Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting
Abstract
:1. Introduction
2. Methodology
2.1. Long Short-Term Memory (LSTM) Model with Transfer Learning (TL)
2.2. Description of the Building Model
2.3. Initial Source Data and Pre-Processing with Clustering Analysis
- Define an appropriate dataset format for time series data.
- Conduct scale standardization.
- Calculate appropriate inertia numbers.
- Conduct clustering analysis using the K-mean algorithm.
2.4. Development of LSTM-TL Model
2.5. The Location Selection of Target Tasks
2.6. Performance Metrics for Validation and Testing Models
3. Results and Discussion
3.1. Comparison of Source Data Predictions without Transfer Learning for the Cooling and Heating Periods
3.2. Comparison of Target Data Predictions with Transfer Learning Options for the Cooling Period
3.3. Comparison of Target Data Predictions with Transfer Learning Options for the Heating Period
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AHU | air-handling unit |
AI | artificial intelligence |
AM | attention mechanism |
ANN | artificial neural networks |
ARIMA | autoregressive integrated moving averages |
ARX | exogenous inputs |
ASHRAE | the American Society of Heating, Refrigerating, and Air-Conditioning Engineers |
CNN | convolutional neural networks |
CV(RMSE) | the coefficient of variation of the root means squared error |
DOE | department of energy |
DWT | discrete wavelet transform |
EIA | energy information administration |
GHG | greenhouse gas |
HVAC | cooling, heating, and air-conditioning |
LSTM | long short-term memory |
ML | machine learning |
MLR | multiple linear regression |
NMBE | normalized mean bias error |
RNN | recurrent neural networks |
TL | transfer learning |
VAV | variable air volume |
References
- U.S. EIA. Global Energy & CO2 Status Report: The Latest Trends in Energy and Emissions in 2018; U.S. EIA: Washington, DC, USA, 2018.
- U.S. EIA. EIA: International Energy Outlook 2019 with Projections to 2050; U.S. EIA: Washington, DC, USA, 2019.
- Zhao, H.X.; Magoulès, F. A Review on the Prediction of Building Energy Consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586–3592. [Google Scholar] [CrossRef]
- Lawrence, T.; Abdel, K.; Darwich, J.K.M. ASHRAE GreenGuide: Design, Construction and Operation of Sustainable Buildings; ASHRAE: Peachtree Corners, GA, USA, 2018; ISBN 9781939200808. [Google Scholar]
- Kim, D.; Yoon, Y.; Lee, J.; Mago, P.J.; Lee, K.; Cho, H. Design and Implementation of Smart Buildings: A Review of Current Research Trend. Energies 2022, 15, 4278. [Google Scholar] [CrossRef]
- Kim, D.; Cox, S.J.; Cho, H.; Yoon, J. Comparative Investigation on Building Energy Performance of Double Skin Façade (DSF) with Interior or Exterior Slat Blinds. J. Build. Eng. 2018, 20, 411–423. [Google Scholar] [CrossRef]
- Kim, D.; Cox, S.J.; Cho, H.; Im, P. Evaluation of Energy Savings Potential of Variable Refrigerant Flow (VRF) from Variable Air Volume (VAV) in the U.S. Climate Locations. Energy Rep. 2017, 3, 85–93. [Google Scholar] [CrossRef]
- Hong, T.; Chou, S.; Bong, T. Building Simulation: An Overview of Developments and Information Sources. Build. Environ. 2000, 35, 347–361. [Google Scholar] [CrossRef]
- Afroz, Z.; Shafiullah, G.M.; Urmee, T.; Higgins, G. Modeling Techniques Used in Building HVAC Control Systems: A Review. Renew. Sustain. Energy Rev. 2018, 83, 64–84. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, T. Reinforcement Learning for Building Controls: The Opportunities and Challenges. Appl. Energy 2020, 269, 115036. [Google Scholar] [CrossRef]
