Monitoring of Performance-Based Environmental Impacts of Substituting Soybean Meal with Rapeseed Meal in the Rye-Based Diet of Weaned Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.1.1. Animals and Housing
2.1.2. Feed and Feeding
2.1.3. Performance
2.2. Functional Unit
2.3. Inventory
2.4. Impact Assessment
2.5. Statistics
3. Results
3.1. Performance of the Animals
3.2. Impacts on Climate Change
3.2.1. Impacts of the Feed
3.2.2. Impacts Based on the Performance of the Animals
3.3. Ozone Depletion
3.3.1. Impacts of the Feedstuffs
3.3.2. Performance-Based Impacts
3.4. Acidification
3.4.1. Impacts of the Feedstuffs
3.4.2. Performance-Based Impacts
3.5. Eutrophication, Terrestrial
3.5.1. Impacts of the Feedstuffs
3.5.2. Performance-Based Impacts
3.6. Eutrophication, Marine
3.6.1. Impacts of the Feedstuffs
3.6.2. Performance-Based Impacts
3.7. Eutrophication, Freshwater
3.7.1. Impacts of the Feedstuffs
3.7.2. Performance-Based Impacts
3.8. Particulate Matter
3.8.1. Impacts of the Feedstuffs
3.8.2. Performance-Based Impacts
3.9. Water Use
3.9.1. Impacts of the Feedstuffs
3.9.2. Performance-Based Impacts
3.10. Resource Use, Fossils
3.10.1. Impacts of the Feedstuffs
3.10.2. Performance-Based Impacts
3.11. Land Use
3.11.1. Impacts of the Feedstuffs
3.11.2. Performance-Based Impacts
4. Discussion
4.1. Evaluation of the Used Methods
4.2. Impacts of the Feedstuff on the Environment
4.3. Performance of the Animals
4.4. Impacts of the Feedstuffs in Relation to Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sporchia, F.; Kebreab, E.; Caro, D. Assessing the Multiple Resource Use Associated with Pig Feed Consumption in the European Union. Sci. Total Environ. 2021, 759, 144306. [Google Scholar] [CrossRef] [PubMed]
- Brack, D.; Glover, A.; Wellesley, L. Agricultural Commodity Supply Chains Trade, Consumption and Deforestation Agricultural Commodity Supply Chains: Trade, Consumption and Deforestation; Chantam House: London, UK, 2016. [Google Scholar]
- United States Department of Agriculture (USDA). Oilseeds: World Markets and Trade; USDA: Washington, DC, USA, 2022.
- Rajão, R.; Soares-Filho, B.; Nunes, F.; Börner, J.; Machado, L.; Assis, D.; Oliveira, A.; Pinto, L.; Ribeiro, V.; Rausch, L.; et al. The Rotten Apples of Brazil’s Agribusiness. Science 2020, 369, 246–248. [Google Scholar] [CrossRef]
- Lehuger, S.; Gabrielle, B.; Gagnaire, N. Environmental Impact of the Substitution of Imported Soybean Meal with Locally-Produced Rapeseed Meal in Dairy Cow Feed. J. Clean. Prod. 2009, 17, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Hörtenhuber, S.J.; Lindenthal, T.; Zollitsch, W. Reduction of Greenhouse Gas Emissions from Feed Supply Chains by Utilizing Regionally Produced Protein Sources: The Case of Austrian Dairy Production. J. Sci. Food Agric. 2011, 91, 1118–1127. [Google Scholar] [CrossRef]
- Flynn, H.C.; Canals, L.M.I.; Keller, E.; King, H.; Sim, S.; Hastings, A.; Wang, S.; Smith, P. Quantifying Global Greenhouse Gas Emissions from Land-Use Change for Crop Production. Glob. Chang. Biol. 2012, 18, 1622–1635. [Google Scholar] [CrossRef]
- Nega, T.; Woldes, Y. Review on Nutritional Limitations and Opportunities of Using Rapeseed Meal and Other Rape Seed By-Products in Review on Nutritional Limitations and Opportunities of Using Rapeseed Meal and Other Rape Seed by-Products in Animal Feeding. J. Nutr. Health Food Eng. 2018, 8, 00254. [Google Scholar] [CrossRef] [Green Version]
- Breuer, A.; Janetschek, H.; Malerba, D. Translating Sustainable Development Goal (SDG) Interdependencies into Policy Advice. Sustainability 2019, 11, 2092. [Google Scholar] [CrossRef] [Green Version]
- Reckmann, K.; Blank, R.; Traulsen, I.; Krieter, J. Comparative Life Cycle Assessment (LCA) of Pork Using Different Protein Sources in Pig Feed. Arch. Anim. Breed. 2016, 59, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Bjørn, A.; Owsianiak, M.; Molin, C.; Hauschild, M.Z. LCA History. In Life Cycle Assessment; Hausschild, M., Rosenbaum, R., Olsen, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 17–30. [Google Scholar]
- ISO 14044:2021-02; DIN Standards Committee Principles of Environmental Protection Environmental Management—Life Cycle Assessment—Requirements and Guidelines (ISO 14044:2006 + Amd 1:2017 + Amd 2:2020); German Version EN ISO 14044:2006 + A1:2018 + A2:2020 2020. ISO: Geneva, Switzerland, 2021.
