Meta-Analysis of Studies on Accident Contributing Factors in the Greek Construction Industry
Abstract
:1. Introduction
2. Methodology
3. Systematic Literature Review and Content Analysis
3.1. Search for Relevant Studies
- Occupational accidents/Accidents at work.
- Construction sector /Construction industry/Construction sites.
- Building/Infrastructure/Technical projects.
- Occupational H&S.
- Accident factors/Accident-causing factors.
- Risk/Hazard.
- Risk Analysis/Risk Evaluation.
- Risk Assessment.
3.2. Content Analysis
3.3. Selection of Studies for Meta-Analysis
- Studies focusing on occupational accidents rather than health hazards in construction sites in Greece.
- Studies focusing on determining and evaluating factors that cause construction accidents but not studies focusing on risk analysis methods.
- Studies referring to building and/or infrastructure projects.
- Studies using a questionnaire or existing statistics from construction accidents as a data source and not case studies.
- Studies creating a ranked list of factors in terms of importance or frequency of occurrence.
- No restriction on the year of publication or type of publication.
4. Data Meta-Analysis
4.1. Accident Factor Break down Structure
4.2. Meta-Analysis of Data Using the Overall Ranking Index (ORI)
5. Results and Discussion
5.1. Rank 1: Falling or Slipping (2.1.6)
5.2. Rank 2: Special Footwear (5.2.5)
5.3. Rank 3: Physical or Mental Stress (2.3.4)
5.4. Rank 4: Training in Safety Regulations (3.8)
5.5. Rank 5: Falling or Ejection of Objects (2.1.4)
5.6. Rank 6: Electrical installation/Electrocution Hazards (2.1.13)
5.7. Rank 7: Other Factors (2.1.18)
5.8. Rank 8: Non-Compliance with Safety Rules (1.1.1)
5.9. Rank 9: Collision—Poor Handling—Tipping of Machinery or Vehicles (2.1.8)
5.10. Rank 10: Lack of Implementation of Safety Measures (1.2.1)
6. Conclusions and Further Research
- The inception of streamlined autonomous construction site inspections by H&S auditors to shrink the margin for differentiation from the safety rules designated in national H&S legislation. This will enforce the implementation of mandatory safety measures with special emphasis on the development of control mechanisms and intervention planning to reduce the risk of falls, electrocution, and machinery collisions.
- Upgrading of worker safety training programs and other actions that push for a change in the Greek construction industry’s safety culture by promoting the use of PPE and specific safety measures against the most common safety hazards. Government institutions responsible for occupational H&S should organize relevant construction site accident prevention campaigns.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loke, Y.Y.; Manickam, K.; Heng, P.; Jong Caleb, T.; Kheng, L.G.; Samuel, L.; Lin, G.S.; Jukka, T. Economic Cost of Work-Related Injuries and Ill-Health in Singapore; WSH Institute: Singapore, 2013.
- Antoniou, F.; Merkouri, M. Accident Factors per Construction Type and Stage: A Synthesis of Scientific Research and Professional Experience. Int. J. Inj. Contr. Saf. Promot. 2021, 28, 439–453. [Google Scholar] [CrossRef]
- Bussier, M.J.P.; Chong, H.-Y. Relationship between Safety Measures and Human Error in the Construction Industry: Working at Heights. Int. J. Occup. Saf. Ergon. 2022, 28, 162–173. [Google Scholar] [CrossRef]
- Betsis, S.; Kalogirou, M.; Aretoulis, G.; Pertzinidou, M. Work Accidents Correlation Analysis for Construction Projects in Northern Greece 2003–2007: A Retrospective Study. Safety 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Katsakiori, P.; Manatakis, E.; Goutsos, S.; Athanassiou, G. Factors Attributed to Fatal Occupational Accidents in a Period of 5 Years Preceding the Athens 2004 Olympic Games. Int. J. Occup. Saf. Ergon. 2008, 14, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Koulinas, G.K.; Demesouka, O.E.; Marhavilas, P.K.; Vavatsikos, A.P.; Koulouriotis, D.E. Risk Assessment Using Fuzzy TOPSIS and PRAT for Sustainable Engineering Projects. Sustainability 2019, 11, 615. [Google Scholar] [CrossRef] [Green Version]
