Soil Stabilization Using Zein Biopolymer
Abstract
:1. Introduction
2. Materials
2.1. Zein Biopolymer
2.2. Soils
2.3. Mixing Process
3. Experimental Study
3.1. Specimen Preparation
3.2. Unconfined Compression Test
4. Results and Discussion
4.1. Stress–Strain Curve
4.2. Strength
4.3. Stiffness
4.4. Effect of Gradation
4.5. Microscopic Interaction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayeldeen, M.; Negm, A.; El-Sawwaf, M.; Kitazume, M. Enhancing Mechanical Behaviors of Collapsible Soil Using Two Biopolymers. J. Rock Mech. Geotech. Eng. 2017, 9, 329–339. [Google Scholar] [CrossRef]
- Huang, J.; Kogbara, R.B.; Hariharan, N.; Masad, E.A.; Little, D.N. A State-of-the-Art Review of Polymers Used in Soil Stabilization. Constr. Build. Mater. 2021, 305, 124685. [Google Scholar] [CrossRef]
- Gu, K.; Jin, F.; Al-Tabbaa, A.; Shi, B.; Liu, C.; Gao, L. Incorporation of Reactive Magnesia and Quicklime in Sustainable Binders for Soil Stabilisation. Eng. Geol. 2015, 195, 53–62. [Google Scholar] [CrossRef]
- Turan, C.; Javadi, A.A.; Vinai, R.; Beig Zali, R. Geotechnical Characteristics of Fine-Grained Soils Stabilized with Fly Ash, a Review. Sustainability 2022, 14, 16710. [Google Scholar] [CrossRef]
- Che, W.; Liu, J.; Hao, S.; Ren, J.; Song, Z.; Bu, F. Application of Colloid-Sand Coating Treated by a Hydrophilic Polysaccharide Biopolymer Material for Topsoil Stability Control. Geoderma 2022, 424, 115994. [Google Scholar] [CrossRef]
- Juárez-Alvarado, C.A.; Magniont, C.; Escadeillas, G.; Terán-Torres, B.T.; Rosas-Diaz, F.; Valdez-Tamez, P.L. Sustainable Proposal for Plant-Based Cementitious Composites, Evaluation of Their Mechanical, Durability and Comfort Properties. Sustainability 2022, 14, 14397. [Google Scholar] [CrossRef]
- Shanmugavel, D.; Selvaraj, T.; Ramadoss, R.; Raneri, S. Interaction of a Viscous Biopolymer from Cactus Extract with Cement Paste to Produce Sustainable Concrete. Constr. Build. Mater. 2020, 257. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Cho, G.-C. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering. Sustainability 2016, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.; Prasidhi, A.K.; Im, J.; Shin, H.D.; Cho, G.C. Soil Treatment Using Microbial Biopolymers for Anti-Desertification Purposes. Geoderma 2015, 253–254, 39–47. [Google Scholar] [CrossRef]
- Peng, S.; Rice, J.D. Measuring Critical Gradients for Soil Loosening and Initiation of Backward Erosion-Piping Mechanism. J. Geotech. Geornviron. 2020, 146, 04020069. [Google Scholar] [CrossRef]
- Lim, A.; Atmaja, P.C.; Rustiani, S. Bio-Mediated Soil Improvement of Loose Sand with Fungus. J. Rock Mech. Geotech. Eng. 2020, 12, 180–187. [Google Scholar] [CrossRef]
- Sharma, M.; Satyam, N.; Reddy, K.R. Effect of Freeze-Thaw Cycles on Engineering Properties of Biocemented Sand under Different Treatment Conditions. Eng. Geol. 2021, 284, 106022. [Google Scholar] [CrossRef]
- Yasuhara, H.; Neupane, D.; Hayashi, K.; Okamura, M. Experiments and Predictions of Physical Properties of Sand Cemented by Enzymatically-Induced Carbonate Precipitation. Soils Found. 2012, 52, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Pokharel, B.; Siddiqua, S. Effect of Calcium Bentonite Clay and Fly Ash on the Stabilization of Organic Soil from Alberta, Canada. Eng. Geol. 2021, 293, 106291. [Google Scholar] [CrossRef]
- Fatehi, H.; Abtahi, S.M.; Hashemolhosseini, H.; Hejazi, S.M. A Novel Study on Using Protein Based Biopolymers in Soil Strengthening. Constr. Build. Mater. 2018, 167, 813–821. [Google Scholar] [CrossRef]
- Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Abd Majid, M.Z.; Tahir, M.M.; Mohamad, E.T. Improvement of Problematic Soils with Biopolymer—An Environmentally Friendly Soil Stabilizer. J. Mater. Civ. Eng. 2017, 29, 04016204. [Google Scholar] [CrossRef]
