Long-Term Stochastic Modeling of Monthly Streamflow in River Nile
Abstract
:1. Introduction
2. River Nile
3. Methodology
3.1. Process Description
3.2. Data Decomposition
3.3. Stochastic Analysis
3.4. Pearson III Distribution Method
3.5. Discrete Fourier Transform Method
3.6. Data Reconstruction
4. Results
5. Discussion
6. Conclusions
- The investigated technique is a simple and modular method to generate synthetic time series data while maintaining (preserving) the statistics of the original dataset;
- An autoregressive time series decomposition is used for isolating the stochastic component of the original time series. Two stochastic analysis approaches are then used to construct a collection of surrogate time series. The first approach is based on the probability distribution of the data, while the second approach transfers the time series from the time domain into the frequency domain. The results of both approaches are good, as they accurately depicted the original data;
- Contradictory to previous research, the investigated technique is simple and does not require complex computations. It is advised to consider these aspects when handling datasets containing severe occurrences or affected by external variables other than the temporal one. It is also suggested to replace or include calculation steps regarding the system design;
- The proposed technique may be applied in various applications. It may be used to estimate missing data, predict hydrological time series for transboundary rivers, and resolve disputes in data-sharing disagreements among riparian countries. Therefore, it may have significant impacts in the field of water resources engineering.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borgomeo, E.; Farmer, C.L.; Hall, J.W. Numerical rivers: A synthetic streamflow generator for water resources vulnerability assessments. Water Resour. Res. 2015, 51, 5382–5405. [Google Scholar] [CrossRef]
- Silva, A.T.; Portela, M.M. Generation of monthly synthetic streamflow series based on the method of fragments. WIT Trans. Ecol. Environ. 2011, 145, 237–247. [Google Scholar]
- McAfee, S.A.; Pederson, G.T.; Woodhouse, C.A.; McCabe, G.J. Application of synthetic scenarios to address water resource concerns: A management-guided case study from the Upper Colorado River Basin. Clim. Serv. 2017, 8, 26–35. [Google Scholar] [CrossRef]
- de Almeida Pereira, G.A.; Veiga, Á. Periodic copula autoregressive model designed to multivariate streamflow time series modelling. Water Resour. Manag. 2019, 33, 3417–3431. [Google Scholar] [CrossRef]
- Pender, D.; Patidar, S.; Pender, G.; Haynes, H. Stochastic simulation of daily streamflow sequences using a hidden Markov model. Hydrol. Res. 2016, 47, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Tedla, M.G.; Rasmy, M.; Tamakawa, K.; Selvarajah, H.; Koike, T. Assessment of Climate Change Impacts for Balancing Transboundary Water Resources Development in the Blue Nile Basin. Sustainability 2022, 14, 15438. [Google Scholar] [CrossRef]
- Nassar, G.; Amin, D.; Abdelaziz, S.; Youssef, T. Flow Forecasting and Skill Assessment in the Blue Nile Basin. Nile Water Sci. Eng. J. 2017, 10, 29. [Google Scholar]
- Herman, J.D.; Zeff, H.B.; Lamontagne, J.R.; Reed, P.M.; Characklis, G.W. Synthetic drought scenario generation to support bottom-up water supply vulnerability assessments. J. Water Resour. Plan. Manag. 2016, 142, 04016050. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Rahman, M.; Gupta, A.D. A stochastic modelling technique for predicting groundwater table fluctuations with time series analysis. Int. J. Appl. Sci. Eng. Res. 2012, 1, 238–249. [Google Scholar]