- Kalogeraki, M.; Antoniou, F. Improving Risk Assessment for Transporting Dangerous Goods through European Road Tunnels: A Delphi Study. Systems 2021, 9, 80. [Google Scholar] [CrossRef]
- Glass, G.V. Primary, Secondary, and Meta-Analysis of Research. Educ. Res. 1976, 5, 3. [Google Scholar] [CrossRef]
- Hedges, L.V. Meta-Analysis. J. Educ. Stat. 1992, 17, 279–296. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. A Basic Introduction to Fixed-Effect and Random-Effects Models for Meta-Analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef]
- Shadish, W.R.; Lecy, J.D. The Meta-Analytic Big Bang. Res. Synth. Methods 2015, 6, 246–264. [Google Scholar] [CrossRef]
- Amoatey, C.T.; Ankrah, A.N.O. Exploring Critical Road Project Delay Factors in Ghana. J. Facil. Manag. 2017, 15, 110–127. [Google Scholar] [CrossRef]
- Kaliba, C.; Muya, M.; Mumba, K. Cost Escalation and Schedule Delays in Road Construction Projects in Zambia. Int. J. Proj. Manag. 2009, 27, 522–531. [Google Scholar] [CrossRef]
- Mahamid, I.; Bruland, A.; Dmaidi, N. Causes of Delay in Road Construction Projects. J. Manag. Eng. 2012, 28, 300–310. [Google Scholar] [CrossRef]
- Antoniou, F. Delay Risk Assessment Models for Road Projects. Systems 2021, 9, 70. [Google Scholar] [CrossRef]
- Abbasi, G.; Abbasi, G.Y.; Abdel-Jaber, M.S.; Abu-Khadejeh, A. Risk Analysis for the Major Factors Affecting the Construction Industry in Jordan. Emir. J. Eng. Res. 2005, 10, 41–47. [Google Scholar]
- Antoniou, F.; Aretoulis, G.N.; Konstantinidis, D.K.; Kalfakakou, G.P. An Empirical Study of Researchers’ and Practitioners’ Views on Compensating Major Highway Project Contractors. Int. J. Manag. Decis. Mak. 2013, 12, 351–375. [Google Scholar] [CrossRef]
- Wu, Z.; Nisar, T.; Kapletia, D.; Prabhakar, G. Risk Factors for Project Success in the Chinese Construction Industry. J. Manuf. Technol. Manag. 2017, 28, 850–866. [Google Scholar] [CrossRef]
- Vu, H.A.; Cu, V.H.; Min, L.X.; Wang, J.Q. Risk Analysis of Schedule Delays in International Highway Projects in Vietnam Using a Structural Equation Model. Eng. Constr. Archit. Manag. 2017, 24, 1018–1039. [Google Scholar] [CrossRef]
- Edwards, D.J.; Owusu-Manu, D.-G.; Baiden, B.; Badu, E.; Love, P.E. Financial Distress and Highway Infrastructure Delays. J. Eng. Des. Technol. 2017, 15, 118–132. [Google Scholar] [CrossRef]
- Antoniou, F.; Konstantinidis, D.K.; Aretoulis, G.N.; Kalfakakou, G.P. Engineers’ Perceptions of Contract Types’ Performances for Highway Construction Projects. In Applied Behavioral Economics Research and Trends; IGI Global: Harrisburg, PA, USA, 2016; ISBN 9781522518273. [Google Scholar]
- Forcael, E.; Morales, H.; Agdas, D.; Rodríguez, C.; León, C. Risk Identification in the Chilean Tunneling Industry. Eng. Manag. J. 2018, 30, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Goyal, P.K. Fuzzy Assessment of the Risk Factors Causing Cost Overrun in Construction Industry. Evol. Intell. 2022, 15, 2269–2281. [Google Scholar] [CrossRef]
- Zayed, T.; Amer, M.; Pan, J. Assessing Risk and Uncertainty Inherent in Chinese Highway Projects Using AHP. Int. J. Proj. Manag. 2008, 26, 408–419. [Google Scholar] [CrossRef]
- Aminbakhsh, S.; Gunduz, M.; Sonmez, R. Safety Risk Assessment Using Analytic Hierarchy Process (AHP) during Planning and Budgeting of Construction Projects. J. Saf. Res. 2013, 46, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Jozi, S.A.; Shafiee, M.; MoradiMajd, N.; Saffarian, S. An Integrated Shannon’s Entropy–TOPSIS Methodology for Environmental Risk Assessment of Helleh Protected Area in Iran. Environ. Monit. Assess. 2012, 184, 6913–6922. [Google Scholar] [CrossRef]
- Aretoulis, G.N.; Papathanasiou, J.; Antoniou, F. PROMETHEE-Based Ranking of Project Managers Based on the Five Personality Traits. Kybernetes 2020, 49, 1083–1102. [Google Scholar] [CrossRef]