- Hajjaji, Y.; Boulila, W.; Farah, I.R.; Romdhani, I.; Hussain, A. Big Data and IoT-Based Applications in Smart Environments: A Systematic Review. Comput. Sci. Rev. 2021, 39, 100318. [Google Scholar] [CrossRef]
- Norouziasl, S.; Jafari, A.; Zhu, Y. Modeling and Simulation of Energy-Related Human-Building Interaction: A Systematic Review. J. Build. Eng. 2021, 44, 102928. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, M.; Chen, Z.; Chen, Z.; Ji, Y. Physical Energy and Data-Driven Models in Building Energy Prediction: A Review. Energy Rep. 2022, 8, 2656–2671. [Google Scholar] [CrossRef]
- Pedersen, L.; Stang, J.; Ulseth, R. Load Prediction Method for Heat and Electricity Demand in Buildings for the Purpose of Planning for Mixed Energy Distribution Systems. Energy Build. 2008, 40, 1124–1134. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H.; Guo, Y.; Wang, J. A Comprehensive Overview on the Data Driven and Large Scale Based Approaches for Forecasting of Building Energy Demand: A Review. Energy Build. 2018, 165, 301–320. [Google Scholar] [CrossRef]
- Bourdeau, M.; Zhai, Q.X.; Nefzaoui, E.; Guo, X.; Chatellier, P. Modeling and Forecasting Building Energy Consumption: A Review of Data-Driven Techniques. Sustain. Cities Soc. 2019, 48, 101533. [Google Scholar] [CrossRef]
- Cox, S.J.; Kim, D.; Cho, H.; Mago, P. Real Time Optimal Control of District Cooling System with Thermal Energy Storage Using Neural Networks. Appl. Energy 2019, 238, 466–480. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F.; Fung, A.S.; Raahemifar, K. Artificial Neural Network (ANN) Based Model Predictive Control (MPC) and Optimization of HVAC Systems: A State of the Art Review and Case Study of a Residential HVAC System. Energy Build. 2017, 141, 96–113. [Google Scholar] [CrossRef]
- Yu, B.; Kim, D.; Cho, H.; Mago, P. A Nonlinear Autoregressive with Exogenous Inputs Artificial Neural Network Model for Building Thermal Load Prediction. J. Energy Resour. Technol. Trans. ASME 2020, 142, 050902. [Google Scholar] [CrossRef]
- Gao, Y.; Ruan, Y.; Fang, C.; Yin, S. Deep Learning and Transfer Learning Models of Energy Consumption Forecasting for a Building with Poor Information Data. Energy Build. 2020, 223, 110156. [Google Scholar] [CrossRef]
- Zhou, S.; Guo, S.; Du, B.; Huang, S.; Guo, J. A Hybrid Framework for Multivariate Time Series Forecasting of Daily Urban Water Demand Using Attention-Based Convolutional Neural Network and Long Short-Term Memory Network. Sustainability 2022, 14, 11086. [Google Scholar] [CrossRef]
- Ünlü, K.D. A Data-Driven Model to Forecast Multi-Step Ahead Time Series of Turkish Daily Electricity Load. Electronics 2022, 11, 1524. [Google Scholar] [CrossRef]
- Hajiabotorabi, Z.; Kazemi, A.; Samavati, F.F.; Maalek Ghaini, F.M. Improving DWT-RNN Model via B-Spline Wavelet Multiresolution to Forecast a High-Frequency Time Series. Expert Syst. Appl. 2019, 138, 112842. [Google Scholar] [CrossRef]
- Deb, C.; Schlueter, A. Review of Data-Driven Energy Modelling Techniques for Building Retrofit. Renew. Sustain. Energy Rev. 2021, 144, 110990. [Google Scholar] [CrossRef]
- Gers, F. Long Short-Term Memory in Recurrent Neural Networks. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2001; p. 2366. [Google Scholar]
- Zhou, Y.; Wang, L.; Qian, J. Application of Combined Models Based on Empirical Mode Decomposition, Deep Learning, and Autoregressive Integrated Moving Average Model for Short-Term Heating Load Predictions. Sustainability 2022, 14, 7349. [Google Scholar] [CrossRef]