- Wang, H.R.; Wang, C.; Lin, X.; Kang, J. An improved ARIMA model for precipitation simulations. Nonlinear Process. Geophys. 2014, 21, 1159–1168. [Google Scholar] [CrossRef] [Green Version]
- Montanari, A.; Rosso, R.; Taqqu, M.S. Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation, and simulation. Water Resour. Res. 1997, 33, 1035–1044. [Google Scholar] [CrossRef]
- Kajuru, J.Y.; Abdulkarim, K.; Muhammed, M.M. Forecasting Performance of Arima and Sarima Models on Monthly Average Temperature of Zaria, Nigeria. ATBU J. Sci. Technol. Educ. 2019, 7, 205–212. [Google Scholar]
- Elganiny, M.A.; Eldwer, A.E. Comparison of stochastic models in forecasting monthly streamflow in rivers: A case study of River Nile and its tributaries. J. Water Resour. Prot. 2016, 8, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, T.M. Forecasting of Monthly Flow for the White Nile River (South Sudan). Am. J. Water Sci. Eng. 2021, 7, 103–112. [Google Scholar] [CrossRef]
- Sharma, A.; Tarboton, D.G.; Lall, U. Streamflow simulation: A nonparametric approach. Water Resour. Res. 1997, 33, 291–308. [Google Scholar] [CrossRef] [Green Version]
- Stedinger, J.R.; Taylor, M.R. Synthetic streamflow generation: 1. Model verification and validation. Water Resour. Res. 1982, 18, 909–918. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series. Water Resour. Res. 2000, 36, 1519–1533. [Google Scholar] [CrossRef] [Green Version]
- Salas, J.D. Analysis and modelling of hydrological time series. In Handbook of Hydrology; McGraw-Hill, Inc.: New York, NY, USA, 1993; p. 19. [Google Scholar]
- Pathak, P. Developing a Synthetic Continuous Daily Streamflow Hydrograph Technique for Maryland; University of Maryland: College Park, MD, USA, 2005. [Google Scholar]
- Al-Alati, H.; Abdelaziz, S.; Gad, M. Markov Chain Time Series Analysis of Soil Water Level Fluctuationsin Jaber Al-Ahmadwetlandarea, Kuwait. Int. J. Mod. Eng. Res. (IJMER) 2018, 8, 17–28. Available online: https://www.ijmer.com (accessed on 17 September 2019).
- Prairie, J.; Nowak, K.; Rajagopalan, B.; Lall, U.; Fulp, T. A stochastic nonparametric approach for streamflow generation combining observational and paleoreconstructed data. Water Resour. Res. 2008, 44, W06423. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, R.; Sharma, A. A nonparametric stochastic downscaling framework for daily rainfall at multiple locations. J. Geophys. Res. Atmos. 2006, 111, D15. [Google Scholar] [CrossRef]
- Londhe, S.; Charhate, S. Comparison of data-driven modelling techniques for river flow forecasting. Hydrol. Sci. J.–J. Des Sci. Hydrol. 2010, 55, 1163–1174. [Google Scholar] [CrossRef]
- Boisvert, J.; El-Jabi, N.; St-Hilaire, A.; el Adlouni, S.-E. Parameter estimation of a distributed hydrological model using a genetic algorithm. Open J. Mod. Hydrol. 2016, 6, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Ganguly, A.R.; Saigal, S. Detection and predictive modeling of chaos in finite hydrological time series. Nonlinear Process. Geophys. 2005, 12, 41–53. [Google Scholar] [CrossRef]
- Lange, H.; Brunton, S.L.; Kutz, J.N. From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction. J. Mach. Learn. Res. 2021, 22, 1–38. [Google Scholar]
- Tangborn, A. Wavelet Transforms in Time Series Analysis; Global Modeling and Assimilation Office, Goddard Space Flight Center: Washington, WA, USA, 2010; pp. 1–31. [Google Scholar]