- Marinelli, M.; Janardhanan, M. Green Cement Production in India: Prioritization and Alleviation of Barriers Using the Best–Worst Method. Environ. Sci. Pollut. Res. 2022, 29, 63988–64003. [Google Scholar] [CrossRef]
- Sanni-Anibire, M.O.; Mohamad Zin, R.; Olatunji, S.O. Causes of Delay in the Global Construction Industry: A Meta Analytical Review. Int. J. Constr. Manag. 2022, 22, 1395–1407. [Google Scholar] [CrossRef]
- Zidane, Y.J.-T.; Andersen, B. The Top 10 Universal Delay Factors in Construction Projects. Int. J. Manag. Proj. Bus. 2018, 11, 650–672. [Google Scholar] [CrossRef]
- Oo, B.L.; Lim, T.H.B.; Runeson, G. Critical Factors Affecting Contractors’ Decision to Bid: A Global Perspective. Buildings 2022, 12, 379. [Google Scholar] [CrossRef]
- Nadhim, E.; Hon, C.; Xia, B.; Stewart, I.; Fang, D. Falls from Height in the Construction Industry: A Critical Review of the Scientific Literature. Int. J. Environ. Res. Public Health 2016, 13, 638. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Rahmandad, H.; Smith-Jackson, T.; Winchester, W. Factors Influencing the Risk of Falls in the Construction Industry: A Review of the Evidence. Constr. Manag. Econ. 2011, 29, 397–416. [Google Scholar] [CrossRef]
- Tong, R.; Wang, L.; Cao, L.; Zhang, B.; Yang, X. Psychosocial Factors for Safety Performance of Construction Workers: Taking Stock and Looking Forward. Eng. Constr. Archit. Manag. 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Meseret, M.; Ehetie, T.; Hailye, G.; Regasa, Z.; Biruk, K. Occupational Injury and Associated Factors among Construction Workers in Ethiopia: A Systematic and Meta-Analysis. Arch. Environ. Occup. Health 2022, 77, 328–337. [Google Scholar] [CrossRef]
- Newaz, M.T.; Davis, P.R.; Jefferies, M.; Pillay, M. Developing a Safety Climate Factor Model in Construction Research and Practice. Eng. Constr. Archit. Manag. 2018, 25, 738–757. [Google Scholar] [CrossRef]
- Alamneh, Y.M.; Wondifraw, A.Z.; Negesse, A.; Ketema, D.B.; Akalu, T.Y. The Prevalence of Occupational Injury and Its Associated Factors in Ethiopia: A Systematic Review and Meta-Analysis. J. Occup. Med. Toxicol. 2020, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Ashuro, Z.; Zele, Y.T.; Kabthymer, R.H.; Diriba, K.; Tesfaw, A.; Alamneh, A.A. Prevalence of Work-Related Injury and Its Determinants among Construction Workers in Ethiopia: A Systematic Review and Meta-Analysis. J. Environ. Public Health 2021, 2021, 9954084. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, 332–336. [Google Scholar] [CrossRef] [Green Version]
- Glass, G.V.; Mc Graw, B.; Smith, M.L. Meta-Analysis in Social Research, 1st ed.; Sage Publications Inc.: Thousand Oaks, CA, USA, 1981. [Google Scholar]
- Bar-Ilan, J. Which H-Index?—A Comparison of WoS, Scopus and Google Scholar. Scientometrics 2008, 74, 257–271. [Google Scholar] [CrossRef]
- Tawfik, G.M.; Dila, K.A.S.; Mohamed, M.Y.F.; Tam, D.N.H.; Kien, N.D.; Ahmed, A.M.; Huy, N.T. A Step by Step Guide for Conducting a Systematic Review and Meta-Analysis with Simulation Data. Trop. Med. Health 2019, 47, 46. [Google Scholar] [CrossRef]
- Kokkini, A.A. Risks and Risk Control Measures on Building Construction Sites: The Workers’ Perspective. Master’s Thesis, Hellenic Open University, Patras, Greece, 2020. [Google Scholar]
- Papadatou, G. Factors Causing Occupational Accidents in Construction and Prevention Measures. Master’s Thesis, Hellenic Open University, Patras, Greece, 2021. [Google Scholar]
- Ritsa, O. Safety and Health in Engineering Projects. Master’s Thesis, Hellenic Open University, Patras, Greece, 2019. [Google Scholar]
- Tsianas, B. Safety of Underground Utilities Engineering Works in an Urban Environment. Master’s Thesis, Hellenic Open University, Patras, Greece, 2020. [Google Scholar]