- Durand, D.; Aguilar, J.; R-Moreno, M.D. An Analysis of the Energy Consumption Forecasting Problem in Smart Buildings Using LSTM. Sustainability 2022, 14, 13358. [Google Scholar] [CrossRef]
- Cao, J.; Li, Z.; Li, J. Financial Time Series Forecasting Model Based on CEEMDAN and LSTM. Phys. A Stat. Mech. Its Appl. 2019, 519, 127–139. [Google Scholar] [CrossRef]
- Choi, E.; Cho, S.; Kim, D.K. Power Demand Forecasting Using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability. Sustainability 2020, 12, 1109. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhao, X.; Fan, C.; Fang, X.; Li, F.; Wu, Y. Assessment of Long Short-Term Memory and Its Modifications for Enhanced Short-Term Building Energy Predictions. J. Build. Eng. 2021, 43, 103182. [Google Scholar] [CrossRef]
- Liu, J.; Ma, C.; Gui, H.; Wang, S. Transfer Learning-Based Thermal Error Prediction and Control with Deep Residual LSTM Network. Knowl.-Based Syst. 2022, 237, 107704. [Google Scholar] [CrossRef]
- Park, H.; Park, D.Y.; Noh, B.; Chang, S. Stacking Deep Transfer Learning for Short-Term Cross Building Energy Prediction with Different Seasonality and Occupant Schedule. Build. Environ. 2022, 218, 109060. [Google Scholar] [CrossRef]
- Peng, C.; Tao, Y.; Chen, Z.; Zhang, Y.; Sun, X. Multi-Source Transfer Learning Guided Ensemble LSTM for Building Multi-Load Forecasting. Expert Syst. Appl. 2022, 202, 117194. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.C.P.; Jiang, F.; Chen, W.; Wang, M.; Zhai, C. A Bi-Directional Missing Data Imputation Scheme Based on LSTM and Transfer Learning for Building Energy Data. Energy Build. 2020, 216, 109941. [Google Scholar] [CrossRef]
- Li, G.; Wu, Y.; Liu, J.; Fang, X.; Wang, Z. Performance Evaluation of Short-Term Cross-Building Energy Predictions Using Deep Transfer Learning Strategies. Energy Build. 2022, 275, 112461. [Google Scholar] [CrossRef]
- Ahn, Y.; Kim, B.S. Prediction of Building Power Consumption Using Transfer Learning-Based Reference Building and Simulation Dataset. Energy Build. 2022, 258, 111717. [Google Scholar] [CrossRef]
- Mocanu, E.; Nguyen, P.H.; Kling, W.L.; Gibescu, M. Unsupervised Energy Prediction in a Smart Grid Context Using Reinforcement Cross-Building Transfer Learning. Energy Build. 2016, 116, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Gong, G.; Li, G.; Chun, L.; Li, W.; Peng, P. A Hybrid Deep Transfer Learning Strategy for Short Term Cross-Building Energy Prediction. Energy 2021, 215, 119208. [Google Scholar] [CrossRef]
- US DOE Building Energy Codes Program-Prototype Building Models. Available online: https://www.energycodes.gov/prototype-building-models (accessed on 16 June 2021).
- US DOE. EnergyPlus. Available online: https://energyplus.net (accessed on 30 September 2021).
- US DOE. Energy Savings Analysis: ANSI/ASHRAE/IES Standard 90.1-2019; US DOE: Washington, DC, USA, 2021.
- DOE Prototype Building Models-Building Energy Codes Program. Available online: https://www.energycodes.gov/prototype-building-models#Commercial (accessed on 3 January 2023).
- Liu, X.; Sun, H.; Han, S.; Han, S.; Niu, S.; Qin, W.; Sun, P.; Song, D. A Data Mining Research on Office Building Energy Pattern Based on Time-Series Energy Consumption Data. Energy Build. 2022, 259, 111888. [Google Scholar] [CrossRef]
- US DOE Weather Data by Country. Available online: https://energyplus.net/weather-region/asia_wmo_region_2/KOR (accessed on 16 June 2020).
