Regional Patterns of Pesticide Consumption Determinants in the European Union
Abstract
:1. Introduction
2. Review of the Scientific Literature
2.1. Determinants of the Use of Pesticides in Agriculture
2.2. Cluster Analysis of Pesticide Consumption in Agriculture
3. Data and Methodology
3.1. Methods
3.2. Cluster Analysis
4. Results and Discussion
4.1. Regression Analysis
4.2. Cluster Analysis
5. Conclusions and Recommendations
- -
- Research and development and sharing expertise with other market participants might improve the experience of having a large organic agricultural area for the nations with the biggest population and GDP per capita (Italy, Spain, France, Germany). This cluster’s subsidies are higher than others, but better targeting, complementary regulatory circumstances, market access, etc. can increase their efficiency.
- -
- The second cluster (Poland, Lithuania, Greece, Portugal, Slovenia, Estonia, Romania, Croatia, Latvia, Czech Republic, Hungary, Slovakia, Bulgaria) has average pesticide use determinants. Competitive prices and large agricultural surfaces could benefit these countries. Subsidies can be increased while imposing their use in sustainable farming procedures, and there is a great deal of work to be completed in terms of regulations, market access for organic products not only on their own markets, but also on other European markets where consumers have higher incomes to spare on healthy food.
- -
- Ireland, Luxembourg, Finland, Denmark, Netherlands, Belgium, Sweden, Austria, and Luxembourg had the lowest agricultural production and subsidies in the third cluster. More in-depth studies are needed to see for which type of crop, subsidies would not represent a waste of resources given the more difficult environmental conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UC Davis. “What is Sustainable Agriculture?” UC Sustainable Agriculture Research and Education Program. UC Agriculture and Natural Resources. 2021. Available online: https://sarep.ucdavis.edu/sustainable-ag (accessed on 3 July 2022).
- Pham, L.V.; Smith, C. Drivers of agricultural sustainability in developing countries: A review. Environ. Syst. Decis. 2014, 34, 326–341. [Google Scholar] [CrossRef]
- Ericksen, P.J. Conceptualizing food systems for global environmental change research. Glob. Environ. Change 2008, 18, 234–245. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). The European Environment State and Outlook 2020: Knowledge for Transition to a Sustainable Europe; European Environment Agency (EEA): Coppenhagen, Denmark, 2009; p. 351. Available online: https://www.eea.europa.eu/soer/publications/soer-2020 (accessed on 18 July 2022).
- Puma, M.J.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 2015, 10, 024007. [Google Scholar] [CrossRef]
- Ben Hassen, T.; El Bilali, H. Impacts of the Russia-Ukraine War on Global Food Security: Towards More Sustainable and Resilient Food Systems? Foods 2022, 11, 2301. [Google Scholar] [CrossRef]
- Jagtap, S.; Trollman, H.; Trollman, F.; Garcia-Garcia, G.; Parra-López, C.; Duong, L.; Martindale, W.; Munekata, P.E.; Lorenzo, J.M.; Hdaifeh, A.; et al. The Russia-Ukraine Conflict: Its Implications for the Global Food Supply Chains. Foods 2022, 11, 2098. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Environmental and Health Impacts of Pesticides and Fertilizers and Ways of Minimising Them: Summary for Policy Makers. 2021. Available online: https://www.unep.org/resources/report/environmental-and-health-impactspesticides-and-fertilizers-and-ways-minimizing (accessed on 2 December 2021).
- US Environmental Protection Agency. “Why We Use Pesticides.” EPA. 27 June 2017. Available online: https://www.epa.gov/safepestcontrol/why-we-use-pesticides (accessed on 29 June 2022).