- Kapelakis, G. Health and Safety during the Construction and Operation of Building D of the Hellenic Open University. Master’s Thesis, Hellenic Open University, Patras, Greece, 2020. [Google Scholar]
- Kotsalos, C. The Role of Worker Training in Reducing Occupational Accidents at Workplaces. Master’s Thesis, Hellenic Open University, Patras, Greece, 2020. [Google Scholar]
- Touloupi, F. Investigating the Relationship between Labour Productivity in Construction Projects in Relation to Health and Safety Conditions. Master’s Thesis, Hellenic Open University, Patras, Greece, 2020. [Google Scholar]
- Pantos, M. Factors Affecting Safety and Hygiene in Technical Works and the Response of Human Resources to Preventive Measures. Master’s Thesis, Hellenic Open University, Patras, Greece, 2019. [Google Scholar]
- Marazioti, M. The Role of the Human Factor in the Challenge of Occupational Accidents in Technical Projects. Master’s Thesis, Hellenic Open University, Patras, Greece, 2019. [Google Scholar]
- Pigounaki, C. Economic Crisis and Occupational Accidents in Construction Projects: Evidence from the Greek Reality. Master’s Thesis, Hellenic Open University, Patras, Greece, 2018. [Google Scholar]
- Theodorakopoulos, G. Safety Management Systems in Construction Projects. Master’s Thesis, Hellenic Open University, Patras, Greece, 2016. [Google Scholar]
- Alamanos, N. The Impact of Continuous Training in the Field of Safety and Hygiene: The Case of Metro Construction Sites. Master’s Thesis, Hellenic Open University, Patras, Greece, 2017. [Google Scholar]
- Papastathakis, A. Investigation to Ensure Safe Working Conditions in Construction and Industrial Installations. Master’s Thesis, Hellenic Open University, Patras, Greece, 2018. [Google Scholar]
- Charitonidou, A. Occupational Risk Assessment of Employees in Constrcution Companies in Western Macedonia—Subjective Perception of Employees. Master’s Thesis, Hellenic Open University, Patras, Greece, 2015. [Google Scholar]
- Tzegkas, S. Health and Safety in Formwork and Concrete Laying Construction Crews. Master’s Thesis, Hellenic Open University, Patras, Greece, 2010. [Google Scholar]
- Koulinas, G. Occupational Safety Risk Assessment Using the Analytical Hierarchy Process. Master’s Thesis, Hellenic Open University, Patras, Greece, 2017. [Google Scholar]
- Bougelis, G. Occupational Risk Assessment Using Risk Registers and FEAHPFTOPSIS Multi-Criteria Decision Making Methods—Application to a Gas Plant Construction Site. Master’s Thesis, Hellenic Open University, Patras, Greece, 2021. [Google Scholar]
- Vroudas, P. Risk Risk Assessment in Construction Projects Using Accident Statistics. Master’s Thesis, Hellenic Open University, Patras, Greece, 2016. [Google Scholar]
- Fekos, D. Hazard Analysis and Risk Assessment in Occupational Safety and Health Using a Combination of Probabilistic and Causal Methods—Application to Construction Sites. Master’s Thesis, Hellenic Open University, Patras, Greece, 2018. [Google Scholar]
- Panagiotopoulos, A.P. Analysis of Occupational Accidents in the Construction Sector. Master’s Thesis, Hellenic Open University, Patras, Greece, 2020. [Google Scholar]
- Katsolas, P. Evolution of Occupational Accidents in Construction. Master’s Thesis, Hellenic Open University, Patras, Greece, 2018. [Google Scholar]
- Mylona, S. Safety Management in Technical Telecommunications Projects. Network Works and Installation of Mobile Telephone Base Stations. Master’s Thesis, Hellenic Open University, Patras, Greece, 2019. [Google Scholar]
- Ayyub, B.M. Risk Analysis in Engineering and Economics, 2nd ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Drivas, S.; Zorba, K.; Koukoulaki, T. Methodological Guide for Occupational Risk Assessment and Prevention; Hellenic Institute of Occupational Health and Safety: Athens, Greece, 2000. [Google Scholar]
- Drivas, S.; Papadopoulos, M. Occupational Risk Assessment; Hellenic Institute of Occupational Health and Safety: Athens, Greece, 2015. [Google Scholar]