- Klöpffer, W. The Critical Review of Life Cycle Assessment Studies According to ISO 14040 and 14044. Int. J. Life Cycle Assess. 2012, 17, 1087–1093. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kotsanopoulos, K.V.; Veikou, A. Life Cycle Assessment (ISO 14040) Implementation in Foods of Animal and Plant Origin: Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1253–1282. [Google Scholar] [CrossRef]
- Lindberg, J.E. Fiber Effects in Nutrition and Gut Health in Pigs. J. Anim. Sci. Biotechnol. 2014, 5, 15. [Google Scholar] [CrossRef]
- Schulze, H.; van Leeuwen, P.; Verstegen, M.W.; Huisman, J.; Souffrant, W.B.; Ahrens, F. Effect of Level of Dietary Neutral Detergent Fiber on Ileal Apparent Digestibility and Ileal Nitrogen Losses in Pigs. J. Anim. Sci. 1994, 72, 2362–2368. [Google Scholar] [CrossRef] [PubMed]
- Roth-Maier, D.; Böhmer, B.; Roth, F.; Roth-Maier, D.A.; Böhmer, B.M.; Roth, F.X. Effects of Feeding Canola Meal and Sweet Lupin (L. Luteus, L. Angustifolius) in Amino Acid Balanced Diets on Growth Performance and Carcass Characteristics of Growing-Finishing Pigs. Anim. Res. 2004, 53, 21–34. [Google Scholar] [CrossRef]
- DLG. DLG-Futterwerttabellen SCHWEINE; Verlag: Frankfurt am Main, Germany, 2014. [Google Scholar]
- Menegat, M.B.; Dritz, S.S.; Tokach, M.D.; Woodworth, J.C.; Derouchey, J.M.; Goodband, R.D. A Review of Compensatory Growth Following Lysine Restriction in Grow-Finish Pigs. Transl. Anim. Sci. 2020, 4, 531. [Google Scholar] [CrossRef] [Green Version]
- Albar, J.; Chauvel, J.; Granier, R. Effects of the Level of Rapeseed Meal on Performance in the Post-Weaning and the Growing/Finishing Periods. J. Rech. Porc. Fr. 2001, CR, 197–203. [Google Scholar]
- Ellner, C.; Martínez-Vallespín, B.; Saliu, E.M.; Zentek, J.; Röhe, I. Effects of Cereal and Protein Source on Performance, Apparent Ileal Protein Digestibility and Intestinal Characteristics in Weaner Piglets. Arch. Anim. Nutr. 2021, 75, 263–277. [Google Scholar] [CrossRef]
- Bell, J.M.; Shires, A. Composition and Digestibility by Pigs of Hull Fraction from Rapeseed Cultivars with Yellow or Brown Seed Coats. Can. J. Anim. Sci. 2011, 62, 557–565. [Google Scholar] [CrossRef]
- Wiltafsky, M.; Fickler, J.; Hess, V.; Reimann, I.; Zimmer, U.; Reising, H.W.; Heimbeck, W. AminoDat® 5.0, Animal Nutritionist’s Information Edge. Evonik Nutr. Care 2010, 3, 370. [Google Scholar]
- Huang, C.; Li, P.; Ma, X.; Jaworski, N.W.; Stein, H.H.; Lai, C.; Zhao, J.; Zhang, S. Methodology Effects on Determining the Energy Concentration and the Apparent Total Tract Digestibility of Components in Diets Fed to Growing Pigs. Asian-Australas. J. Anim. Sci. 2018, 31, 1315–1324. [Google Scholar] [CrossRef] [Green Version]
- Pérez De Nanclares, M.; Marcussen, C.; Tauson, A.-H.; Hansen, J.Ø.; Kjos, N.P.; Mydland, L.T.; Knudsen, K.E.B.; Øverland, M. Increasing Levels of Rapeseed Expeller Meal in Diets for Pigs: Effects on Protein and Energy Metabolism. Animal 2018, 13, 273–282. [Google Scholar] [CrossRef]
- Lautrou, M.; Pomar, C.; Dourmad, J.Y.; Narcy, A.; Schmidely, P.; Létourneau-Montminy, M.P. Phosphorus and Calcium Requirements for Bone Mineralisation of Growing Pigs Predicted by Mechanistic Modelling. Animal 2020, 14, s313–s322. [Google Scholar] [CrossRef]
- Oster, M.; Reyer, H.; Ball, E.; Fornara, D.; McKillen, J.; Sørensen, K.U.; Poulsen, H.D.; Andersson, K.; Ddiba, D.; Rosemarin, A.; et al. Bridging Gaps in the Agricultural Phosphorus Cycle from an Animal Husbandry Perspective—The Case of Pigs and Poultry. Sustainability 2018, 10, 1825. [Google Scholar] [CrossRef] [Green Version]
- Hirvonen, J.; Liljavirta, J.; Saarinen, M.T.; Lehtinen, M.J.; Ahonen, I. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of Myo-Inositol Phosphate Esters in Various Feed Materials. J. Agric. Food Chem. 2019, 67, 41. [Google Scholar] [CrossRef] [Green Version]
- Reta, G.; Dong, X.; Li, Z.; Su, B.; Hu, X.; Bo, H.; Yu, D.; Wan, H.; Liu, J.; Li, Y.; et al. Environmental Impact of Phosphate Mining and Beneficiation: Review. Int. J. Hydrol. 2018, 2, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.M.; Lei, X.J.; Lee, S.I.; Kim, I.H. Rapeseed Meal and Canola Meal Can Partially Replace Soybean Meal as a Protein Source in Finishing Pigs. J. Appl. Anim. Res. 2017, 46, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Grabež, V.; Egelandsdal, B.; Kjos, N.P.; Håkenåsen, I.M.; Mydland, L.T.; Vik, J.O.; Hallenstvedt, E.; Devle, H.; Øverland, M. Replacing Soybean Meal with Rapeseed Meal and Faba Beans in a Growing-Finishing Pig Diet: Effect on Growth Performance, Meat Quality and Metabolite Changes. Meat Sci. 2020, 166, 108134. [Google Scholar] [CrossRef]
- The Guardian What Are CO2e and Global Warming Potential (GWP)? Available online: https://www.theguardian.com/environment/2011/apr/27/co2e-global-warming-potential (accessed on 30 May 2022).
