A Study on the Economic Resilience of Industrial Parks
Abstract
:1. Introduction
- Economic and disaster resilience indicators were selected to establish an assessment framework.
- Based on the evaluation framework of economic resilience, this study evaluates the industrial parks and analyzes the main factors affecting economic resilience.
- This study combines the economic and disaster resilience indicators to comprehensively assess and explore the relationship between the two indicators.
1.1. Regional Economic Resilience
1.2. Economic Resilience Factors
1.2.1. Regional Development Infrastructure
1.2.2. Industrial Structure
1.2.3. Enterprise Competitiveness and Labor Force Conditions
1.2.4. Government Governance and Policy System
2. Materials and Methods
2.1. Selection of Evaluation Indicators and Description of Data Sources
2.2. Economic Recovery Index
2.3. Discriminant Analysis
3. Empirical Analysis
3.1. Financial Shocks
3.2. Policy Impact
3.3. Impact of the Epidemic
4. Conclusions and Recommendations
4.1. Conclusions
4.2. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunderson, L.H.; Holling, C.S. Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Walker, B.; Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- IPCC. Climate Change the Physical Science Basis; AGUFM, 2007, U43D–01; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Li, L.; Zhang, P.; Tan, J.; Guan, H. Evolution of resilience concept and progress in regional economic resilience. Hum. Geogr. 2019, 166, 1–7. [Google Scholar]
- Martin, R.; Gardiner, B. The resilience of cities to economic shocks: A tale of four recessions (and the challenge of Brexit). Pap. Reg. Sci. 2019, 98, 1801–1832. [Google Scholar] [CrossRef]
- Pendall, R.; Foster, K.A.; Cowell, M. Resilience and regions: Building understanding of the metaphor. Camb. J. Reg. Econ. Soc. 2009, 3, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.; Sunley, P. On the Notion of Regional Economic Resilience: Conceptualisation and Explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Holling, C.S. Engineering Resilience versus Ecological Resilience. In Engineering Within Ecological Constraints; The National Academies Press: Washington, DC, USA, 1996. [Google Scholar]
- Martin, R.; Sunley, P.; Gardiner, B.; Tyler, P. How Regions React to Recessions: Resilience and The Role of Economic Structure. Reg. Stud. 2016, 50, 561–585. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.L. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Foster, K.A. A Case Study Approach to Understanding Regional Resilience; Institute of Urban and Regional Development, University of California: Berkeley, CA, USA, 2007. [Google Scholar]
- Hill, E.W.; Wial, H.; Wolman, H. Exploring Regional Economic Resilience; Working Paper 2008–04; Institute of Urban and Regional Development, University of California: Berkeley, CA, USA, 2008. [Google Scholar]
- Simmie, J.; Martin, R. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2010, 3, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Modica, M.; Zoboli, R. Vulnerability, resilience, hazard, risk, damage, and loss: A socio-ecological framework for natural disaster analysis. Web Ecol. 2016, 16, 59–62. [Google Scholar] [CrossRef]
- Williams, N.; Vorley, T. Economic Resilience and Entrepreneurship: Lessons from the Sheffield City Region. Entrep. Reg. Dev. 2014, 26, 257–281. [Google Scholar] [CrossRef]
- Boschma, R.; Martin, R. Editorial: Constructing an evolutionary economic geography. J. Econ. Geogr. 2007, 7, 537–548. [Google Scholar] [CrossRef]
- Boschma, R.; Frenken, K. The Spatial Evolution of Innovation Networks: A Proximity Perspective; Edward Elgar Publishing: Cheltenham, UK, 2013. [Google Scholar] [CrossRef]