- Choudhry, R.M.; Fang, D.; Mohamed, S. The Nature of Safety Culture: A Survey of the State-of-the-Art. Saf. Sci. 2007, 45, 993–1012. [Google Scholar] [CrossRef]
- Gao, R.; Chan, A.; Utama, W.; Zahoor, H. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism. Int. J. Environ. Res. Public Health 2016, 13, 1100. [Google Scholar] [CrossRef]
- Stoilkovska, B.B.; Žileska Pančovska, V.; Mijoski, G. Relationship of Safety Climate Perceptions and Job Satisfaction among Employees in the Construction Industry: The Moderating Role of Age. Int. J. Occup. Saf. Ergon. 2015, 21, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, R.M.; Fang, D. Why Operatives Engage in Unsafe Work Behavior: Investigating Factors on Construction Sites. Saf. Sci. 2008, 46, 566–584. [Google Scholar] [CrossRef]
- Musarat, M.A.; Altaf, M.; Hameed, N.; Alaloul, W.S.; Baarimah, A.O.; Alzubi, K.M. Impact of Communication on Site Accidents Prevention: A Review. In Proceedings of the 2021 International Conference on Decision Aid Sciences and Application (DASA), Online, 7 December 2021; pp. 562–566. [Google Scholar]
- Chan, A.P.C.; Nwaogu, J.M.; Naslund, J.A. Mental Ill-Health Risk Factors in the Construction Industry: Systematic Review. J. Constr. Eng. Manag. 2020, 146, 04020004. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.Y.; Low, T.S. Accidents in Malaysian Construction Industry: Statistical Data and Court Cases. Int. J. Occup. Saf. Ergon. 2014, 20, 503–513. [Google Scholar] [CrossRef]
- Phoya, S.; Eliufoo, H.; Pietrzyk, K.; Nyström, M. Assessment of Health and Safety Risk Perception of Site Managers, Supervisors and Workers in Tanzania Urban Construction Sites; Fraunhofer Information Center for Space and Construction IRB: Stuttgart, Germany, 2011. [Google Scholar]
- Vitharana, V.H.P.; de Silva, G.H.M.J.S.; de Silva, S. Health Hazards, Risk and Safety Practices in Construction Sites—A Review Study. Eng. J. Inst. Eng. 2015, 48, 35. [Google Scholar] [CrossRef]
- Bollmann, U. Institut für Arbeit und Gesundheit Dresden Standards in Education and Training for Safety and Health at Work European Perspectives, Promising Developments and Examples of Good Practice; Deutsche Gesetzliche Unfallversicherung: Bochum, Germany, 2011; ISBN 9783864230196. [Google Scholar]
- Toccalino, D.; Colantonio, A.; Chan, V. Update on the Epidemiology of Work-Related Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Occup. Environ. Med. 2021, 78, 769–776. [Google Scholar] [CrossRef]
- Gürcanli, G.E.; Müngen, U. Analysis of Construction Accidents in Turkey and Responsible Parties. Ind. Health 2013, 51, 581–595. [Google Scholar] [CrossRef] [Green Version]
- Errico, S.; Drommi, M.; Calamano, V.; Barranco, R.; Molinari, G.; Ventura, F. Fatal Work-Related Injuries in the Genoa District (North-Western Italy): Forensic Analysis of the 10-Year Period between 2011 and 2020. J. Forensic Leg. Med. 2022, 85, 102294. [Google Scholar] [CrossRef]
- Grant, A.; Hinze, J. Construction Worker Fatalities Related to Trusses: An Analysis of the OSHA Fatality and Catastrophic Incident Database. Saf. Sci. 2014, 65, 54–62. [Google Scholar] [CrossRef]
- Kamal, I.S.M.; Ahmad, I.N.; Ma’arof, M.I.N. Review on Accidents Related to Human Factors at Construction Site. Adv. Eng. Forum 2013, 10, 154–159. [Google Scholar] [CrossRef]
- Kamardeen, I.; Hasan, A. Occupational Health and Safety Challenges for Sustaining Construction Apprentice Programs. J. Manag. Eng. 2022, 38, 04022042. [Google Scholar] [CrossRef]
- Li, J.; Wen, Y.Y. Association Analysis of Human Error Causes of Electric Shock Construction Accidents in China. Arch. Civ. Eng. 2022, 68, 427–443. [Google Scholar] [CrossRef]
- Suraji, A. Construction Accidents and the Lesson Learnt from 1000 Cases. Int. J. Constr. Manag. 2003, 3, 41–49. [Google Scholar] [CrossRef]