- Wuebbles, D.J. Ozone Depletion and Related Topics | Ozone Depletion Potentials. In Encyclopedia of Atmospheric Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 364–369. ISBN 9780123822260. [Google Scholar]
- Benini, L.; Mancini, L.; Sala, S.; Manfredi, S.; Schau, E.M.; Pant, R. Normalisation Method and Data for Environmental Footprints; Publications Office of the European Union: Luxemburg, 2014; Volume JRC91531, ISBN 978-92-79-40847-2. [Google Scholar]
- Seppälä, J.; Posch, M.; Johansson, M.; Hettelingh, J.P. Country-Dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator. Int. J. Life Cycle Assess. 2006, 11, 403–416. [Google Scholar] [CrossRef]
- Struijs, J.; Beusen, A.; van Jaarsveld, H.; Huijbregts, M.A.J. Eutrophication. In ReCiPE 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level; Technical Report; Ministry of VROM: Den Haag, The Netherlands, 2008; pp. 59–67. [Google Scholar]
- European Commission; Centre, J.R.; Sala, S.; De Laurentiis, V.; Zampori, L.; Diaconu, E.; Fazio, S.; Biganzioli, F. Supporting Information to the Characterisation Factors of Recommended EF Life Cycle Impact Assessment Methods: Ersion 2, from ILCD to EF 3.0; Publications Office of the European Union: Luxemburg, 2018; Volume 2. [Google Scholar]
- Bos, U.; Horn, R.; Beck, T.; Lindner, J.P.; Fischer, M. LANCA. Characterization Factors for Life Cycle Impact Assessment, 2nd ed.; Fraunhofer Verlag: Stuttgart, Germany, 2016; ISBN 978-3-8396-0953-8. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
- Dalgaard, R.; Schmidt, J.; Halberg, N.; Christensen, P.; Thrane, M.; Pengue, W.A. LCA of Soybean Meal. Int. J. Life Cycle Assess. 2007, 13, 240–254. [Google Scholar] [CrossRef]
- Svanes, E.; Waalen, W.; Uhlen, A.K. Environmental Impacts of Rapeseed and Turnip Rapeseed Grown in Norway, Rape Oil and Press Cake. Sustainability 2020, 12, 10407. [Google Scholar] [CrossRef]
- Khodabin, G.; Lightburn, K.; Hashemi, S.M.; Moghada, M.S.K.; Jalilian, A. Evaluation of Nitrate Leaching, Fatty Acids, Physiological Traits and Yield of Rapeseed (Brassica Napus) in Response to Tillage, Irrigation and Fertilizer Management. Plant Soil 2022, 473, 423–440. [Google Scholar] [CrossRef]
- Rittler, L.; Bykova, O. Water Use and Irrigation in Soybean. Available online: https://www.legumehub.eu/is_article/water-use-and-irrigation-in-soybean/ (accessed on 21 June 2022).
- Gerbens-Leenes, W.; Hoekstra, A.Y.; Van Der Meer, T.H. The Water Footprint of Bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106, 10219–10223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, P.; Cui, S.; Liu, Y.; Li, J.; Du, G.; Liu, L. Metabolic Engineering for the Production of Fat-Soluble Vitamins: Advances and Perspectives. Appl. Microbiol. Biotechnol. 2019, 104, 935–951. [Google Scholar] [CrossRef] [PubMed]
- Wzorek, Z.; Kowalski, Z. Calcium Feed Phosphate Production Using the Low-Temperature Method. J. Loss Prev. Process Ind. 2001, 14, 365–369. [Google Scholar] [CrossRef]
- Do, S.H.; Kim, B.O.; Fang, L.H.; You, D.H.; Hong, J.S.; Kim, Y.Y. Various Levels of Rapeseed Meal in Weaning Pig Diets from Weaning to Finishing Periods. Asian-Australas. J. Anim. Sci. 2017, 30, 1292–1302. [Google Scholar] [CrossRef]