- Guan, H.; Yang, Q.; Hao, F.; Feng, Z. Economic resilience characteristics of Shenyang based on “industry-enterprise-space”. Acta Geogr. Sin. 2021, 76, 415–427. [Google Scholar]
- Hassink, R. Regional Resilience: A Promising Concept to Explain Differences in Regional Economic Adaptability? Camb. J. Reg. Econ. Soc. 2010, 3, 45–58. [Google Scholar] [CrossRef]
- Pike, A.; Dawley, S.; Tomaney, J. Resilience, Adaptation and Adaptability. Camb. J. Reg. Econ. Soc. 2010, 3, 59–70. [Google Scholar] [CrossRef]
- Boschma, R. Towards an Evolutionary Perspective on Regional Resilience. Reg. Stud. 2014, 49, 733–751. [Google Scholar] [CrossRef] [Green Version]
- Frenken, K.; Van Oort, F.; Verburg, T. Related Variety, Unrelated Variety and Regional Economic Growth. Reg. Stud. 2007, 41, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Zhu, H. Regional Resilience and Path Creation: Foreign Experience and Chinese Reference. J. Hunan Univ. Econ. 2020, 17, 44–48. [Google Scholar]
- Percoco, M. Infrastructure and Economic Efficiency in Italian Regions. Netw. Spat. Econ. 2004, 4, 361–378. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C. Influencing factors of regional economic resilience under the background of financial crisis: A case study of Zhejiang Province and Jiangsu Province. Prog. Geogr. 2017, 36, 986–994. [Google Scholar]
- Lin, Q. Exploring the Regional Economic Resilience of Knowledge-Intensive Manufacturing Clusters from a Life Cycle Perspective: A Case Study of Hsinchu and Southern Science Park and Surrounding Areas. Master’s Thesis, Institute of Urban Planning, National Cheng Kung University, Tainan, Taiwan, 2019. [Google Scholar]
- Östh, J.; Reggiani, A.; Galiazzo, G. Spatial Economic Resilience and Accessibility: A Joint Perspective. Comput. Environ. Urban Syst. 2015, 49, 148–159. [Google Scholar] [CrossRef]
- Henderson, V. The Urbanization Process and Economic Growth: The So-What Question. J. Econ. Growth 2003, 8, 47–71. [Google Scholar] [CrossRef]
- Glaeser, E.; Kallal, H.D.; Scheinkman, J.; Shleifer, A. Growth in Cities. J. Political Econ. 1992, 100, 1126–1152. [Google Scholar] [CrossRef]
- Jacobs, J. Economy of Cities; Random House: New York, NY, USA, 1969. [Google Scholar]
- Storper, M.; Venables, A. Buzz: Face-to-face contact and the urban economy. J. Econ. Geogr. 2004, 4, 351–370. [Google Scholar] [CrossRef]
Classification-Oriented | Evaluation Metrics | Measure Variables | Period of Information | Source |
---|---|---|---|---|
Foundations for regional development | Location conditions | Distance from nearby interchange | 2020 | Economic Geographic Information System |
Industrial structure | Number of new entrants | Number of new factory registrations | 2008~2021 | Bureau of Industry, Ministry of Economic Affairs Inventory of factories in production |
Industrial structure related | Relevant diversity index | 2008~2021 | This study calculates Introduction to the industrial zone | |
Non-correlated diversity index | 2008~2021 | This study calculates Introduction to the industrial zone | ||
Specialization index | 2008~2021 | This study calculates Introduction to the industrial zone | ||
Leading industry type | Livelihood industry ratio | 2008~2021 | This study calculates Introduction to the industrial zone | |
Chemical industry ratio | 2008~2021 | This study calculates Introduction to the industrial zone | ||
Metal machinery industry | 2008~2021 | This study calculates Introduction to the industrial zone | ||
Information electronics industry | 2008~2021 | This study calculates Introduction to the industrial zone | ||
Enterprise competitiveness and labor status | Regional innovation | Average R&D expenditure | 2008~2019 [14] | Factory calibration and operation Survey data |