- Food and Agriculture Organization of the United Nations (FAO). The Ethics of Sustainable Agricultural Intensification; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2004. [Google Scholar]
- Pingali, P. Agricultural mechanization: Adoption patterns and economic impact. Handb. Agric. Econ. 2007, 3, 2779–2805. [Google Scholar]
- Leetmaa, S.E.; Arnade, C.; Kelch, D. A comparison of US and EU agricultural productivity with implications for EU enlargement. In U.S. EU Food and Agriculture Comparisons; DIANE Publishing: Collingdale, PA, USA, 2004; p. 33. [Google Scholar]
- Vanlauwe, B.; Wendt, J.; Giller, K.E.; Corbeels, M.; Gerard, B.; Nolte, C. A fourth principle is required to define conservation agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crops Res. 2014, 155, 10–13. [Google Scholar] [CrossRef]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In Managing Water and Fertilizers for Sustainable Agricultural Intensification; International Fertilizer Industry Association (IFA): Paris, France; International Water Management Institute (IWMI): Colombo, Sri Lanka; International Plant Nutrition Institute (IPNI): Norcross, GA, USA; International Potash Institute (IPI): Zug, Switzerland, 2015; p. 270. [Google Scholar]
- Schreinemachers, P.; Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 2012, 37, 616–626. [Google Scholar] [CrossRef]
- Ackrill, R. Common Agricultural Policy; Sheffield Academic Press: Sheffield, UK, 2000. [Google Scholar]
- Lefebvre, M.; Espinosa, M.; Gomez y Paloma, S. The Influence of the Common Agricultural Policy on agricultural landscapes. Joint Research Centre Scientific and Policy Reports; European Commission, Joint Research Center: Brussels, Belgium, 2012; p. 7. [Google Scholar]
- Liu, Q.; Xu, H.; Yi, H. Impact of fertilizer on crop yield and C: N: P stoichiometry in arid and semi-arid soil. Int. J. Environ. Res. Public Health 2021, 18, 4341. [Google Scholar] [CrossRef]
- Serebrennikov, D.; Thorne, F.; Kallas, Z.; McCarthy, S.N. Factors influencing adoption of sustainable farming practices in Europe: A systemic review of empirical literature. Sustainability 2020, 12, 9719. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). Agricultural Policy Monitoring and Evaluation, Trade and Agriculture Directorate Committee for Agriculture, Working Party on Agricultural Policies and Markets. Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=TAD/CA/APM/WP(2021)6/FINAL&docLanguage=En (accessed on 22 July 2022).
- Benbrook, C.; Kegley, S.; Baker, B. Organic farming lessens reliance on pesticides and promotes public health by lowering dietary risks. Agronomy 2021, 11, 1266. [Google Scholar] [CrossRef]
- Bremmer, J.; Gonzalez Martinez, A.R.; Jongeneel, R.A.; Huiting, H.F.; Stokkers, R. Impact Assessment Study on EC 2030 Green Deal Targets for Sustainable Food Production: Effects of Farm to Fork and Biodiversity Strategy 2030 at farm, national and EU level. 2021. Available online: https://www.wur.nl/en/show/Impact-Assessment-Study-on-EC-2030.htm (accessed on 22 December 2021).
- Eurostat. 346000 Tonnes of Pesticides Sold in 2020 in the EU 2022. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220502-1#:~:text=Btween%202011%20and%202020%2C%20sales,346%20000%20tonnes%20were%20sold (accessed on 20 December 2021).