- Jiang, T.; Zhao, J.-D.; Zhang, J.-R. Splitting Tensile Strength and Microstructure of Xanthan Gum-Treated Loess. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.M.; Chang, I.; Lee, M.; Cho, G.C. Geotechnical Engineering Behavior of Biopolymer-Treated Soft Marine Soil. Geomech. Eng. 2019, 17, 453–464. [Google Scholar]
- Kwon, Y.M.; Ham, S.M.; Kwon, T.H.; Cho, G.C.; Chang, I. Surface-Erosion Behaviour of Biopolymer-Treated Soils Assessed by EFA. Geotech. Lett. 2019, 10, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Biju, M.S.; Arnepalli, D.N. Effect of Biopolymers on Permeability of Sand-Bentonite Mixtures. J. Rock Mech. Geotech. Eng. 2020, 12, 1093–1102. [Google Scholar] [CrossRef]
- Khatami, H.R.; O’Kelly, B.C. Improving Mechanical Properties of Sand Using Biopolymers. J. Geotech. Geornviron Eng. 2013, 139, 1402–1406. [Google Scholar] [CrossRef]
- Smitha, S.; Sachan, A. Use of Agar Biopolymer to Improve the Shear Strength Behavior of Sabarmati Sand. Int. J. Geotech. Eng. 2016, 10, 387–400. [Google Scholar] [CrossRef]
- Soldo, A.; Miletić, M.; Auad, M.L. Biopolymers as a Sustainable Solution for the Enhancement of Soil Mechanical Properties. Sci. Rep. 2020, 10, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hataf, N.; Ghadir, P.; Ranjbar, N. Investigation of Soil Stabilization Using Chitosan Biopolymer. J. Clean. Prod. 2018, 170, 1493–1500. [Google Scholar] [CrossRef]
- Sulaiman, H.; Taha, M.R.; Abd Rahman, N.; Mohd Taib, A. Performance of Soil Stabilized with Biopolymer Materials—Xanthan Gum and Guar Gum. Phys. Chem. Earth Parts ABC 2022, 128, 103276. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Chung, M.K.; Cho, G.C. Bovine Casein as a New Soil Strengthening Binder from Diary Wastes. Constr. Build. Mater. 2018, 160, 1–9. [Google Scholar] [CrossRef]
- Gao, X.; Li, T.; Li, X.; Cao, X.; Cui, Z. Preparation of a Newly Synthesized Biopolymer Binder and Its Application to Reduce the Erosion of Tailings. J. Environ. Manag. 2022, 301, 113857. [Google Scholar] [CrossRef]
- Jamróz, E. Nanomaterials for Packaging Application. In Biopolymeric Nanomaterials: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 423–447. [Google Scholar]
- Ibrahim, S.; Riahi, O.; Said, S.M.; Sabri, M.F.M.; Rozali, S. Biopolymers from Crop Plants. In Reference Module in Materials Science and Materials Engineering; Elsevier: Hoboken, NJ, USA, 2019. [Google Scholar]
- Tortorella, S.; Maturi, M.; Buratti, V.V.; Vozzolo, G.; Locatelli, E.; Sambri, L.; Franchini, M.C. Zein as a Versatile Biopolymer: Different Shapes for Different Biomedical Applications. RSC Adv. 2021, 11, 39004–39026. [Google Scholar] [CrossRef]
- Patel, A.R.; Velikov, K.P. Zein as a Source of Functional Colloidal Nano- and Microstructures. Current Opinion in Colloid and Interface Science. Curr. Opin. Colloid Interface Sci. 2014, 19, 450–458. [Google Scholar] [CrossRef]
- Lawton, J.W. Zein: A History of Processing and Use. Cereal Chem. 2002, 79, 1–18. [Google Scholar] [CrossRef]
- Ghorbani, M.; Nezhad-Mokhtari, P.; Ramazani, S. Aloe Vera-Loaded Nanofibrous Scaffold Based on Zein/Polycaprolactone/Collagen for Wound Healing. Int. J. Biol. Macromol. 2020, 153, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Pedram Rad, Z.; Mokhtari, J.; Abbasi, M. Calendula Officinalis Extract/PCL/Zein/Gum Arabic Nanofibrous Bio-Composite Scaffolds via Suspension, Two-Nozzle and Multilayer Electrospinning for Skin Tissue Engineering. Int. J. Biol. Macromol. 2019, 135, 530–543. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Garcia, M.D.; Hilliou, L.; Lagaron, J.M. Nanobiocomposites of Carrageenan, Zein, and Mica of Interest in Food Packaging and Coating Applications. J. Agric. Food Chem. 2010, 58, 6884–6894. [Google Scholar] [CrossRef] [PubMed]
- Fereshteh, Z.; Fathi, M.; Bagri, A.; Boccaccini, A.R. Preparation and Characterization of Aligned Porous PCL/Zein Scaffolds as Drug Delivery Systems via Improved Unidirectional Freeze-Drying Method. Mater. Sci. Eng. C 2016, 68, 613–622. [Google Scholar] [CrossRef]