- Chong, K.L.; Lai, S.H.; El-Shafie, A. Wavelet transform based method for river stream flow time series frequency analysis and assessment in tropical environment. Water Resour. Manag. 2019, 33, 2015–2032. [Google Scholar] [CrossRef]
- Brunner, M.I.; Bárdossy, A.; Furrer, R. Stochastic simulation of streamflow time series using phase randomization. Hydrol. Earth Syst. Sci. 2019, 23, 3175–3187. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Ding, J. Wavelet network model and its application to the prediction of hydrology. Nat. Sci. 2003, 1, 67–71. [Google Scholar]
- Fleming, S.W.; Marsh Lavenue, A.; Aly, A.H.; Adams, A. Practical applications of spectral analysis to hydrologic time series. Hydrol. Process. 2002, 16, 565–574. [Google Scholar] [CrossRef]
- Coulibaly, P.; Burn, D.H. Wavelet analysis of variability in annual Canadian streamflows. Water Resour. Res. 2002, 40, 1–14. [Google Scholar] [CrossRef]
- Anderson, P.L.; Tesfaye, Y.G.; Meerschaert, M.M. Fourier-PARMA models and their application to river flows. J. Hydrol. Eng. 2007, 12, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Awadallah, A.G. Evolution of the Nile River drought risk based on the streamflow record at Aswan station, Egypt. Civ. Eng. Environ. Syst. 2014, 31, 260–269. [Google Scholar] [CrossRef]
- Shakweer, A.; Youssef, R.M. Futures studies in Egypt: Water foresight 2025. Foresight 2007, 9, 22–32. [Google Scholar] [CrossRef]
- Mohie El Din, M.O.; Moussa, A.M.A. Water management in Egypt for facing the future challenges. J. Adv. Res. 2016, 7, 403–412. [Google Scholar]
- Eid, H.M.; El-Marsafawy, S.M.; Ouda, S.A. Assessing the economic impacts of climate change on agriculture in Egypt: A Ricardian approach. In World Bank Policy Research Working Paper; The World Bank: Washington, DC, USA, 2007; p. 4293. [Google Scholar]
- Strzepek, K.M.; Yates, D.N. Responses and thresholds of the Egyptian economy to climate change impacts on the water resources of the Nile River. Clim. Chang. 2000, 46, 339–356. [Google Scholar] [CrossRef]
- Lotfy, W.M. Climate change and epidemiology of human parasitosis in Egypt: A review. J. Adv. Res. 2014, 5, 607–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jungudo, M.M. The Impact of Climate Change in Egypt; Whitehead Morris Press: Cairo, Egypt, 2022; Volume 9, pp. 274–290. [Google Scholar]
- Nakhla, D.A.; Hassan, M.G.; el Haggar, S. Impact of biomass in Egypt on climate change. Nat. Sci. 2013, 05, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Sharaan, M.; Iskander, M.; Udo, K. Coastal adaptation to Sea Level Rise: An overview of Egypt’s efforts. Ocean Coast. Manag. 2022, 218, 106024. [Google Scholar] [CrossRef]
- Shoup, J.A. The Nile: An Encyclopedia of Geography, History, and Culture; ABC-CLIO: Santa Barbara, CA, USA, 2017; Available online: https://books.google.co.uk/books?id=ZXCrDgAAQBAJ (accessed on 18 September 2019).
- Melesse, A.M.; Abtew, W.; Setegn, S.G. Nile River Basin; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- El-Kammash, M.; Smith, C.; Hurst, H. Nile River; Encyclopedia Britannica: Chicago, IL, USA, 2022. [Google Scholar]
- Koutsoyiannis, D.; Yao, H.; Georgakakos, A. Medium-range flow prediction for the Nile: A comparison of stochastic and deterministic methods/Prévision du débit du Nil à moyen terme: Une comparaison de méthodes stochastiques et déterministes. Hydrol. Sci. J. 2008, 53, 142–164. [Google Scholar] [CrossRef]
- Hurst, H.E.; Phillips, P.; Black, R.P. The Nile Basin; Government Press: Nairobi, Kenya, 1961; Volume 4, Available online: https://books.google.se/books?id=WJt-AAAAMAAJ (accessed on 14 November 2019).