- Guyomard, H.; Bureau, J.-C. Research for AGRI Committee—The Green Deal and the CAP: Policy Implications to Adapt Farming Practices and to Preserve the EU’s Natural Resources; European Parliament, Policy Department for Structural and Cohesion Policies: Brussels, Belgium, 2020. [Google Scholar]
- Staudacher, P.; Fuhrimann, S.; Farnham, A.; Mora, A.M.; Atuhaire, A.; Niwagaba, C.; Stamm, C.; Eggen, R.I.; Winkler, M.S. Comparative Analysis of Pesticide Use Determinants Among Smallholder Farmers from Costa Rica and Uganda. Environ. Health Insights 2020, 14. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S. Farm-level pesticide use in Bangladesh: Determinants and awareness. Agric. Ecosyst. Environ. 2003, 95, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Ren, Y.; Luning, P.A. Factors influencing Chinese farmers’ proper pesticide application in agricultural products—A review. Food Control 2021, 122, 107788. [Google Scholar] [CrossRef]
- Aminu, F.O.; Ayinde, I.A.; Sanusi, R.A.; Olaiya, A.O. Determinants of Pesticide Use in Cocoa Production in Nigeria. Can. J. Agric. Crops 2019, 4, 101–110. [Google Scholar]
- Rahman, S.; Chima, C.D. Determinants of Pesticide Use in Food Crop Production in Southeastern Nigeria. Agriculture 2018, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Helepciuc, F.-E.; Todor, A. Evaluating the effectiveness of the EU’s approach to the sustainable use of pesticides. PLoS ONE 2021, 16, e0256719. [Google Scholar] [CrossRef]
- Wossink, G.A.; Feitshans, T.A. Pesticide Policies in the European Union. Drake J. Agric. Law 2000, 5, 223. [Google Scholar]
- DG Health and Food Safety. Overview Report on the Implementation of Member State’s Measures to Achieve the Sustainable Use of Pesticides under Directive 2009/128/EC. October 2017. Available online: http://euclidipm.org/images/documents/2017-6291---Final.pdf (accessed on 29 December 2022).
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 2017, 3, 17008. [Google Scholar] [CrossRef]
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Spiertz, J.H.J.; Ewert, F. Crop production and resource use to meet the growing demand for food, feed and fuel: Opportunities and constraints. NJAS Wagening. J. Life Sci. 2009, 56, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Population and Population Change Statistics. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_and_population_change_statistic (accessed on 15 November 2021).
- Zolin, B. The EU and Asia: World Trade Liberalisation and the Evolution of Agricultural Product Flows. University Ca’Foscari of Venice. Dep. Econ. Res. Pap. Ser. 2008, 18, 1–22. [Google Scholar]
- Chico, J.R.; Peńa Sánchez, A.R.; Jiménez García, M. Food exports competitiveness in EU by countries. Ekon. Manaz. Spektrum 2017, 11, 25–36. [Google Scholar] [CrossRef]
- Bojnec, Š.; Čechura, L.; Fałkowski, J.; Fertő, I. Agri-food Exports from Central-and Eastern-European Member States of the European Union are Catching Up. EuroChoices 2021, 20, 11–19. [Google Scholar] [CrossRef]
- Celikkol Erbas, B.; Guven Solakoglu, E. In the presence of climate change, the use of fertilizers and the effect of income on agricultural emissions. Sustainability 2017, 9, 1989. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Schweikert, K.; Doluschitz, R. Investigating the environmental Kuznets curve between economic growth and chemical fertilizer surpluses in China: A provincial panel cointegration approach. Environ. Sci. Pollut. Res. 2021, 29, 18472–18494. [Google Scholar] [CrossRef]
- Frey, R.S. The international traffic in pesticides. Technol. Forecast. Soc. Change 1995, 50, 151–169. [Google Scholar] [CrossRef]
- Komorowska, D. Development of organic production and organic food market in Europe. Acta Scientiarum Polonorum. Oeconomia 2014, 13, 91–101. [Google Scholar]
- Fielding, A.J. Migration and urbanization in Western Europe since 1950. Geogr. J. 1989, 155, 60–69. [Google Scholar] [CrossRef]
- Rye, J.F.; Scott, S. International labour migration and food production in rural Europe: A review of the evidence. Sociol. Rural. 2018, 58, 928–952. [Google Scholar] [CrossRef]