- Choi, H.B.; Jeong, J.H.; Kim, D.H.; Lee, Y.; Kwon, H.; Kim, Y.Y. Influence of Rapeseed Meal on Growth Performance, Blood Profiles, Nutrient Digestibility and Economic Benefit of Growing-Finishing Pigs. Asian-Australas. J. Anim. Sci. 2015, 28, 1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skoufos, I.; Tzora, A.; Giannenas, I.; Bonos, E.; Papagiannis, N.; Tsinas, A.; Christaki, E.; Florou-Paneri, P. Dietary Inclusion of Rapeseed Meal as Soybean Meal Substitute on Growth Performance, Gut Microbiota, Oxidative Stability and Fatty Acid Profile in Growing-Fattening Pigs. Asian J. Anim. Vet. Adv. 2016, 11, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Parr, C.K.; Liu, Y.; Parsons, C.M.; Stein, H.H. Effects of High-Protein or Conventional Canola Meal on Growth Performance, Organ Weights, Bone Ash, and Blood Characteristics of Weanling Pigs. J. Anim. Sci. 2015, 93, 2165–2173. [Google Scholar] [CrossRef]
- Lee, J.W.; Woyengo, T.A. Growth Performance, Organ Weights, and Blood Parameters of Nursery Pigs Fed Diets Containing Increasing Levels of Cold-Pressed Canola Cake. J. Anim. Sci. 2018, 96, 4704–4712. [Google Scholar] [CrossRef]
- Weber, M. Rapsextraktionsschrot in Der Ferkelfütterung. In OVID-Verband der Dtsch; ölsaatenverarbeitenden Ind. Deutschl. e.V.: Berlin, Germany, 2018. [Google Scholar]
- Weber, M.; Preißinger, W. Rapsextraktionsschrot in der Sauen- und Ferkelfütterung; UFOP: Berlin, Germany, 2014. [Google Scholar]
- Michael Forbes, J. Palatability: Principles, Methodology and Practice for Farm Animals. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2010, 5, 1–15. [Google Scholar] [CrossRef]
- Landero, J.L.; Wang, L.F.; Beltranena, E.; Bench, C.J.; Zijlstra, R.T. Feed Preference of Weaned Pigs Fed Diets Containing Soybean Meal, Brassica Napus Canola Meal, or Brassica Juncea Canola Meal. J. Anim. Sci. 2018, 96, 600–611. [Google Scholar] [CrossRef]
- Kaczmarek, P.; Korniewicz, D.; Lipiński, K.; Mazur, M. Chemical Composition of Rapeseed Products and Their Use in Pig Nutrition. Pol. J. Nat. Sci. 2016, 31, 545–562. [Google Scholar]
- Mattila, P.H.; Pihlava, J.M.; Hellström, J.; Nurmi, M.; Eurola, M.; Mäkinen, S.; Jalava, T.; Pihlanto, A. Contents of Phytochemicals and Antinutritional Factors in Commercial Protein-Rich Plant Products. Food Qual. Saf. 2018, 2, 213–219. [Google Scholar] [CrossRef]
- Sauvant, D.; Perez, J.-M.; Tran, G. Tables of Composition and Nutritional Value of Feed Materials, 2nd ed.; Academic Publishers: Wageningen, The Netherlands, 2004; ISBN 2738010466. [Google Scholar]
- Montagne, L.; Loisel, F.; Le Naou, T.; Gondret, F.; Gilbert, H.; Le Gall, M. Difference in Short-Term Responses to a High-Fiber Diet in Pigs Divergently Selected for Residual Feed Intake. J. Anim. Sci. 2014, 92, 1512–1523. [Google Scholar] [CrossRef] [PubMed]
- Thacker, P.A. Effect of Enzyme Supplementation on the Performance of Growing-Finishing Pigs Fed Barley-Based Diets Supplemented with Soybean Meal or Canola Meal. J. Anim. Sci 2001, 14, 1008–1013. [Google Scholar] [CrossRef]
- McDonnell, P.; O’Shea, C.; Figat, S.; O’Doherty, J.V. Influence of Incrementally Substituting Dietary Soya Bean Meal for Rapeseed Meal on Nutrient Digestibility, Nitrogen Excretion, Growth Performance and Ammonia Emissions from Growing-Finishing Pigs. Arch. Anim. Nutr. 2010, 64, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Mitaru, B.N.; Blair, R.; Reichert, R.D.; Roe, W.E. Dark and Yellow Rapeseed Hulls, Soybean Hulls and A Purified Fiber Source: Their Effects on Dry Matter, Energy, Protein and Amino Acid Digestibilities in Cannulated Pigs. J. Anim. Sci. 1984, 59, 1510–1518. [Google Scholar] [CrossRef]
Ingredients | Diet I | Diet II | Diet III | Diet IV |
---|---|---|---|---|
Rye | 60.0 | 60.0 | 60.0 | 60.0 |
Barley | 15.1 | 13.5 | 10.0 | 6.5 |
Rapeseed meal | - | 6.7 | 16.1 | 28.4 |
Soybean meal | 18.1 | 13.6 | 8.10 | - |
Ligonocellulose | 2.0 | 1.5 | 1.0 | - |