- Hong, Z.; Gui, F. Analysis on Human Unsafe Acts Contributing to Falling Accidents in Construction Industry. In Advances in Safety Management and Human Factors: Proceedings of the AHFE 2017 International Conference on Safety Management and Human Factors, Los Angeles, CA, USA, 17–21 July 2017; Springer: Berlin/Heidelberg, Germany, 2018; pp. 178–185. [Google Scholar]
- Bazas, T.; Krikella, A.; Zorba, K.; Kapsali, K. Photo Competition as a Tool for Providing Occupational Health Education to General Secondary School Students. J. Occup. Health 2013, 55, 516–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeokafor, N.; Umar, T.; Evangelinos, K. Bibliometric and Scientometric Analysis-Based Review of Construction Safety and Health Research in Developing Countries from 1990 to 2021. Saf. Sci. 2022, 156, 105897. [Google Scholar] [CrossRef]
- Musonda, I.; Lusenga, E.; Okoro, C. Rating and Characterization of an Organization’s Safety Culture to Improve Performance. Int. J. Constr. Manag. 2021, 21, 181–193. [Google Scholar] [CrossRef]
- Williams, J.; Fugar, F.; Adinyira, E. Assessment of Health and Safety Culture Maturity in the Construction Industry in Developing Economies. J. Eng. Des. Technol. 2020, 18, 865–881. [Google Scholar] [CrossRef]
- Trinh, M.T.; Feng, Y. A Maturity Model for Resilient Safety Culture Development in Construction Companies. Buildings 2022, 12, 733. [Google Scholar] [CrossRef]
First Author | Study Code | Year | Data Source | No. of Participants/ Accidents | No. of Factors | Ranking Method |
---|---|---|---|---|---|---|
Antoniou [2] | S1 | 2021 | Questionnaires | 102 | 104 | RII |
Kokkini [43] | S2 | 2020 | Questionnaires | 149 | 28 | mean/Frequency/ St. Dev |
Papadatou [44] | S3 | 2021 | Questionnaires | 65 | 22 | Frequency |
Ritsa [45] | S4 | 2019 | Questionnaires | 46 | 21 | Frequency |
Tsianas [46] | S5 | 2020 | Questionnaires | 131 | 37 | Frequency |
Kapellakis [47] | S6 | 2020 | Questionnaires | 89 | 19 | Frequency |
Kotsalos [48] | S7 | 2020 | Questionnaires | 141 | 29 | Frequency |
Touloupi [49] | S8 | 2020 | Questionnaires | 130 | 20 | Frequency |
Pantos [50] | S9 | 2019 | Questionnaires | 82 | 20 | Frequency |
Marazioti [51] | S10 | 2019 | Questionnaires | 57 | 42 | Frequency |
Pigounaki [52] | S11 | 2018 | Questionnaires | 70 | 19 | Frequency |
Theodorakopoulos [53] | S12 | 2016 | Questionnaires | 25 | 25 | RII |
Alamanos [54] | S13 | 2017 | Questionnaires | 55 | 135 | mean/Frequency/ St. Dev. |
Papastathakis [55] | S14 | 2016 | Questionnaires | 60 | 26 | Frequency |
Charitonidou [56] | S15 | 2015 | Questionnaires | 56 | 33 | Frequency |
Tzegkas [57] | S16 | 2010 | Questionnaires | 50 | 40 | Frequency |
Koulinas [58] | S17 | 2017 | Accident data | 169,381 | 10 | AHP |
Bougelis [59] | S18 | 2021 | Accident data | 149 | 8 | DMRA/FAHP/FTOPSIS |
Vroudas [60] | S19 | 2016 | Accident data | 11,171 | 8 | PRAT/TSP |
Fekos [61] | S20 | 2018 | Accident data | 41,081 | 8 | PRAT/FTA |
Panagiotopoulos [62] | S21 | 2020 | Accident data | 13,776 | 8 | PRAT/TSP |
Betsis [4] | S22 | 2019 | Accident data | 413 | 13 | Frequency |
Katsolas [63] | S23 | 2018 | Accident data | 2615 | 8 | Frequency |
Mylona [64] | S24 | 2019 | Accident data | 137 | 11 | Frequency |
Katsakiori [5] | S25 | 2008 | Accident data | 3332 | 6 | Frequency |
AFBS Code | Factors | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | S19a | S19b | S20 | S21a | S21b | S22 | S23 | S24 | S25 | F | ORI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0 | Safety Culture | |||||||||||||||||||||||||||||
1.1 | Adherence to Safety Rules | |||||||||||||||||||||||||||||
1.1.1 | Non-compliance with safety rules | 5 | 8 | 6 | 8 | 9 | 4 | 2 | 2 | 4 | 6 | 10 | 0.887 | |||||||||||||||||
1.2 | Safety Culture Management | |||||||||||||||||||||||||||||
1.2.1 | Lack of implementation of safety measures | 6 | 1 | 2 | 5 | 1 | 7 | 6 | 0.669 | |||||||||||||||||||||
1.2.2 | The competitive advantage of the organization | 7 | 8 | 5 | 3 | 0.052 | ||||||||||||||||||||||||
