L. Simulation of runoff patterns and soil erosion on mountainous farmland with and without plastic-covered ridge-furrow cultivation in South Korea. Trans. ASABE 2013, 56, 667–679. [Google Scholar] [CrossRef]
- Liu, S.; Qin, T.L.; Lv, X.Z.; Shi, X.; Dong, B.; Wang, J.; Liu, C. Experimental study of runoff and sediment yield affected by ridge direction and width of sloping farmland. Front. Earth Sci. 2021, 9, 694773. [Google Scholar] [CrossRef]
- Christiansen, J.E. The uniformity of application of water by sprinkler system. Agric. Eng. 1941, 22, 89. [Google Scholar]
- Wang, S.B.; Song, Y.L.; Wang, K.Q.; Zhao, Y.Y.; Zhang, J.H.; Yan, T.Y.; Chen, Y. Effects of reverse-slope terrace on nitrogen and phosphorus loss in sloping farmland of red loam under different rainfall patterns. Trans. Chin. Soc. Agric. Eng. 2018, 34, 160–169. [Google Scholar]
- Fox, D.M.; Bryan, R.B.; Price, A.G. The influence of slope angle on final infiltration rate for interrill conditions. Geoderma 1997, 80, 181–194. [Google Scholar] [CrossRef]
- Jordan, G.; Rompaey, A.V.; Szilassi, P. Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary). Agric. Ecosyst. Environ. 2005, 108, 119–133. [Google Scholar] [CrossRef]
- Zhao, H.L.; Guo, Y.R.; Zhou, R.L.; Zhao, X.Y. Effects of vegetation cover on physical and chemical properties of bio-crust and under-layer soil in Horqin Sand Land. Ying Yong Sheng Tai Xue Bao 2009, 20, 1657–1663. [Google Scholar]
- Kimaro, D.N.; Poesen, J.; Msanya, B.M. Magnitude of soil erosion on the northern slope of the Uluguru Mountains, Tanzania: Interrill and rill erosion. Catena 2008, 75, 38–44. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, Y.M.; Han, Y.F.; Zhang, X.C. Sediment transport and soil detachment on steep slopes: I. Transport Capacity Estimation. Soil Sci. Soc. Am. J. 2009, 73, 1291–1297. [Google Scholar] [CrossRef]
- Lei, T.W.; Nearing, M.A.; Haghighi, K.; Bralts, V.F. Rill erosion and morphological evolution: A simulation model. Water Resour. Res. 1998, 34, 3157–3168. [Google Scholar] [CrossRef]
- He, X.L.; Zheng, Z.C.; Li, T.X. Effects of Tillage Practices on Soil Erosion and Phosphorus Loss in Sloping Cropland of Purple Soil. Sci. Agric. Sin. 2013, 2, 2492–2500. [Google Scholar]
- Saskia, K.; Joao, P.N.; Patricia, S.; Tony, P.; Ronald, P.; Masselink, R.; Artemi, C. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics. Sci. Total Environ. 2018, 644, 1557–1572. [Google Scholar]
- Stevens, C.J.; Quinton, J.N.; Bailey, A.P.; Deasy, C.; Silgram, M.; Jackson, D.R. The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss. Soil Tillage Res. 2009, 106, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.F.; Zhai, L.M.; Liu, J.; Liu, H.B.; Chen, A.Q.; Wang, H.Y.; Wu, S.X.; Lei, Q.L. Cross-ridge tillage decreases nitrogen and phosphorus losses from sloping farmlands in southern hilly regions of China. Soil Tillage Res. 2019, 191, 48–56. [Google Scholar] [CrossRef]
- Locke, M.A.; Krutz, L.J.; Steinriede, R.W. Conservation management improves runoff water quality: Implications for environmental sustainability in a glyphosate-resistant cotton production system. Soil Water Manag. Conserv. 2015, 79, 660–671. [Google Scholar] [CrossRef]
- Rudi, H.; Ingmar, M.; Chen, L.D.; Coen, R.; Jannes, S. Soil erosion simulations of land use scenarios for a small Loess Plateau catchment. Catena 2003, 54, 289–302. [Google Scholar]
- Hou, L.; Xie, X.L.; Yao, C.; Wu, F.Q. Erosion process and characteristics of different specifications of fish-scale pit slope. Trans. Chin. Soc. Agric. Eng. 2020, 36, 62–68. [Google Scholar]
- Lin, Y.; Qin, F.; Zheng, Z.C.; Zhang, L.; Liu, L.X.; Xu, W.; Wu, C.L.; Li, T.X. Characteristics of variations in soil surface micro-topography and soil erosion on the cross ridge slope under different rainfall conditions. Sci. Soil Water Conserv. 2015, 13, 32–38. [Google Scholar]