Monocalcium phosphate | 0.90 | 0.80 | 0.60 | 0.45 |
Calcium carbonate | 0.80 | 0.75 | 0.75 | 0.70 |
Sodium chloride | 0.45 | 0.45 | 0.45 | 0.45 |
Soybean oil 1 | 0.65 | 0.70 | 1.00 | 1.50 |
Feed additives 2 | 2.0 | 2.0 | 2.0 | 2.0 |
DM-content | 89.0 | 89.0 | 88.9 | 88.8 |
Crude ash | 5.36 | 5.42 | 4.48 | 5.73 |
Crude protein | 19.4 | 19.6 | 19.5 | 18.8 |
Crude fat | 2.81 | 2.78 | 3.42 | 4.23 |
Crude fiber | 4.30 | 4.41 | 4.98 | 5.47 |
Starch | 436 | 432 | 417 | 412 |
Phosphorus | 0.63 | 0.64 | 0.65 | 0.64 |
ME (MJ/kg DM) | 14.9 | 14.9 | 14.7 | 14.6 |
Ingredients | Origin |
---|---|
Rye | Germany |
Barley | Germany |
Rapeseed meal | Germany |
Soybean meal | South America |
Ligonocellulose | Germany |
Monocalcium phosphate | Germany |
Calcium carbonate | Germany |
Sodium chloride | Germany |
Soybean oil | South America |
Feed additives | Germany |
Run | Diet | Feed Intake (DM·day−1) | Body Weight Gain (g·day−1) | FCR (kg·kg−1) * |
---|---|---|---|---|
1 | I | 1014 ± 293 | 724 ± 122 | 1.58 b ± 0.129 |
II | 1038 ± 286 | 715 ± 140 | 1.65 b ± 0.224 | |
III | 1131 ± 299 | 781 ± 97.6 | 1.64 b ± 0.212 | |
IV | 1002 ± 293 | 674 ± 100 | 1.79 a ± 0.269 | |
2 | I | 1110 ± 227 | 774 ± 149 | 1.62 b ± 0.164 |
II | 1109 ± 187 | 733 ± 64.4 | 1.71 ab ± 0.070 | |
III | 1175 ± 221 | 733 ± 55.1 | 1.81 a ± 0.182 | |
IV | 1147 ± 268 | 727 ± 166 | 1.79 a ± 0.135 |
Ingredients | Diet I | Diet II | Diet III | Diet IV | Impact per Ingredient (kg CO2 eq per kg Feedstuff) |
---|---|---|---|---|---|
Rye | 250.95 | 250.95 | 250.95 | 250.95 | 0.42 |
Barley | 61.07 | 54.60 | 40.44 | 26.29 | 0.40 |
Soybean meal | 799.61 | 600.81 | 357.84 | - | 4.42 |
Rapeseed meal | - | 39.26 | 94.35 | 166.43 | 0.59 |
Ligonocellulose | 5.41 | 4.06 | 2.70 | - | 0.27 |
Monocalcium phosphate | 14.12 | 12.55 | 9.41 | 7.06 | 1.57 |
Calcium carbonate | 0.06 | 0.06 | 0.06 | 0.05 | 0.01 |
Sodium chloride | 0.40 | 0.40 | 0.40 | 0.40 | 0.09 |
Soybean oil | 47.69 | 51.36 | 73.37 | 110.06 | 7.34 |
Feed additives | 32.32 | 32.32 | 32.32 | 32.32 | 1.62 |
Grid Electricity Use Feed Mill | 7.53 | 7.53 | 7.53 | 7.53 | 0.01 |
Total | 1219.16 | 1053.90 | 869.38 | 601.09 |
Diet | Performance-Based Impact at Run 1 (kg CO2 eq·kg−1) | Performance-Based Impact at Run 2 (kg CO2 eq·kg−1) |
---|---|---|
I | 1.95 ± 0.08 a | 1.97 ± 0.10 a |
II | 1.74 ± 0.07 b | 1.80 ± 0.09 b |
III | 1.43 ± 0.08 c | 1.58 ± 0.09 c |
IV | 1.01 ± 0.05 d | 1.07 ± 0.07 d |
Ingredients | Diet I | Diet II | Diet III | Diet IV | Impact per Ingredient (kg CFC-11 eq per kg Feedstuff) |
---|---|---|---|---|---|
Rye | 3.24 × 10−6 | 3.24 × 10−6 | 3.24 × 10−6 | 3.24 × 10−6 | 5.40 × 10−9 |
Barley | 5.14 × 10−7 | 4.60 × 10−7 | 3.41 × 10−7 | 2.21 × 10−7 | 3.41 × 10−9 |
Soybean meal | 3.73 × 10−6 | 2.80 × 10−6 | 1.67 × 10−6 | - | 2.06 × 10−8 |
Rapeseed meal | - | 4.56 × 10−7 | 1.10 × 10−6 | 1.93 × 10−6 | 6.81 × 10−9 |
Ligonocellulose | 1.23 × 10−7 | 9.25 × 10−8 | 6.17 × 10−8 | - | 6.17 × 10−9 |
Monocalcium phosphate | 4.47 × 10−10 | 3.98 × 10−10 | 2.98 × 10−10 | 2.24 × 10−10 | 4.97 × 10−11 |
Calcium carbonate | 1.01 × 10−13 | 9.46 × 10−14 | 9.46 × 10−14 | 8.83 × 10−14 | 1.26 × 10−14 |
Sodium chloride | 1.37 × 10−12 | 1.37 × 10−12 | 1.37 × 10−12 | 1.37 × 10−12 | 3.04 × 10−13 |
Soybean oil | 3.15 × 10−7 | 3.39 × 10−7 | 4.84 × 10−7 | 7.27 × 10−7 | 4.84 × 10−8 |
Feed additives | 9.71 × 10−8 | 9.71 × 10−8 | 9.71 × 10−8 | 9.71 × 10−8 | 4.86 × 10−9 |
Grid Electricity Use Feed Mill | 2.70 × 10−13 | 2.70 × 10−13 | 2.70 × 10−13 | 2.70 × 10−13 | 2.70 × 10−16 |
Total | 8.02 × 10−6 | 7.49 × 10−6 | 6.99 × 10−6 | 6.22 × 10−6 |