- Pérez-Guzmán, C.J.; Castro-Muñoz, R. A Review of Zein as a Potential Biopolymer for Tissue Engineering and Nanotechnological Applications. Processes 2020, 8, 1376. [Google Scholar] [CrossRef]
- Shukla, R.; Cheryan, M. Zein: The Industrial Protein from Corn. Ind. Crops Prod. 2001, 13, 171–192. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, M.; Zhang, Y.; Dong, C.; Xu, M.; Hu, Y.; Luan, G. Effect of Plasticizer and Zein Subunit on Rheology and Texture of Zein Network. Food Hydrocoll. 2022, 123, 107140. [Google Scholar] [CrossRef]
- Li, M.; Zheng, H.; Lin, M.; Zhu, W.; Zhang, J. Characterization of the Protein and Peptide of Excipient Zein by the Multi-Enzyme Digestion Coupled with Nano-LC-MS/MS. Food Chem. 2020, 321, 126712. [Google Scholar] [CrossRef]
- Huang, S.; He, J.; Han, L.; Lin, H.; Liu, G.; Zhang, W. Zein-Polyglycerol Conjugates with Enhanced Water Solubility and Stabilization of High Oil Loading Emulsion. J. Agric. Food Chem. 2020, 68, 11810–11816. [Google Scholar] [CrossRef]
- Dong, S.R.; Han, Q.; Xu, W.; Bian, C. Effect of Solvent Polarity on the Formation of Flexible Zein Nanoparticles and Their Environmental Adaptability. J. Cereal Sci. 2021, 102, 103340. [Google Scholar] [CrossRef]
- Wang, Q.; Yin, L.; Padua, G.W. Effect of Hydrophilic and Lipophilic Compounds on Zein Microstructures. Food Biophys. 2008, 3, 174–181. [Google Scholar] [CrossRef]
- ASTM D698; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM Standard; ASTM International: West Conshohocken, PA, USA, 2012.
- Han, W.J.; Lee, J.S.; Byun, Y.H. Volume, Strength, and Stiffness Characteristics of Expandable Foam Grout. Constr. Build. Mater. 2021, 274, 122013. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, D.J.; Byun, Y.H. Effect of Fly Ash on Strength and Stiffness Characteristics of Controlled Low-Strength Material in Shear Wave Monitoring. Materials 2021, 14, 3022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guo, A.; Lin, C. Effects of Cyclic Freeze and Thaw on Engineering Properties of Compacted Loess and Lime-Stabilized Loess. J. Mater. Civ. Eng. 2019, 31, 04019205. [Google Scholar] [CrossRef]
- Lee, S.; Chung, M.; Park, H.M.; Song, K.-I.; Chang, I. Xanthan Gum Biopolymer as Soil-Stabilization Binder for Road Construction Using Local Soil in Sri Lanka. J. Mater. Civ. Eng. 2019, 31, 06019012. [Google Scholar] [CrossRef]
- Chang, I.; Prasidhi, A.K.; Im, J.; Cho, G.C. Soil Strengthening Using Thermo-Gelation Biopolymers. Constr. Build. Mater. 2015, 77, 430–438. [Google Scholar] [CrossRef]
- Phan, V.T.A.; Hsiao, D.H.; Nguyen, P.T.L. Effects of Fines Contents on Engineering Properties of Sand-Fines Mixtures. Procedia Eng. 2016, 142, 213–220. [Google Scholar] [CrossRef]
Specimen ID | D10 | D30 | D50 | D60 | Cu | Cc | #200 (%) | Gs | USCS | MDD (kN/m3) | OMC (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 0.32 | 0.80 | 1.15 | 1.32 | 4.1 | 1.5 | 4.3 | 2.63 | SW | 20.1 | 10.4 |
S2 | 0.09 | 0.56 | 1.01 | 1.21 | 13.1 | 2.8 | 9.6 | 2.64 | SW-SM | 19.8 | 13.2 |
S3 | 0.07 | 0.24 | 0.67 | 0.80 | 11.2 | 1.0 | 14.6 | 2.67 | SM | 20.5 | 10.3 |
S4 | 0.09 | 0.23 | 0.59 | 0.72 | 8.0 | 0.8 | 13.1 | 2.69 | SM | 19.9 | 11.5 |
S5 | 0.08 | 0.13 | 0.19 | 0.22 | 2.8 | 1.0 | 13.4 | 2.69 | SM | 17.2 | 10.4 |
Curing Period (Days) | Slope, α | Coefficient of Determination, R2 |
---|---|---|
3 | 39.6 | 0.974 |
7 | 52.3 | 0.949 |
28 | 60.8 | 0.969 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babatunde, Q.O.; Byun, Y.-H. Soil Stabilization Using Zein Biopolymer. Sustainability 2023, 15, 2075. https://doi.org/10.3390/su15032075
Babatunde QO, Byun Y-H. Soil Stabilization Using Zein Biopolymer. Sustainability. 2023; 15(3):2075. https://doi.org/10.3390/su15032075
Chicago/Turabian StyleBabatunde, Quadri Olakunle, and Yong-Hoon Byun. 2023. "Soil Stabilization Using Zein Biopolymer" Sustainability 15, no. 3: 2075. https://doi.org/10.3390/su15032075
APA StyleBabatunde, Q. O., & Byun, Y. -H. (2023). Soil Stabilization Using Zein Biopolymer. Sustainability, 15(3), 2075. https://doi.org/10.3390/su15032075