- Rowntree, K.M. Sediment yields from a laboratory catchment and their relationship to rilling and surface armouring. Earth Surf. Process. Landf. 1982, 7, 153–170. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. The Effect of Slope Length on Sediment Concentrations Associated with Side-Slope Erosion. Soil Sci. Soc. Am. J. 2000, 64, 1004–1008. [Google Scholar] [CrossRef]
- Zhang, R.R.; Li, M.; Yuan, X.; Pan, Z.C. Influence of rainfall intensity and slope on suspended solids and phosphorus losses in runoff. Environ. Sci. Pollut. Res. 2019, 26, 33963–33975. [Google Scholar] [CrossRef]
- Wallace, C.B.; Burton, M.G.; Hefner, S.G.; Dewitt, T.A. Effect of preceding rainfall on sediment, nutrients, and bacteria in runoff from biosolids and mineral fertilizer applied to a hayfield in a mountainous region. Agric. Water Manag. 2013, 130, 113–118. [Google Scholar] [CrossRef]
- Qin, W.; Zuo, C.Q.; Yan, Q.H.; Wang, Z.X.; Du, P.F.; Yan, N. Regularity of individual rainfall soil erosion in bare slope land of red soil. Trans. Chin. Soc. Agric. Eng. 2015, 31, 124–132. [Google Scholar]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Cambridge University Press: Cambridge, UK, 2011; Volume 5. [Google Scholar]
- Liu, R.M.; Wang, J.W.; Shi, J.H.; Chen, Y.X.; Sun, C.C.; Zhang, P.P.; Shen, Z.Y. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions. Sci. Total Environ. 2014, 468–469, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.M.; Yang, P.L.; Ren, S.M.; Ao, C.; Li, X.; Gao, W.H. Slope length effects on processes of total nitrogen loss under simulated rainfall. Catena 2016, 139, 73–81. [Google Scholar] [CrossRef]
- He, S.Q.; Ma, R.; Wang, N.N.; Wang, S.; Li, T.X.; Zheng, Z.C. Comparison of nitrogen losses by runoff from two different cultivating patterns in sloping farmland with yellow soil during maize growth in Southwest China. J. Integr. Agric. 2022, 21, 222–234. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X.S.; Wang, Y.Q. Effect of straw mulch on nitrogen and phosphorus loss from farmlands in Chaohu Lake Region under natural rainfall condition. Chin. J. Eco-Agric. 2010, 18, 492–495. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Misra, R.K. Measurement and prediction of nitrogen loss by simulated erosion events on cultivated forest soils of contrasting structure. Soil Tillage Res. 2005, 83, 204–217. [Google Scholar] [CrossRef]
- Ao, C.; Yang, P.L.; Zeng, W.Z.; Chen, W.L.; Xu, Y.; Xu, H.L.; Zha, Y.Y.; Wu, J.W.; Huang, J.S. Impact of raindrop diameter and polyacrylamide application on runoff, soil and nitrogen loss via raindrop splashing. Geoderma 2019, 353, 372–381. [Google Scholar] [CrossRef]
- Lin, C.W.; Tu, S.H.; Huang, J.J.; Chen, Y.B. The effect of plant hedgerows on the spatial distribution of soil erosion and soil fertility on sloping farmland in the purple-soil area of China. Soil Tillage Res. 2009, 105, 307–312. [Google Scholar] [CrossRef]
- Xia, L.Z.; Liu, G.H.; Wu, Y.H.; Ma, L.; Li, Y.D. Protection methods to reduce nitrogen and phosphorus losses from sloping citrus land in the Three Gorges Area of China. Pedosphere 2015, 25, 478–488. [Google Scholar] [CrossRef]
- Dai, T.Y.; Wang, L.Q.; Li, T.N.; Qiu, P.P.; Wang, J. Study on the characteristics of soil erosion in the black soil area of Northeast China under natural rainfall conditions: The case of Sunjiagou Small Watershed. Sustainability 2022, 14, 8284. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J.B.; Cao, L.X.; Zheng, X.B.; Ren, P.; Zhao, S.L. The influence of tillage practices on soil detachment in the red soil region of China. Catena 2018, 165, 272–278. [Google Scholar] [CrossRef]
- Ding, W.F.; Huang, C.H. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution. Geomorphplogy 2017, 29, 801–810. [Google Scholar] [CrossRef]
- Liu, M.X.; Wang, J.A.; Yan, P.; Liu, L.Y.; Ge, Y.Q.; Li, X.Y.; Hu, X.; Song, Y.; Wang, L. Wind tunnel simulation of ridge-tillage effects on soil erosion from cropland. Soil Tillage Res. 2006, 90, 242–249. [Google Scholar] [CrossRef]