Diet | Performance-Based Impact at Run 1 (kg CFC-11 eq·kg−1) | Performance-Based Impact at Run 2 (kg CFC-11 eq·kg−1) |
---|---|---|
I | 1.28 × 10−8 ± 5.6 × 10−10 a | 1.30 × 10−8 ± 6.6 × 10−10 a |
II | 1.24 × 10−8 ± 5.2 × 10−10 a,b | 1.28 × 10−8 ± 6.6 × 10−10 a |
III | 1.15 × 10−8 ± 6.3 × 10−10 b | 1.27 × 10−8 ± 7.2 × 10−10 a |
IV | 1.05 × 10−8 ± 4.8 × 10−10 c | 1.11 × 10−8 ± 7.3 × 10−10 b |
Ingredients | Diet I | Diet II | Diet III | Diet IV | Impact per Ingredient (mol H+ eq per kg Feedstuff) |
---|---|---|---|---|---|
Rye | 6.24 | 6.24 | 6.24 | 6.24 | 0.010 |
Barley | 1.63 | 1.46 | 1.08 | 0.70 | 0.011 |
Soybean meal | 1.07 | 0.80 | 0.48 | 0 | 0.006 |
Rapeseed meal | 0 | 0.73 | 1.75 | 3.09 | 0.011 |
Ligonocellulose | 0.08 | 0.06 | 0.04 | 0 | 0.004 |
Monocalcium phosphate | 0.14 | 0.13 | 0.10 | 0.07 | 0.016 |
Calcium carbonate | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.00004 |
Sodium chloride | 0.004 | 0.004 | 0.004 | 0.004 | 0.001 |
Soybean oil | 0.11 | 0.12 | 0.17 | 0.25 | 0.017 |
Feed additives | 0.18 | 0.18 | 0.18 | 0.18 | 0.009 |
Grid Electricity Use Feed Mill | 0.01 | 0.01 | 0.01 | 0.01 | 0.00001 |
Total | 9.46 | 9.72 | 10.04 | 10.54 |
Diet | Performance-Based Impact at Run 1 (mol H+ eq·kg−1) | Performance-Based Impact at Run 2 (mol H+ eq·kg−1) |
---|---|---|
I | 0.015 ± 0.0007 a | 0.015 ± 0.0008 a |
II | 0.016 ± 0.0007 a,b | 0.017 ± 0.0009 a,b |
III | 0.017 ± 0.0009 b | 0.018 ± 0.0010 b,c |
IV | 0.018 ± 0.0008 b | 0.019 ± 0.0012 c |
Ingredients | Diet I | Diet II | Diet III | Diet IV | Impact per Ingredient (mol N eq per kg Feedstuff) |
---|---|---|---|---|---|
Rye | 27.65 | 27.65 | 27.65 | 27.65 | 0.046 |
Barley | 7.25 | 6.48 | 4.80 | 3.12 | 0.048 |
Soybean meal | 4.18 | 3.14 | 1.87 | 0 | 0.023 |
Rapeseed meal | 0 | 3.20 | 7.68 | 13.55 | 0.048 |
Ligonocellulose | 0.32 | 0.24 | 0.16 | 0 | 0.016 |
Monocalcium phosphate | 0.08 | 0.07 | 0.05 | 0.04 | 0.008 |
Calcium carbonate | 0.0016 | 0.0015 | 0.0015 | 0.0014 | 0.0002 |
Sodium chloride | 0.022 | 0.022 | 0.022 | 0.022 | 0.005 |
Soybean oil | 0.41 | 0.44 | 0.63 | 0.94 | 0.063 |
Feed additives | 0.27 | 0.27 | 0.27 | 0.27 | 0.014 |
Grid Electricity Use Feed Mill | 0.04 | 0.04 | 0.04 | 0.04 | 0.00004 |
Total | 40.22 | 41.55 | 43.17 | 45.63 |
Diet | Performance-Based Impact at Run 1 (mol N eq·kg−1) | Performance-Based Impact at Run 2 (mol N eq·kg−1) |
---|---|---|
I | 0.064 ± 0.003 a | 0.065 ± 0.003 a |
II | 0.069 ± 0.003 a,b | 0.071 ± 0.004 a |
III | 0.071 ± 0.004 b,c | 0.079 ± 0.004 b |
IV | 0.077 ± 0.004 c | 0.081 ± 0.005 b |
Ingredients | Diet I | Diet II | Diet III | Diet IV | Impact per Ingredient (kg N eq per kg Feedstuff) |
---|---|---|---|---|---|
Rye | 5.37 | 5.37 | 5.37 | 5.37 | 0.009 |
Barley | 1.50 | 1.34 | 1.00 | 0.65 | 0.010 |
Soybean meal | 1.04 | 0.78 | 0.46 | 0 | 0.006 |
Rapeseed meal | 0 | 0.59 | 1.42 | 2.50 | 0.009 |
Ligonocellulose | 0.06 | 0.04 | 0.03 | 0 | 0.003 |
Monocalcium phosphate | 0.007 | 0.007 | 0.005 | 0.004 | 0.001 |
Calcium carbonate | 0.0002 | 0.0001 | 0.0001 | 0.0001 | 0.00002 |
Sodium chloride | 0.002 | 0.002 | 0.002 | 0.002 | 0.0004 |
Soybean oil | 0.11 | 0.12 | 0.17 | 0.26 | 0.017 |
Feed additives | 0.03 | 0.03 | 0.03 | 0.03 | 0.001 |
Grid Electricity Use Feed Mill | 0.003 | 0.003 | 0.003 | 0.003 | 3.47 × 10−6 |
Total | 8.12 | 8.29 | 8.49 | 8.82 |
Diet | Performance-Based Impact at Run 1 (kg N eq·kg−1) | Performance-Based Impact at Run 2 (kg N eq·kg−1) |
---|---|---|
I | 0.013 ± 0.0006 a | 0.013 ± 0.0007 a |
II | 0.014 ± 0.0006 a,b | 0.014 ± 0.0007 a,b |