- Strijker, D. Marginal lands in Europe—Causes of decline. Basic Appl. Ecol. 2005, 6, 99–106. [Google Scholar] [CrossRef]
- Van Meijl, H.; van Rheenen, T.; Tabeau, A.; Eickhout, B. The impact of different policy environments on agricultural land use in Europe. Agric. Ecosyst. Environ. 2006, 114, 21–38. [Google Scholar] [CrossRef]
- Banse, M.; van Meijl, H.; Tabeau, A.; Woltjer, G.; Hellmann, F.; Verburg, P.H. Impact of EU biofuel policies on world agricultural production and land use. Biomass Bioenergy 2011, 35, 2385–2390. [Google Scholar] [CrossRef]
- Eickhout, B.V.; van Meijl, H.; Tabeau, A.; van Rheenen, T. Economic and ecological consequences of four European land use scenarios. Land Use Policy 2007, 24, 562–575. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Zhang, M.; Ficklin, D.L.; Wang, F. Spatio-temporal variations of soil nutrients influenced by an altered land tenure system in China. Geoderma 2009, 152, 23–34. [Google Scholar] [CrossRef]
- Zheng, W.; Luo, B.; Hu, X. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. J. Clean. Prod. 2020, 272, 123054. [Google Scholar] [CrossRef]
- Ciaian, P.; Rajcaniova, M.; Guri, F.; Zhllima, E.; Shahu, E. The impact of crop rotation and land fragmentation farm productivity in Albania. Stud. Agric. Econ. 2018, 120, 116–125. [Google Scholar]
- Reddy, B.S. Organic farming: Status, issues and prospects—A review. Agric. Econ. Res. Rev. 2010, 23, 343–358. [Google Scholar]
- Ferreira, S.; Oliveira, F.; Gomes da Silva, F.; Teixeira, M.; Gonçalves, M.; Eugénio, R.; Damásio, H.; Gonçalves, J.M. Assessment of factors constraining organic farming expansion in lis valley, Portugal. AgriEngineering 2020, 2, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Nieberg, H.; Offermann, F. The profitability of organic farming in Europe. In Organic Agriculture: Sustainability, Markets and Polices; OECD Workshop on Organic Agriculture: Washington, DC, USA, 2003. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Fertilizers Use by Crop in the Syrian Arab Republic; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2003; Available online: https://www.fao.org/3/Y4732E/y4732e09.htm (accessed on 29 November 2021).
- Zhou, Y.; Yang, H.; Mosler, H.J.; Abbaspour, K.C. Factors affecting farmers’ decisions on fertilizer use: A case study for the Chaobai watershed in Northern China. Cons. J. Sustain. Dev. 2010, 4, 80–102. [Google Scholar]
- Waithaka, M.M.; Thornton, P.K.; Shepherd, K.D.; Ndiwa, N.N. Factors affecting the use of fertilizers and manure by smallholders: The case of Vihiga, western Kenya. Nutr. Cycl. Agroecosystems 2007, 78, 211–224. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, T.; Tian, S. Evaluating Fertilizer Use Efficiency and Spatial Correlation of Its Determinants in China: A Geographically Weighted Regression Approach. Int. J. Environ. Res. Public Health 2020, 17, 8830. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Hu, K.; Lyulyov, O.; Pimonenko, T.; Hamid, I. The Impact of Government Subsidies on Technological Innovation in Agribusiness: The Case for China. Sustainability 2022, 14, 14003. [Google Scholar] [CrossRef]
- Sane, M.; Hajek, M.; Nwaogu, C.; Purwestri, R.C. Subsidy as An Economic Instrument for Environmental Protection: A Case of Global Fertilizer Use. Sustainability 2021, 13, 9408. [Google Scholar] [CrossRef]
- Skevas, T.; Stefanou, S.E.; Lansink, A.O. Can economic incentives encourage actual reductions in pesticide use and environmental spillovers? Agric. Econ. 2012, 43, 267–276. [Google Scholar] [CrossRef]
- Kelch, D.R.; Osborne, S. Crop production capacity in Europe. Agric. Sci. 2009, 2, 143. [Google Scholar]
- European Council. Timeline—History of the CAP 2022. Available online: https://www.consilium.europa.eu/en/policies/cap-introduction/timeline-history/ (accessed on 5 June 2022).
- European Commission. A Toolbox for Reforming Environmentally Harmful Subsidies in Europe: Detailed Annexes. Final Report 2022. Available online: https://circabc.europa.eu/ui/group/c1a5a4e9-7563-4d0e-9697-68d9cd24ed34/library/7ff9e898-823f-4b06-985a-119d9e25e529/details (accessed on 22 August 2022).