- Hurst, H.E. Second Supplement to Volume 3 of The Nile Basin: Ten-Day Mean and Monthly Mean Guage Readings of The Nile and Its Tributaries for the Years 1933–1937 and Normals for the Period 1912–1937; Whitehead Morris Press: Cairo, Egypt, 1939; Volume 3, Available online: https://books.google.se/books?id=bWLPzQEACAAJ (accessed on 18 September 2019).
- Karmeshu, N. Trend Detection in Annual Temperature Precipitation using the Mann Kendall Test-A Case Study to Assess Climate Change on Select States in the Northeastern United States. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2012. [Google Scholar]
- Langat, P.K.; Kumar, L.; Koech, R. Identification of the most suitable probability distribution models for maximum, minimum, and mean streamflow. Water 2019, 11, 734. [Google Scholar] [CrossRef] [Green Version]
- Helsel, D.R.; Hirsch, R.M.; Ryberg, K.R.; Archfield, S.A.; Gilroy, E.J. US Geological Survey. Statistical methods in water resources. In Techniques and Methods; US Geological Survey: Reston, VA, USA, 2020. [Google Scholar] [CrossRef]
- Stein, E.; Shakarchi, R. Fourier Analysis: An Introduction; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Tolstov, G. Fourier Series; Dover Publications Inc.: New York, NY, USA, 1962. [Google Scholar]
- Venema, V.; Ament, F.; Simmer, C. A Stochastic Iterative Amplitude Adjusted Fourier Transform algorithm with improved accuracy. Nonlinear Process. Geophys. 2006, 13, 321–328. [Google Scholar] [CrossRef]
- Vrugt, J.A.; de Oliveira, D.Y. Confidence intervals of the Kling-Gupta efficiency. J. Hydrol. 2022, 612, 127968. [Google Scholar] [CrossRef]
- Zeybek, M. Nash-sutcliffe efficiency approach for quality improvement. J. Appl. Math. Comput. 2018, 2, 496–503. [Google Scholar] [CrossRef]
- Saremi, A.; Pashaki, M.H.K.; Sedghi, H.; Rouzbahani, A.; Saremi, A. Simulation of river flow using Fourier series models. In Proceedings of the International Conference on Environmental and Computer Science, Dubai, United Arab Emirates, 28–30 December 2009; Volume 19, p. 133. [Google Scholar]
- Lee, D.-J.; Salas, J.D.; Boes, D.C. Uncertainty Analysis for Synthetic Streamflow Generation. In Proceedings of the World Environmental and Water Resources Congress 2007, Tampa, Florida, 15–19 May 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaziz, S.; Mahmoud Ahmed, A.M.; Eltahan, A.M.; Abd Elhamid, A.M.I. Long-Term Stochastic Modeling of Monthly Streamflow in River Nile. Sustainability 2023, 15, 2170. https://doi.org/10.3390/su15032170
Abdelaziz S, Mahmoud Ahmed AM, Eltahan AM, Abd Elhamid AMI. Long-Term Stochastic Modeling of Monthly Streamflow in River Nile. Sustainability. 2023; 15(3):2170. https://doi.org/10.3390/su15032170
Chicago/Turabian StyleAbdelaziz, Shokry, Ahmed Mohamed Mahmoud Ahmed, Abdelhamid Mohamed Eltahan, and Ahmed Medhat Ismail Abd Elhamid. 2023. "Long-Term Stochastic Modeling of Monthly Streamflow in River Nile" Sustainability 15, no. 3: 2170. https://doi.org/10.3390/su15032170
APA StyleAbdelaziz, S., Mahmoud Ahmed, A. M., Eltahan, A. M., & Abd Elhamid, A. M. I. (2023). Long-Term Stochastic Modeling of Monthly Streamflow in River Nile. Sustainability, 15(3), 2170. https://doi.org/10.3390/su15032170