Number of patent applications | 2018~2020 | Economic Geographic Information System | ||
Human capital | Population above university within 10 km | 2020 | Economic Geographic Information System | |
Government governance and Policy regime | Financial situation | Ratio of own resources | 2008~2020 | “Republic of China Statistical Information Network” county and city important statistical indicators query system |
The degree of economic openness | Number of import and export manufacturers | 2018 | Economic Geographic Information System |
Industrial Park | S1 | R1 | S2 | R2 | S3 | R3 | Industrial Park | S1 | R1 | S2 | R2 | S3 | R3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mei-hun | −1.64 | −1.16 | −1.19 | −1.12 | −1.12 | −1.11 | Pitou | −1.00 | −0.48 | −0.55 | −1.23 | −1.51 | −1.14 |
peace | 0.05 | −2.90 | −3.97 | −3.25 | −3.30 | −1.68 | Tanaka | −1.00 | 1.27 | 1.49 | −0.36 | −0.07 | 0.31 |
Guanghua Lohas | −2.02 | 1.57 | 2.09 | 1.24 | 1.29 | 1.17 | Fangyuan | −2.29 | 2.50 | 3.20 | 2.09 | 2.39 | 0.62 |
Fengle | 2.66 | −0.41 | −0.30 | −0.83 | −0.88 | −0.58 | Nangang | −1.08 | −0.99 | −0.98 | −0.78 | −0.78 | 0.41 |
Ronde | −1.09 | 1.82 | 2.39 | 1.80 | 2.05 | 1.89 | Zhushan | −1.00 | 1.56 | 2.07 | 1.32 | 1.38 | 1.77 |
Leze | 1.66 | 11.89 | 14.48 | 13.35 | 13.78 | 12.99 | Dou Six | 2.21 | −2.05 | −2.26 | −1.94 | −1.96 | −1.91 |
Dawu Lun | 0.75 | 1.08 | 1.50 | 1.59 | 2.40 | 1.15 | Cloud Science and Engineering | 0.69 | 2.41 | 4.18 | 3.32 | 3.44 | 2.49 |
Ruifang | −0.74 | −0.10 | 0.08 | 0.53 | 0.57 | −1.87 | Toyota | 2.16 | −2.61 | −2.94 | −1.22 | −1.22 | −1.21 |
New Taipei | 1.08 | 0.79 | 1.15 | 0.63 | 0.67 | 0.58 | Yuan length | 3.84 | −1.19 | −1.23 | −0.44 | −0.43 | −0.46 |
Tucheng | 0.69 | 0.31 | −0.33 | 0.61 | 0.65 | 0.50 | Yunlin Islands | −1.00 | −1.00 | −1.00 | −1.00 | −1.00 | −1.00 |
woods | −1.00 | −1.88 | −1.72 | 0.21 | 0.24 | 0.23 | Minxiong | −2.29 | 0.13 | 0.27 | −0.14 | −0.12 | 1.11 |
Guan yin | −1.20 | −0.49 | −0.43 | −0.57 | −0.56 | −0.58 | Head bridge | −0.66 | −1.15 | −0.98 | −1.60 | −1.61 | 0.05 |
Linkou Gong II | −0.89 | −1.17 | −1.21 | 1.10 | 1.10 | 0.20 | Puzi | −1.97 | −0.70 | −1.54 | −1.41 | −1.42 | 2.58 |
Linkou Gong III | −0.89 | −1.63 | −1.76 | 0.62 | 0.71 | 2.33 | Yizhu | −0.08 | −0.83 | −1.22 | −1.17 | −1.17 | −0.33 |
Kameyama | 0.87 | 1.43 | 1.74 | 0.43 | 0.46 | 0.79 | Kata | 0.37 | −2.77 | −3.12 | −2.06 | −2.04 | −1.98 |
Pingzhen | 1.03 | −3.66 | −2.66 | −1.90 | −1.92 | −1.87 | New Battalion | −0.79 | 0.17 | −0.82 | −1.09 | −1.35 | −1.36 |
Peach young | 0.79 | −2.59 | −2.30 | −0.88 | −0.88 | −1.18 | Guantian | 0.74 | 0.01 | 0.21 | −1.10 | −1.09 | −1.39 |
Big Garden | −0.59 | 5.08 | 6.30 | 4.14 | 4.27 | 3.99 | Yongkang | −0.16 | −1.07 | −0.81 | −0.85 | −0.85 | −0.75 |
Naka-ri | 0.21 | 2.08 | 2.70 | 0.34 | −0.56 | −0.59 | Southern Science and Technology | 1.33 | 3.78 | 4.74 | 3.63 | 3.80 | 3.39 |
Hsinchu | 0.40 | −0.78 | −0.87 | −0.82 | −0.49 | −0.52 | Anping | −1.00 | −0.55 | −0.72 | −1.00 | −1.00 | −1.00 |
Head portion | −3.33 | −2.43 | −2.15 | −1.76 | −1.78 | −2.05 | Yongan | −0.90 | −0.52 | −1.54 | −1.41 | −1.42 | 0.58 |
gong | 0.36 | −2.45 | −2.74 | −2.29 | −2.32 | −1.98 | Facing the sea | 0.31 | −0.36 | −0.44 | −0.08 | 0.04 | −0.26 |
Zhunan | −1.52 | −1.80 | −1.96 | −1.54 | −1.56 | −1.11 | Daihatsu | −1.31 | 1.75 | 2.30 | 3.21 | 2.73 | 2.16 |
Nail young | −0.99 | −0.41 | −0.27 | −0.05 | −0.03 | −0.74 | Fengshan | 1.87 | −2.40 | −2.68 | −1.22 | −1.23 | −1.21 |
Taichung Port | −0.39 | −0.40 | −1.38 | −0.19 | −0.17 | −0.14 | Renmu | −0.84 | −0.69 | 1.03 | 0.53 | 0.57 | 0.49 |
Taichung | 0.75 | −1.48 | −1.85 | −1.35 | −1.44 | −1.36 | Taisha | −1.00 | −0.28 | −0.13 | −0.34 | −0.35 | −0.38 |
Dali | −1.56 | 2.80 | −8.02 | 2.45 | 2.54 | 2.35 | Forest Garden | −1.38 | −0.79 | −0.74 | 0.12 | 0.42 | 0.54 |