- Lohr, L.; Salomonsson, L. Conversion subsidies for organic production: Results from Sweden and lessons for the United States. Agric. Econ. 2000, 22, 133–146. [Google Scholar] [CrossRef]
- Christensen, T.; Pedersen, A.B.; Nielsen, H.O.; Mørkbak, M.R.; Hasler, B.; Denver, S. Determinants of farmers’ willingness to participate in subsidy schemes for pesticide-free buffer zones—A choice experiment study. Ecol. Econ. 2011, 70, 1558–1564. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, G.; Koutsouris, A.; Tzouramani, I. Should I stay or should I go? Factors affecting farmers’ decision to convert to organic farming as well as to abandon it. In Proceedings of the 9th European IFSA Symposium 2010, Vienna, Austria, 4–7 July 2010; pp. 1083–1093. [Google Scholar]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Ghisellini, P.; Setti, M.; Ulgiati, S. Energy and land use in worldwide agriculture: An application of life cycle energy and cluster analysis. Environ. Dev. Sustain. 2016, 18, 799–837. [Google Scholar] [CrossRef]
- Li, J.; He, M.; Han, W.; Gu, Y. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. J. Hazard. Mater. 2009, 164, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Ecker, O.; Breisinger, C. The Food Security System: A New Conceptual Framework; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2012; Volume 1166. [Google Scholar]
- Eurostat. 2022. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 15 June 2022).
- Our World in Data, Pesticides (Total)—Use per Area of Cropland (Kilograms per Hectare). 2022. Available online: https://ourworldindata.org/grapher/pesticide-use-per-hectare-of-cropland?tab=table (accessed on 15 June 2022).
- Food and Agriculture Organization (FAO). Food and Agriculture Data. 2022. Available online: https://www.fao.org/faostat/en/ (accessed on 15 June 2022).
- Levin, A.; Lin, C.F.; Chu, C.S. Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Hedlund, J.; Longo, S.B.; York, R. Agriculture, pesticide use, and economic development: A global examination (1990–2014). Rural Sociol. 2020, 85, 519–544. [Google Scholar] [CrossRef]
- Batáry, P.; Gallé, R.; Riesch, F.; Fischer, C.; Dormann, C.F.; Mußhoff, O.; Tscharntke, T. The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture. Nat. Ecol. Evol. 2017, 1, 1279–1284. [Google Scholar] [CrossRef] [Green Version]
- Pietola, K.S.; Lansink, A.O. Farmer response to policies promoting organic farming technologies in Finland. Eur. Rev. Agric. Econ. 2001, 28, 1–15. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Organic Agriculture and the Law, FAO Legislative Study 107. 2012. Available online: https://www.fao.org/3/i2718e/i2718e.pdf (accessed on 3 August 2022).
- Alexoaei, A.P.; Robu, R.G.; Cojanu, V.; Miron, D.; Holobiuc, A.M. Good Practices in Reforming the Common Agricultural Policy to Support the European Green Deal–A Perspective on the Consumption of Pesticides and Fertilizers. Amfiteatru Econ. 2022, 24, 525–545. [Google Scholar] [CrossRef]
- Rosa-Schleich, J.; Loos, J.; Mußhoff, O.; Tscharntke, T. Ecological-economic trade-offs of diversified farming systems—A review. Ecol. Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
Determinants | Implications | Correlation with Pesticide Use | |
---|---|---|---|
Population increase (c) | Food demand growth (a) [69] | Positive | |
Economic development (a) | low | Prohibitive pesticides costs (a) [40,41] | Positive |