- ASHRAE. ASHRAE Fundamentals (SI); ASHRAE: Peachtree Corners, GA, USA, 2017; ISBN 6785392187. [Google Scholar]
- ASHRAE. Guideline 14-2014 Measurement of Energy, Demand, and Water Savings; ASHRAE: Peachtree Corners, GA, USA, 2014; Volume 4, pp. 1–150. [Google Scholar]
Building Model Parameter | Characteristics |
---|---|
Total conditioned floor area | 22,427.7 m2 |
Floor-to-ceiling height | 4.26 m above ground (No drop-in ceiling plenum is modeled) |
Window-to-wall ratio (WWR) | Average total: 16% (North: 12%, East: 13%, South: 15%, West: 24%) |
Exterior window construction | 2.045 (U-factor: W/m2·K) and 0.38 SHGC |
Exterior wall construction | Residential part: 0.454 (U-factor: W/m2·K) Non-residential part: 0.511 (U-factor: W/m2·K) |
Roof construction | 2.228 (U-factor: W/m2·K) |
Floor construction | 1.986 (U-factor: W/m2·K) |
Occupancy density | 50.4 m2/1 person |
Lighting power density | Average 11.63 W/m2 |
Equipment power density | Average 23.9 W/m2 |
Zone thermostat setpoint temperature (during occupied hours) | Cooling: 24 °C Heating: 21 °C |
MBE | RMSE | CV(RMSE) | R2 | |
---|---|---|---|---|
Source cooling data | 0.071 | 0.095 | 24.96 | 0.90 |
Source heating data | 0.054 | 0.068 | 16.62 | 0.89 |
City | Test Option | MBE | RMSE | CV(RMSE) | R2 |
---|---|---|---|---|---|
Inchon | LSTM-Option 2 | 0.063 | 0.082 | 19.66 | 0.926 |
TL-Option 3 | 0.056 | 0.080 | 19.09 | 0.930 | |
TL-Option 4 | 0.054 | 0.078 | 18.70 | 0.933 | |
Kangnung | LSTM-Option 2 | 0.106 | 0.129 | 28.18 | 0.82 |
TL-Option 3 | 0.105 | 0.123 | 26.81 | 0.83 | |
TL-Option 4 | 0.087 | 0.106 | 23.11 | 0.88 | |
Kwangju | LSTM-Option 2 | 0.082 | 0.100 | 24.58 | 0.90 |
TL-Option 3 | 0.058 | 0.074 | 18.18 | 0.946 | |
TL-Option 4 | 0.051 | 0.070 | 17.10 | 0.952 | |
Ulsan | LSTM-Option 2 | 0.069 | 0.088 | 22.48 | 0.93 |
TL-Option 3 | 0.052 | 0.068 | 17.30 | 0.96 | |
TL-Option 4 | 0.042 | 0.060 | 15.30 | 0.97 |
City | Test Option | MBE | RMSE | CV(RMSE) | R2 |
---|---|---|---|---|---|
Inchon | LSTM-Option 2 | 0.038 | 0.051 | 11.54 | 0.96 |
TL-Option 3 | 0.039 | 0.049 | 11.18 | 0.96 | |
TL-Option 4 | 0.039 | 0.050 | 11.35 | 0.96 | |
Kangnung | LSTM-Option 2 | 0.060 | 0.074 | 20.20 | 0.90 |
TL-Option 3 | 0.032 | 0.041 | 11.05 | 0.97 | |
TL-Option 4 | 0.033 | 0.041 | 11.13 | 0.97 | |
Kwangju | LSTM-Option 2 | 0.039 | 0.056 | 13.86 | 0.95 |
TL-Option 3 | 0.030 | 0.042 | 10.26 | 0.97 | |
TL-Option 4 | 0.036 | 0.045 | 11.18 | 0.96 | |
Ulsan | LSTM-Option 2 | 0.046 | 0.062 | 13.97 | 0.93 |
TL-Option 3 | 0.040 | 0.052 | 11.57 | 0.95 | |
TL-Option 4 | 0.036 | 0.046 | 10.25 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Lee, Y.; Chin, K.; Mago, P.J.; Cho, H.; Zhang, J. Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting. Sustainability 2023, 15, 2340. https://doi.org/10.3390/su15032340
Kim D, Lee Y, Chin K, Mago PJ, Cho H, Zhang J. Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting. Sustainability. 2023; 15(3):2340. https://doi.org/10.3390/su15032340
Chicago/Turabian StyleKim, Dongsu, Yongjun Lee, Kyungil Chin, Pedro J. Mago, Heejin Cho, and Jian Zhang. 2023. "Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting" Sustainability 15, no. 3: 2340. https://doi.org/10.3390/su15032340
APA StyleKim, D., Lee, Y., Chin, K., Mago, P. J., Cho, H., & Zhang, J. (2023). Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting. Sustainability, 15(3), 2340. https://doi.org/10.3390/su15032340