1.2.3 | Deficient organization’s commitment to safety | 3 | 9 | 4 | 3 | 0.077 | ||||||||||||||||||||||||
1.2.4 | Lack of occupational risk management | 10 | 7 | 3 | 3 | 4 | 0.135 | |||||||||||||||||||||||
1.3 | Safety Legislation | |||||||||||||||||||||||||||||
1.3.1 | Violation of existing legislation | 1 | 1 | 10 | 3 | 0.233 | ||||||||||||||||||||||||
1.3.2 | Inadequate supervision of the implementation of legislation | 2 | 6 | 2 | 3 | 0.130 | ||||||||||||||||||||||||
1.4 | Worker Training Standards | |||||||||||||||||||||||||||||
1.4.1 | Inadequate training of workers | 6 | 3 | 6 | 1 | 2 | 5 | 0.401 | ||||||||||||||||||||||
1.4.2 | Deficient work experience of workers | |||||||||||||||||||||||||||||
2.0 | Occupational Risks | |||||||||||||||||||||||||||||
2.1 | Accident Risks | |||||||||||||||||||||||||||||
2.1.1 | Unsafe working conditions | 10 | 7 | 2 | 8 | 3 | 5 | 0.222 | ||||||||||||||||||||||
2.1.2 | Shortcomings in building structures | 9 | 5 | 2 | 0.023 | |||||||||||||||||||||||||
2.1.3 | Environmental conditions of the workplace | 5 | 5 | 2 | 0.03 | |||||||||||||||||||||||||
2.1.4 | Falling or ejection of objects | 4 | 7 | 6 | 5 | 7 | 10 | 4 | 2 | 2 | 8 | 4 | 11 | 1.070 | ||||||||||||||||
2.1.5 | Crushing or catching between or within objects | 4 | 9 | 3 | 3 | 0.077 | ||||||||||||||||||||||||
2.1.6 | Falling or slipping | 6 | 6 | 3 | 7 | 9 | 3 | 2 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 15 | 4.308 | |||||||||||
2.1.7 | Inadequate safety signage | |||||||||||||||||||||||||||||
2.1.8 | Collision—Poor handling—Tipping of machinery or vehicles | 7 | 5 | 10 | 2 | 4 | 7 | 2 | 4 | 5 | 9 | 0.762 | ||||||||||||||||||
2.1.9 | Safety deficiencies of machinery/equipment | 10 | 3 | 4 | 3 | 4 | 5 | 6 | 2 | 8 | 0.632 | |||||||||||||||||||
2.1.10 | Poor quality of mechanical equipment/tools | |||||||||||||||||||||||||||||
2.1.11 | Shortcomings in the safety of installations | |||||||||||||||||||||||||||||
2.1.12 | Use and movement of hazardous substances | 3 | 8 | 2 | 0.034 | |||||||||||||||||||||||||
2.1.13 | Electrical installation/electrocution hazards | 10 | 9 | 9 | 5 | 8 | 7 | 6 | 5 | 7 | 7 | 4 | 2 | 12 | 0.974 | |||||||||||||||
2.1.14 | Fires and explosions | 8 | 6 | 7 | 6 | 6 | 6 | 6 | 7 | 0.285 | ||||||||||||||||||||
2.1.15 | Breakage, slipping, falling, material agent | 4 | 5 | 4 | 3 | 4 | 5 | 0.238 | ||||||||||||||||||||||
2.1.16 | Overflow, overturning, spillage, leakage, flow, evaporation, emission | 5 | 3 | 8 | 8 | 8 | 8 | 6 | 0.23 | |||||||||||||||||||||
2.1.17 | Unforeseen events | 6 | 1 | 0.006 | ||||||||||||||||||||||||||
2.1.18 | Other factors | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 5 | 8 | 0.923 | |||||||||||||||||||
2.2 | Health Risks | |||||||||||||||||||||||||||||
2.2.1 | Level of exposure to occupational disease hazards | 7 | 7 | 10 | 6 | 4 | 0.082 | |||||||||||||||||||||||
2.2.2 | Chemical factors | 8 | 1 | 0.005 | ||||||||||||||||||||||||||
2.2.3 | Physical factors | 9 | 1 | 0.004 | ||||||||||||||||||||||||||
2.2.4 | Noise | 9 | 10 | 2 | 0.016 | |||||||||||||||||||||||||
2.2.5 | Biological factors | 9 | 3 | 2 | 0.033 | |||||||||||||||||||||||||
2.3 | Organizational Risks | |||||||||||||||||||||||||||||
2.3.1 | Work scheduling deficiencies | 10 | 2 | 2 | 0.044 | |||||||||||||||||||||||||
2.3.2 | Unfavorable psychological factors | 3 | 10 | 5 | 3 | 0.07 | ||||||||||||||||||||||||
2.3.3 | Exhausting work | 7 | 7 | 1 | 8 | 1 | 7 | 6 | 0.567 | |||||||||||||||||||||
2.3.4 | Physical or mental stress | 4 | 6 | 10 | 8 | 8 | 8 | 7 | 5 | 1 | 10 | 7 | 3 | 12 | 1.249 | |||||||||||||||
2.3.5 | Ergonomic factors | |||||||||||||||||||||||||||||
2.3.6 | Confusion in communication | 2 | 3 | 7 | 3 | 0.108 | ||||||||||||||||||||||||
2.3.7 | Mental capacity, Bad Habits | 1 | 1 | 0.037 | ||||||||||||||||||||||||||
2.3.8 | Stressful working conditions | 8 | 7 | 2 | 0.020 | |||||||||||||||||||||||||
2.3.9 | Exposure to extreme weather conditions | 8 | 5 | 10 | 3 | 4 | 0.112 | |||||||||||||||||||||||