high | Food demand growth = heavy users (a) [40,41] | Positive | |
very high | Focus on efficiency and growing demand for healthy food (a) [40,41] | Negative | |
Scarce or expensive workforce (c) [46] | Need to increase productivity (a) | Positive | |
Expensive land and growing competition (a) [47,48,49] | |||
Organic agricultural area | Specific certifications for organic products (a) [53] | Negative | |
Sales prices of crop products increase (a) [56] | Market for inorganic products becomes more profitable (a) | Positive | |
Real income increase (a) [57,58,59] | Pressure to improve input efficiency decreases (a) | Positive | |
Subsidies increase (a) [60,64] | Buy chemicals to improve agriculture productivity or Possibilities to invest in sustainable farming methods (a) | Ambiguous | |
Farmer age and education increase (b) [68] | Implementation of traditional farming methods (a) | Negative | |
Consumers’ education increase (b) [66] | Demand for healthy food (a) | Negative |
Variable | Definition | Source |
---|---|---|
Pesticides | Pesticide use per area of cropland (kilograms per hectare) | Our World in Data |
GDP per capita | Real GDP per capita (chain-linked volumes 2010, euro per capita) | Eurostat |
Selling prices | Sales prices of crop products (absolute prices, euro per 100 kg) | Eurostat |
Subsidies | Subsidies on agricultural products (million euro) | Eurostat |
Population | Population (total number) | Eurostat |
Organic agricultural area | Hectares of organic crop area fully converted and under conversion to organic farming) | Eurostat |
Real income | Index of the real income of factors in agriculture per annual work unit (2010 = 100) | Eurostat |
Panel Unit Root Test-Levin, Lin & Chu [76] | |||||
---|---|---|---|---|---|
Variable | Type of Test | t-Statistic | Prob. | Cross-Sections | Obs. |
Pesticides’ use | level, individual intercept and trend | −5.24169 | 0.0000 | 26 | 494 |
GDP per capita | level, individual intercept and trend | −1.75557 | 0.0396 | 27 | 484 |
Selling prices | level, individual intercept and trend | −10.3856 | 0.0000 | 25 | 426 |
Subsidies | level, individual intercept and trend | −3.34717 | 0.0004 | 26 | 378 |
Population | level, individual intercept and trend | −5.43467 | 0.0000 | 27 | 486 |
Organic agricultural area | level, individual intercept and trend | −0.00809 | 0.4968 | 27 | 427 |
level, individual intercept | 1.49809 | 0.9329 | 27 | 427 | |
level, none | 1.49809 | 0.9329 | 27 | 427 | |
1st difference, individual intercept and trend | −7.28873 | 0.0000 | 27 | 400 | |
Real income | level, individual intercept and trend | −4.1117 | 0.0000 | 27 | 455 |
Variable/ Indicator | Mean | Median | Max. | Min. | Std. Dev. | Obs. |
---|---|---|---|---|---|---|
Pesticides | 3.153327 | 2.260000 | 12.06000 | 0.240000 | 2.720559 | 520 |
GDP per capita | 24,279.59 | 20,245.00 | 88,120.00 | 2990.000 | 16,500.82 | 538 |
Selling prices | 15.05340 | 14.97000 | 33.07000 | 7.940000 | 3.881449 | 476 |
Subsidies | 331.1159 | 34.52000 | 5121.500 | 0.010000 | 816.3447 | 439 |
Population | 16,239,962 | 8,343,323 | 83,019,213 | 388,759.0 | 21,354,486 | 540 |
Organic agricultural area | 337,059.8 | 167,538.0 | 2,354,916 | 1.000000 | 440,774.1 | 482 |
Real income | 102.4768 | 100.0000 | 250.3800 | 33.60000 | 29.49577 | 509 |
Dependent Variable: Annual Pesticides’ Use (2001–2019) | ||||
---|---|---|---|---|
Method: Generalized Least Squares-Seemingly Unrelated Regression | ||||