- Luo, J.; Zheng, Z.C.; Li, T.X.; He, S.Q. Spatial heterogeneity of microtopography and its influence on the flow convergence of slopes under different rainfall patterns. J. Hydrol. 2017, 545, 88–99. [Google Scholar] [CrossRef]
Type | Slope Gradient | The Mean Loss Concentrations of AP/(mg·L−1) | The Mean Loss Concentrations of NH4+-N/(mg·L−1) | The Mean Loss Concentrations of NO3−-N/(mg·L−1) |
---|---|---|---|---|
CK | 5.24% | 0.2314 cd | 0.3215 c | 0.4259 c |
8.75% | 0.2324 cd | 0.3223 c | 0.4270 c | |
17.63% | 0.2355 cd | 0.3323 cd | 0.4526 d | |
26.79% | 0.2437 cd | 0.3362 cd | 0.4531 d | |
36.40% | 0.2463 cd | 0.3464 d | 0.4539 d | |
CT | 5.24% | 0.0000 a | 0.0000 a | 0.0000 a |
8.75% | 0.1304 b | 0.2297 b | 0.3755 b | |
17.63% | 0.2560 d | 0.3376 cd | 0.4579 d | |
26.79% | 0.2182 c | 0.3156 c | 0.4295 c | |
36.40% | 0.2332 cd | 0.3293 cd | 0.4516 d |
Type | Slope Gradient | The Mean Losses of AP /(mg) | The Mean Losses of NH4+-N /(mg) | The Mean Losses of NO3−-N /(mg) |
---|---|---|---|---|
CK | 5.24% | 1.1820 b | 1.6190 b | 2.1983 b |
8.75% | 2.9920 c | 4.1067 d | 5.4481 d | |
17.63% | 3.5815 de | 4.8909 e | 6.7571 ef | |
26.79% | 3.5900 de | 5.0219 e | 6.7585 ef | |
36.40% | 4.1048 e | 5.7624 f | 7.5943 f | |
CT | 5.24% | 0.0000 a | 0.0000 a | 0.0000 a |
8.75% | 0.2320 b | 0.4114 a | 0.6751 a | |
17.63% | 1.5045 b | 2.0080 bc | 2.6888 bc | |
26.79% | 1.5867 b | 2.5401 c | 3.4771 c | |
36.40% | 3.0848 cd | 4.3929 de | 6.0489 de |
Type | Slope Gradient | The Mean Loss Concentrations of AP/(mg·g−1)) | The Mean Loss Concentrations of NH4+-N/(mg·g−1) | The Mean Loss Concentrations of NO3−-N/(mg·g−1) |
---|---|---|---|---|
CK | 5.24% | 0.0467 e | 0.0256 c | 0.0307 d |
8.75% | 0.0452 e | 0.0264 c | 0.0278 c | |
17.63% | 0.0494 f | 0.0265 c | 0.0340 e | |
26.79% | 0.0421 cd | 0.0272 c | 0.0322 de | |
36.40% | 0.0476 ef | 0.0283 c | 0.0311 d | |
CT | 5.24% | 0.0000 a | 0.0000 a | 0.0000 a |
8.75% | 0.0399 bc | 0.0210 b | 0.0215 b | |
17.63% | 0.0384 b | 0.0250 c | 0.0277 c | |
26.79% | 0.0425 d | 0.0267 c | 0.0300 cd | |
36.40% | 0.0456 e | 0.0278 c | 0.0323 de |
Type | Slope Gradient | The Mean Losses of AP/(mg) | The Mean Losses of NH4+-N/(mg) | The Mean Losses of NO3−-N/(mg) |
---|---|---|---|---|
CK | 5.24% | 1.8086 a | 1.1262 a | 1.2081 a |
8.75% | 10.1525 bc | 5.9015 b | 6.2822 bc | |
17.63% | 14.5036 c | 7.9067 b | 9.8517 c | |
26.79% | 27.2810 d | 17.6238 c | 20.9227 d | |
36.40% | 51.6579 e | 30.0610 d | 33.7575 e | |
CT | 5.24% | 0.0000 a | 0.0000 a | 0.0000 a |
8.75% | 0.3237 a | 0.1704 a | 0.1749 a | |
17.63% | 2.3170 a | 1.5668 a | 1.6824 a | |
26.79% | 7.9802 b | 5.1084 b | 5.5353 b | |
36.40% | 29.5164 d | 18.3709 c | 20.8656 d |
Type | Nutrient in Runoff | Nutrient in Sediment | ||
---|---|---|---|---|
Regression Equation | R2 | Regression Equation | R2 | |
AP | y = 14.547 − 0.293 | 0.918 | y = 46.098x − 0.560 | 0.984 |
NH4+-N | y = 20.207x − 0.293 | 0.974 | y = 27.390x + 0.135 | 0.973 |
NO3−-N | y = 27.686 − 0.729 | 0.991 | y = 31.267x + 0.242 | 0.976 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Yao, C.; Wu, F. Effects of Counter Tillage and Slope Gradient on Nutrient Losses on Sloping Farmland. Sustainability 2023, 15, 2019. https://doi.org/10.3390/su15032019
Lu S, Yao C, Wu F. Effects of Counter Tillage and Slope Gradient on Nutrient Losses on Sloping Farmland. Sustainability. 2023; 15(3):2019. https://doi.org/10.3390/su15032019
Chicago/Turabian StyleLu, Shuning, Chong Yao, and Faqi Wu. 2023. "Effects of Counter Tillage and Slope Gradient on Nutrient Losses on Sloping Farmland" Sustainability 15, no. 3: 2019. https://doi.org/10.3390/su15032019
APA StyleLu, S., Yao, C., & Wu, F. (2023). Effects of Counter Tillage and Slope Gradient on Nutrient Losses on Sloping Farmland. Sustainability, 15(3), 2019. https://doi.org/10.3390/su15032019