3.0 | Worker Training Deficiencies | |||||||||||||||||||||||||||||
3.1 | Level of training | 6 | 7 | 9 | 4 | 4 | 7 | 7 | 3 | 8 | 9 | 0.555 | ||||||||||||||||||
3.2 | Training at the working position | 3 | 5 | 5 | 10 | 5 | 5 | 0.062 | ||||||||||||||||||||||
3.3 | Training at the workplace | 9 | 8 | 6 | 1 | 4 | 0.208 | |||||||||||||||||||||||
3.4 | Training or information from agencies | |||||||||||||||||||||||||||||
3.5 | Training in prevention measures | 4 | 9 | 3 | 10 | 4 | 0.118 | |||||||||||||||||||||||
3.6 | Training for emergency needs | 10 | 10 | 2 | 0.015 | |||||||||||||||||||||||||
3.7 | Need for training in new measures | 8 | 5 | 9 | 6 | 9 | 5 | 0.132 | ||||||||||||||||||||||
3.8 | Training in safety regulations | 1 | 2 | 3 | 1 | 6 | 3 | 1 | 7 | 1.123 | ||||||||||||||||||||
4.0 | Occupational Satisfaction | |||||||||||||||||||||||||||||
4.1 | Workers’ View | |||||||||||||||||||||||||||||
4.1.1 | Incompetence—lack of qualifications of employees | 5 | 6 | 2 | 3 | 0.096 | ||||||||||||||||||||||||
4.1.2 | Degree of worker satisfaction with safety conditions | 5 | 3 | 10 | 8 | 9 | 9 | 6 | 0.218 | |||||||||||||||||||||
4.2 | Employer’s Perception | |||||||||||||||||||||||||||||
4.2.1 | Satisfaction with workers’ job performance | 3 | 2 | 2 | 0.062 | |||||||||||||||||||||||||
5.0 | Safety Equipment/Measures | |||||||||||||||||||||||||||||
5.1 | Supply and Control of the use of PPE | |||||||||||||||||||||||||||||
5.1.1 | Frequency of provision of appropriate PPE | 7 | 2 | 4 | 1 | 4 | 5 | 0.397 | ||||||||||||||||||||||
5.1.2 | Check for the correct use of PPE | 9 | 6 | 3 | 4 | 4 | 5 | 0.206 | ||||||||||||||||||||||
5.2 | Proper Use of PPE | |||||||||||||||||||||||||||||
5.2.1 | PPE in general | |||||||||||||||||||||||||||||
5.2.2 | Helmet | 2 | 3 | 9 | 4 | 2 | 1 | 6 | 0.599 | |||||||||||||||||||||
5.2.3 | Mask | 4 | 5 | 2 | 0.033 | |||||||||||||||||||||||||
5.2.4 | Earplugs | 9 | 1 | 0.004 | ||||||||||||||||||||||||||
5.2.5 | Special footwear | 2 | 1 | 4 | 1 | 1 | 1 | 3 | 7 | 1.318 | ||||||||||||||||||||
5.2.6 | Work uniforms | 6 | 10 | 2 | 0.020 | |||||||||||||||||||||||||
5.2.7 | Glasses | 8 | 8 | 2 | 0.019 | |||||||||||||||||||||||||
5.2.8 | Gloves | 10 | 1 | 8 | 3 | 5 | 2 | 6 | 0.502 |
1 | 0 | 0 |
2 | 1 | 0.5 |
3 | 0 | 0 |
4 | 1 | 0.25 |
5 | 2 | 0.4 |
6 | 1 | 0.166 |
7 | 3 | 0.428 |
8 | 1 | 0.125 |
9 | 2 | 0.222 |
10 | 1 | 0.100 |
Total (Σ) | 12 | 2.192 |
AFBS Code | Factors | F | ORI | RANK |
---|---|---|---|---|
2.1.6 | Falling or slipping | 15 | 4.308 | 1 |
5.2.5 | Special footwear | 7 | 1.318 | 2 |
2.3.4 | Physical or mental stress | 12 | 1.249 | 3 |
3.8 | Training in safety regulations | 7 | 1.123 | 4 |
2.1.4 | Falling or ejection of objects | 11 | 1.070 | 5 |
2.1.13 | Electrical installation/electrocution hazards | 12 | 0.974 | 6 |
2.1.18 | Other factors | 8 | 0.923 | 7 |
1.1.1 | Non-compliance with safety rules | 10 | 0.887 | 8 |
2.1.8 | Collision—Poor handling—Tipping of machinery or vehicles | 9 | 0.762 | 9 |
1.2.1 | Lack of implementation of safety measures | 6 | 0.669 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniou, F.; Agrafioti, N.F. Meta-Analysis of Studies on Accident Contributing Factors in the Greek Construction Industry. Sustainability 2023, 15, 2357. https://doi.org/10.3390/su15032357
Antoniou F, Agrafioti NF. Meta-Analysis of Studies on Accident Contributing Factors in the Greek Construction Industry. Sustainability. 2023; 15(3):2357. https://doi.org/10.3390/su15032357
Chicago/Turabian StyleAntoniou, Fani, and Nektaria Filitsa Agrafioti. 2023. "Meta-Analysis of Studies on Accident Contributing Factors in the Greek Construction Industry" Sustainability 15, no. 3: 2357. https://doi.org/10.3390/su15032357
APA StyleAntoniou, F., & Agrafioti, N. F. (2023). Meta-Analysis of Studies on Accident Contributing Factors in the Greek Construction Industry. Sustainability, 15(3), 2357. https://doi.org/10.3390/su15032357