Equation | 1 | 2 | 3 | 4 |
No. Obs./ Variable | 474 | 408 | 375 | 361 |
C | −5.6136 * (0.3812) (−14.7237) | −8.9782 * (0.5365) (−16.7321) | −9.4161 * (0.5459) (−17.248) | −10.8320 * (0.5862) (−18.477) |
GDP per capita | 0.2252 * (0.2148) (1.0485) | 0.5787 * (0.0409) (14.1375) | 0.5466 * (0.0495) (11.0409) | 0.5097 * (0.0463) (10.9983) |
Selling prices | 0.5727 * (0.0377) (15.1749) | 0.1098 * (0.0303) (3.6202) | 0.2299 * (0.0412) (5.5710) | 0.0829 *** (0.0441) (1.8799) |
Subsidies | −0.0024 (0.0049) (−0.4892) | −0.0122 ** (0.0054) (−2.2562) | −0.0067 (0.0055) (−1.2197) | |
Population | 0.2312 * (0.0227) (10.1592) | 0.4083 * (0.0306) (13.3363) | 0.4327 * (0.0306) (14.1349) | |
Organic agricultural area | −0.1948 * (0.0232) (−8.3907) | −0.1902 * (0.0242) (−7.8432) | ||
Real income | 0.3710 * (0.0507) (7.3132) | |||
Prob (F-statistic) | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
R2 | 0.3441 | 0.3316 | 0.4005 | 0.4508 |
Adjusted R2 | 0.3413 | 0.3250 | 0.3924 | 0.4415 |
Durbin–Watson stat | 1.9784 | 1.9254 | 1.8424 | 1.7928 |
Variance Inflation Factors | |
---|---|
Variable | Centred VIF |
GDP per capita | 1.1476 |
Selling prices | 1.1878 |
Subsidies | 1.2151 |
Population | 1.9623 |
Organic agricultural area | 1.7374 |
Real income | 1.2083 |
Test | Null Hypothesis | Result | Decision | |||
---|---|---|---|---|---|---|
Redundant variable test | Population is not significant | Value | Df | Probability | Reject the null hypothesis | |
t-statistic | 11.3756 | 354 | 0.0000 | |||
F-statistic | 129.4044 | (1, 354) | 0.0000 | |||
Omitted variable test | Agriculture (% of GDP) is not significant | Value | Df | Probability | Accept the null hypothesis | |
t-statistic | 1.6448 | 353 | 0.1010 | |||
F-statistic | 2.7043 | (1, 353) | 0.1010 |
Cluster Number | Countries within Each Cluster |
---|---|
1 | Italy, Spain, France, Germany |
2 | Poland, Lithuania, Greece, Portugal, Slovenia, Estonia, Romania, Croatia, Latvia, Czech Republic, Hungary, Slovakia, Bulgaria |
3 | Ireland, Luxembourg, Finland, Denmark, Netherlands, Belgium, Sweden, Austria |
Cluster no. | GDP per Capita | Population | Selling Prices | Subsidies | Real Income | Organic Crop Area |
---|---|---|---|---|---|---|
1 | 30,427.50 | 64,237,645.50 | 18.85 | 253.20 | 125.62 | 1,969,944.25 |
2 | 14,486.92 | 9,496,740.62 | 16.58 | 94.26 | 151.16 | 291,458.85 |
3 | 48,998.75 | 8,083,597.00 | 15.38 | 3.79 | 104.87 | 265,543.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robu, R.G.; Holobiuc, A.-M.; Alexoaei, A.P.; Cojanu, V.; Miron, D. Regional Patterns of Pesticide Consumption Determinants in the European Union. Sustainability 2023, 15, 2070. https://doi.org/10.3390/su15032070
Robu RG, Holobiuc A-M, Alexoaei AP, Cojanu V, Miron D. Regional Patterns of Pesticide Consumption Determinants in the European Union. Sustainability. 2023; 15(3):2070. https://doi.org/10.3390/su15032070
Chicago/Turabian StyleRobu, Raluca Georgiana, Ana-Maria Holobiuc, Alina Petronela Alexoaei, Valentin Cojanu, and Dumitru Miron. 2023. "Regional Patterns of Pesticide Consumption Determinants in the European Union" Sustainability 15, no. 3: 2070. https://doi.org/10.3390/su15032070
APA StyleRobu, R. G., Holobiuc, A. -M., Alexoaei, A. P., Cojanu, V., & Miron, D. (2023). Regional Patterns of Pesticide Consumption Determinants in the European Union. Sustainability, 15(3), 2070. https://doi.org/10.3390/su15032070