III | 0.014 ± 0.0008 a,b | 0.015 ± 0.0009 b,c |
IV | 0.015 ± 0.0007 b | 0.016 ± 0.0010 c |
Ingredients | Diet I | Diet II | Diet III | Diet IV | Impact per Ingredient (kg P eq per kg Feedstuff) |
---|---|---|---|---|---|
Rye | 0.075 | 0.075 | 0.075 | 0.075 | 0.00013 |
Barley | 0.017 | 0.015 | 0.011 | 0.007 | 0.00011 |
Soybean meal | 0.091 | 0.069 | 0.041 | 0 | 0.00051 |
Rapeseed meal | 0 | 0.010 | 0.024 | 0.042 | 0.00015 |
Ligonocellulose | 0.0009 | 0.0007 | 0.0005 | 0 | 0.00005 |
Monocalcium phosphate | 8.04 × 10−5 | 7.15 × 10−5 | 5.36 × 10−5 | 4.02 × 10−5 | 8.94 × 10−6 |
Calcium carbonate | 4.04 × 10−7 | 3.78 × 10−7 | 3.78 × 10−7 | 3.53 × 10−7 | 5.04 × 10−8 |
Sodium chloride | 1.72 × 10−6 | 1.72 × 10−6 | 1.72 × 10−6 | 1.72 × 10−6 | 3.82 × 10−7 |
Soybean oil | 0.005 | 0.005 | 0.008 | 0.011 | 0.00075 |
Feed additives | 0.010 | 0.010 | 0.010 | 0.010 | 0.00052 |
Grid Electricity Use Feed Mill | 3.43 × 10−5 | 3.43 × 10−5 | 3.43 × 10−5 | 3.43 × 10−5 | 3.43 × 10−8 |
Total | 0.200 | 0.185 | 0.170 | 0.146 |
Diet | Performance-Based Impact at Run 1 (kg P eq·kg−1) | Performance-Based Impact at Run 2 (kg P eq·kg−1) |
---|---|---|
I | 3.19 × 10−4 ± 1.4 × 10−5 a | 3.23 × 10−4 ± 1.6 × 10−5 a |
II | 3.06 × 10−4 ± 1.3 × 10−5 a | 3.16 × 10−4 ± 1.6 × 10−5 a |
III | 2.79 × 10−4 ± 1.5 × 10−5 b | 3.09 × 10−4 ± 1.8 × 10−5 a |
IV | 2.46 × 10−4 ± 1.1 × 10−5 c | 2.61 × 10−4 ± 1.7 × 10−4 b |
Ingredients | Diet I | Diet II | Diet III | Diet IV | Impact per Ingredient (Disease Incidence per kg Feedstuff) |
---|---|---|---|---|---|
Rye | 4.64 × 10−5 | 4.64 × 10−5 | 4.64 × 10−5 | 4.64 × 10−5 | 7.74 × 10−8 |
Barley | 1.19 × 10−5 | 1.06 × 10−5 | 7.87 × 10−6 | 5.12 × 10−6 | 7.87 × 10−8 |
Soybean meal | 8.56 × 10−6 | 6.43 × 10−6 | 3.83 × 10−6 | 0 | 4.73 × 10−8 |
Rapeseed meal | 0 | 5.25 × 10−6 | 1.26 × 10−5 | 2.23 × 10−5 | 7.84 × 10−8 |
Ligonocellulose | 6.09 × 10−7 | 4.57 × 10−7 | 3.05 × 10−7 | 0 | 3.05 × 10−8 |
Monocalcium phosphate | 9.26 × 10−7 | 8.23 × 10−7 | 6.17 × 10−7 | 4.63 × 10−7 | 1.03 × 10−7 |
Calcium carbonate | 6.48 × 10−9 | 6.07 × 10−9 | 6.07 × 10−9 | 5.67 × 10−9 | 8.09 × 10−10 |
Sodium chloride | 9.18 × 10−8 | 9.18 × 10−8 | 9.18 × 10−8 | 9.18 × 10−8 | 2.04 × 10−8 |
Soybean oil | 8.87 × 10−7 | 9.55 × 10−7 | 1.36 × 10−6 | 2.05 × 10−6 | 1.36 × 10−7 |
Feed additives | 1.49 × 10−6 | 1.49 × 10−6 | 1.49 × 10−6 | 1.49 × 10−6 | 7.46 × 10−8 |
Grid Electricity Use Feed Mill | 9.32 × 10−8 | 9.32 × 10−8 | 9.32 × 10−8 | 9.32 × 10−8 | 9.32 × 10−11 |
Total | 7.10 × 10−5 | 7.27 × 10−5 | 7.47 × 10−5 | 7.80 × 10−5 |
Diet | Performance-Based Impact at Run 1 (disease incidence·kg−1) | Performance-Based Impact at Run 2 (disease incidence·kg−1) |
---|---|---|
I | 1.13 × 10−7 ± 4.9 × 10−9 a | 1.15 × 10−7 ± 5.9 × 10−9 a |
II | 1.20 × 10−7 ± 5.1 × 10−9 a,b | 1.24 × 10−7 ± 6.4 × 10−9 a,b |
III | 1.23 × 10−7 ± 6.8 × 10−9 b | 1.36 × 10−7 ± 7.7 × 10−9 b,c |
IV | 1.31 × 10−7 ± 6.1 × 10−9 b | 1.39 × 10−7 ± 9.1 × 10−9 c |
Ingredients | Diet I | Diet II | Diet III | Diet IV | Impact per Ingredient (m3 water eq deprived per kg Feedstuff) |
---|---|---|---|---|---|
Rye | 9.01 | 9.01 | 9.01 | 9.01 | 0.015 |
Barley | 1.41 | 1.26 | 0.93 | 0.61 | 0.009 |
Soybean meal | 4.72 | 3.55 | 2.11 | 0 | 0.026 |
Rapeseed meal | 0 | 0.64 | 1.53 | 2.70 | 0.009 |
Ligonocellulose | 8.04 | 6.03 | 4.02 | 0 | 0.402 |
Monocalcium phosphate | 1.25 | 1.11 | 0.84 | 0.63 | 0.139 |
Calcium carbonate | 0.001 | 0.001 | 0.001 | 0.001 | 0.0001 |
Sodium chloride | 0.02 | 0.02 | 0.02 | 0.02 | 0.005 |
Soybean oil | 20.60 | 22.18 | 31.69 | 47.53 | 3.169 |
Feed additives | 8.58 | 8.58 | 8.58 | 8.58 | 0.429 |