Quanxing | 1.28 | −1.70 | −1.84 | −1.64 | −1.65 | −0.89 | Pingtung | −1.96 | 0.65 | 0.98 | −0.79 | −0.78 | −0.80 |
Shohama | −0.11 | 1.04 | 1.45 | 1.89 | 1.97 | 1.81 | Pingnan | −3.54 | 1.90 | 2.34 | 1.60 | 3.41 | 3.17 |
Fuxing | −2.08 | 0.35 | 0.41 | −0.21 | −0.08 | −0.49 | Neipu | 1.37 | −0.48 | −2.06 | −0.92 | −0.92 | −0.64 |
Characteristic Value | ‘Wilks’ λ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Code | Characteristic Value | Function | Characteristic Value | Function | Characteristic Value | Function | Characteristic Value | Function | Characteristic Value |
1 | 0.751 | 48.5 | 48.5 | 0.655 | 1 to 3 | 0.294 | 63.069 | 33 | 0.001 |
2 | 0.512 | 33.1 | 81.5 | 0.582 | 2 to 3 | 0.514 | 34.234 | 20 | 0.025 |
3 | 0.286 | 18.5 | 100.0 | 0.471 | 3 | 0.778 | 12.946 | 9 | 0.165 |
Characteristic Value | ‘Wilks’ λ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Code | Characteristic Value | Variables% | Cumulative % | Typical Correlation | Function Verification | Wilk’s Lambda | Cardinality Check | Degree of Freedom | Significance |
1 | 0.588 | 54.3 | 54.3 | 0.609 | 1 to 3 | 0.410 | 46.340 | 30 | 0.029 |
2 | 0.389 | 35.9 | 90.3 | 0.529 | 2 to 3 | 0.651 | 22.286 | 18 | 0.220 |
3 | 0.105 | 9.7 | 100.0 | 0.309 | 3 | 0.905 | 5.213 | 8 | 0.735 |
Characteristic Value | ‘Wilks’ Λ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Code | Characteristic Value | Function | Characteristic Value | Function | Characteristic Value | Function | Characteristic Value | Function | Characteristic Value |
1 | 4.163 | 64.7 | 64.7 | 0.898 | 1 to 2 | 0.059 | 33.915 | 22 | 0.050 |
2 | 2.270 | 35.3 | 100.0 | 0.833 | 2 | 0.306 | 14.216 | 10 | 0.163 |
Discriminant Variables | Standardized Normalized Discriminant Function Coefficient | |||||||
---|---|---|---|---|---|---|---|---|
Financial Shock across the Region | Policy Impact across the Region | Epidemic Hits Northern District | ||||||
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | |
Ratio of Owned Financial Resources | −0.380 | −0.365 | 0.591 | −0.027 | 0.746 | −0.552 | −1.422 | −4.222 |
Number of new factory registrations | 0.646 | −0.538 | 1.212 | 0.167 | 1.170 | 0.090 | 1.306 | 0.324 |
Patents | −0.533 | 0.596 | ||||||
Average R&D expenses | 0.202 | 0.075 | 0.348 | |||||
Over-university population | 0.017 | −0.319 | −0.517 | −1.159 | 0.051 | 0.663 | 0.143 | 2.314 |
Distance from nearby AC | −0.129 | −0.225 | 0.082 | −0.151 | 0.205 | −0.252 | 2.016 | 0.045 |
Related Diversity | 1.692 | 3.435 | 2.659 | 3.303 | 3.023 | 3.056 | 2.388 | 5.838 |
Non-relevant diversity | 1.896 | 2.311 | 3.123 | 2.455 | 3.479 | 3.581 | 3.315 | 6.827 |
Professionalism | 0.143 | 0.441 | −0.229 | 0.155 | −0.105 | −0.614 | 2.496 | 1.068 |
People’s livelihood | 0.541 | 0.628 | 0.379 | |||||
Chemistry | −0.509 | −0.797 | 0.085 | 2.921 | 3.218 | |||
Metal | 0.496 | 0.759 | −0.480 | −0.418 | −0.961 | −0.495 | 0.861 | −0.758 |
Electronic | 0.793 | −0.131 | −0.740 | −0.005 | −0.453 | −0.551 | 3.038 | 0.827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-H.; Kao, L.-L.; Liu, W.-H.; Pai, J.-T. A Study on the Economic Resilience of Industrial Parks. Sustainability 2023, 15, 2462. https://doi.org/10.3390/su15032462
Lee Y-H, Kao L-L, Liu W-H, Pai J-T. A Study on the Economic Resilience of Industrial Parks. Sustainability. 2023; 15(3):2462. https://doi.org/10.3390/su15032462
Chicago/Turabian StyleLee, Yun-Hsuan, Li-Ling Kao, Wen-Hsiang Liu, and Jen-Te Pai. 2023. "A Study on the Economic Resilience of Industrial Parks" Sustainability 15, no. 3: 2462. https://doi.org/10.3390/su15032462
APA StyleLee, Y. -H., Kao, L. -L., Liu, W. -H., & Pai, J. -T. (2023). A Study on the Economic Resilience of Industrial Parks. Sustainability, 15(3), 2462. https://doi.org/10.3390/su15032462