Grid Electricity Use Feed Mill | 0.17 | 0.17 | 0.17 | 0.17 | 0.0002 |
Total | 53.81 | 52.56 | 58.91 | 69.26 |
Diet | Performance-Based Impact at Run 1 (m3 water eq. deprived·kg−1) | Performance-Based Impact at Run 2 (m3 water eq. deprived·kg−1) |
---|---|---|
I | 0.09 ± 0.004 a | 0.09 ± 0.004 a |
II | 0.09 ± 0.004 b | 0.09 ± 0.005 b |
III | 0.10 ± 0.005 c | 0.11 ± 0.006 c |
IV | 0.12 ± 0.005 c | 0.12 ± 0.008 c |
Ingredients | Diet I | Diet II | Diet III | Diet IV | Impact per Ingredient (MJ per kg Feedstuff) |
---|---|---|---|---|---|
Rye | 1683 | 1683 | 1683 | 1683 | 2.81 |
Barley | 357 | 319 | 236 | 154 | 2.36 |
Soybean meal | 1399 | 1051 | 626 | 0 | 7.73 |
Rapeseed meal | 0 | 230 | 552 | 973 | 3.43 |
Ligonocellulose | 42.5 | 31.9 | 21.3 | 0 | 2.12 |
Monocalcium phosphate | 311 | 277 | 208 | 156 | 34.60 |
Calcium carbonate | 0.75 | 0.71 | 0.71 | 0.66 | 0.09 |
Sodium chloride | 5.59 | 5.59 | 5.59 | 5.59 | 1.24 |
Soybean oil | 112 | 121 | 172 | 259 | 17.24 |
Feed additives | 446 | 446 | 446 | 446 | 22.31 |
Grid Electricity Use Feed Mill | 94.9 | 94.9 | 94.9 | 94.9 | 0.09 |
Total | 4452 | 4259 | 4046 | 3772 |
Diet | Performance-Based Impact at Run 1 (MJ·kg−1) | Performance-Based Impact at Run 2 (MJ·kg−1) |
---|---|---|
I | 7.11 ± 0.31 a | 7.20 ± 0.37 a |
II | 7.03 ± 0.30 a | 7.26 ± 0.37 a |
III | 6.66 ± 0.37 a,b | 7.37 ± 0.42 a |
IV | 6.34 ± 0.29 b | 6.37 ± 0.44 a |
Ingredients | Diet I | Diet II | Diet III | Diet IV | Impact per Ingredient (Soil Quality Index Points per kg Feedstuff) |
---|---|---|---|---|---|
Rye | 44,836 | 44,836 | 44,836 | 44,836 | 74.7 |
Barley | 9356 | 8365 | 6196 | 4028 | 62.0 |
Soybean meal | 29,344 | 22,049 | 13,132 | 0 | 162.1 |
Rapeseed meal | 0 | 4694 | 11,280 | 19,898 | 70.1 |
Ligonocellulose | 396 | 297 | 198 | 0 | 19.8 |
Monocalcium phosphate | 18.0 | 16.0 | 12.0 | 9.0 | 2.0 |
Calcium carbonate | 1.1 | 1.0 | 1.0 | 0.9 | 0.13 |
Sodium chloride | 4.2 | 4.2 | 4.2 | 4.2 | 0.93 |
Soybean oil | 3167 | 3411 | 4873 | 7309 | 487.3 |
Feed additives | 110 | 110 | 110 | 110 | 5.5 |
Grid Electricity Use Feed Mill | 110 | 110 | 110 | 110 | 0.11 |
Total | 87,344 | 83,893 | 80,753 | 76,305 |
Diet | Performance-Based Impact at Run 1 (soil quality index points·kg−1) | Performance-Based Impact at Run 2 (soil quality index points·kg−1) |
---|---|---|
I | 139.43 ± 6.1 a | 135.62 ± 7.2 a |
II | 138.42 ± 5.9 a | 137.67 ± 7.3 a |
III | 132.93 ± 7.3 a | 138.93 ± 8.3 a |
IV | 128.21 ± 5.9 a | 123.18 ± 8.9 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilke, V.; Gickel, J.; Visscher, C. Monitoring of Performance-Based Environmental Impacts of Substituting Soybean Meal with Rapeseed Meal in the Rye-Based Diet of Weaned Pigs. Sustainability 2023, 15, 2210. https://doi.org/10.3390/su15032210
Wilke V, Gickel J, Visscher C. Monitoring of Performance-Based Environmental Impacts of Substituting Soybean Meal with Rapeseed Meal in the Rye-Based Diet of Weaned Pigs. Sustainability. 2023; 15(3):2210. https://doi.org/10.3390/su15032210
Chicago/Turabian StyleWilke, Volker, Julia Gickel, and Christian Visscher. 2023. "Monitoring of Performance-Based Environmental Impacts of Substituting Soybean Meal with Rapeseed Meal in the Rye-Based Diet of Weaned Pigs" Sustainability 15, no. 3: 2210. https://doi.org/10.3390/su15032210
APA StyleWilke, V., Gickel, J., & Visscher, C. (2023). Monitoring of Performance-Based Environmental Impacts of Substituting Soybean Meal with Rapeseed Meal in the Rye-Based Diet of Weaned Pigs. Sustainability, 15(3), 2210. https://doi.org/10.3390/su15032210