Controlling Arsenic Accumulation in Rice Grain under Nanomaterials-Assisted Optimal Greenhouse Set-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorption Study on Silica Nanoparticle/Graphene
2.2. Adsorbent Dose Effect Analysis for Heavy Metal Removal
Determination of Arsenic
2.3. Field Experimental Screening for Arsenic Toxicity in Selected Paddy Fields
2.4. Assessment of Arsenic in Rice Plants by Pot Experiment
2.4.1. Experimental Condition for Pot Experiment
2.4.2. Soil Collection and Pot Preparation
2.4.3. Rice Seedling and Cultivation
2.4.4. Pot Experiment
2.4.5. Analysis of Rice Grains Digests from the Pot Experiments
3. Results and Discussion
3.1. Screening Study for Arsenic Toxicity in Selected Area Paddy Plantation
3.2. Mechanism Reaction of Silica Nanoparticles and Graphene to Inhibit Accumulation of Arsenic
3.3. Adsorption Dosage of Silica Nanoparticles/Graphene with Varies Arsenic Concentrations
3.4. Growth Parameters for Rice Plant in Pot Experiment
3.5. Symptoms Visualization of Rice Plant in Pot Experiments
3.6. Analysis of Total Arsenic in Rice Grains by ICP-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uda, M.; Shaari, N.H.; Shamiera Said, N.; Ibrahim, N.H.; Akhir, M.A.M.; Hashim, M.K.R.; Salimi, M.N.; Nuradibah, M.; Hashim, U.; Gopinath, S.C. Antimicrobial Activity of Plant Extracts from Aloe Vera, Citrus Hystrix, Sabah Snake Grass and Zingiber Officinale against Pyricularia Oryzae that causes Rice Blast Disease in Paddy Plants. IOP Conf. Ser. Mater. Sci. Eng. 2018, 318, 012009. [Google Scholar] [CrossRef]
- Uda, M.N.A.; Hasfalina, C.M.; Samsuzana, A.A.; Hashim, U.; Ariffin, S.A.; Zamri, I.; Gopinath, S.C. Immunosensor development for rice tungro bacilliform virus (RTBV) detection using antibody nano-gold conjugate. AIP Conf. Proc. 2017, 1808, 020058. [Google Scholar] [CrossRef]
- Uda, M.; Gopinath, S.C.; Hasfalina, C.; Faridah, S.; Bunawan, S.; Sabrina, W.N.; Parmin, N.; Hashim, U.; Mazidah, M. Production and purification of antibody by immunizing rabbit with rice tungro bacilliform and rice tungro spherical viruses. Process. Biochem. 2018, 68, 37–42. [Google Scholar] [CrossRef]
- Uda, M.N.A.; Gopinath, S.C.B.; Ibrahim, N.H.; Hashim, M.K.R.; Nuradibah, M.A.; Salimi, M.N.; Shen, T.E.; Fen, O.Y.; Akhir, M.A.M.; Hashim, U. Preliminary Studies on Antimicrobial Activity of Extracts from Aloe Vera Leaf, Citrus Hystrix Leaf, Zingiber Officinale and Sabah Snake Grass Against Bacillus Subtilis. In Proceedings of the MATEC Web Conference, Penang, Malaysia, 6–7 December 2017; pp. 2–5. [Google Scholar] [CrossRef]
- Uda, M.N.A.; Hashim, U.; Gopinath, S.C.B.; Uda, M.N.A.; Parmin, N.A.; Isa, A.M. Label-free aptamer based biosensor for heavy metal detection. In Proceedings of the AIP Conference, Seoul, Republic of Korea, 29–30 November 2019. [Google Scholar] [CrossRef]
- Gu, Z.; de Silva, S.; Reichman, S.M. Arsenic Concentrations and Dietary Exposure in Rice-Based Infant Food in Australia. Int. J. Environ. Res. Public Health. 2020, 17, 415. [Google Scholar] [CrossRef]
- Mitra, A.A.; Chatterjee, S.; Moogouei, R.; Gupta, D.K. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review. Agronomy 2017, 7, 67. [Google Scholar] [CrossRef]
- Fleck, A.T.; Mattusch, J.; Schenk, M.K. Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J. Plant Nutr. Soil Sci. 2013, 176, 785–794. [Google Scholar] [CrossRef]
- Abedin, M.J.; Feldmann, J.; Meharg, A.A. Uptake Kinetics of Arsenic Species in Rice Plants. Plant Physiol. 2002, 128, 1120–1128. [Google Scholar] [CrossRef]
- Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA). Summary Report of the Seventy-Second Meeting of JECFA; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Li, G.; Zheng, M.; Tang, J.; Shim, H.; Cai, C. Effect of Silicon on Arsenic Concentration and Speciation in Different Rice Tissues. Pedosphere 2018, 28, 511–520. [Google Scholar] [CrossRef]
- Gopinath, S.C.; Ramanathan, S.; Suk, K.H.; Foo, M.E.; Anbu, P.; Uda, M. Engineered nanostructures to carry the biological ligands. MATEC Web Conf. 2018, 150, 06002. [Google Scholar] [CrossRef]
- Uda, M.N.; Gopinath, S.C.; Hashim, U.; Halim, N.H.; Parmin, N.A.; Afnan Uda, M.N.; Anbu, P. Production and characterization of silica nanoparticles from fly ash: Conversion of agro-waste into resource. Prep. Biochem. Biotechnol. 2020, 51, 86–95. [Google Scholar] [CrossRef]
- Uda, M.; Gopinath, S.C.; Hashim, U.; Parmin, N.; Halim, N.; Anbu, P. Novelty Studies on Amorphous Silica Nanoparticle Production from Rice Straw Ash. IOP Conf. Ser. Mater. Sci. Eng. 2020, 864, 012021. [Google Scholar] [CrossRef]
- Uda, M.; Gopinath, S.C.; Hashim, U.; Ibrahim, N.H.; Parmin, N.; Halim, N.; Anbu, P. Simple and Green Approach Strategy to Synthesis Graphene Using Rice Straw Ash. IOP Conf. Ser. Mater. Sci. Eng. 2020, 864, 012181. [Google Scholar] [CrossRef]
- Devatha, C.P.; Thalla, A.K. Green Synthesis of Nanomaterials, Synthesis of Inorganic Nanomaterials: Advances and Key Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 169–184. [Google Scholar]
- Zulkafflee, N.S.; Redzuan, N.A.M.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Razis, A.F.A. Evaluation of Heavy Metal Contamination in Paddy Plants at the Northern Region of Malaysia Using ICPMS and Its Risk Assessment. Plants 2021, 10, 3. [Google Scholar] [CrossRef]
- Uda, S.C.B.; Gopinath, U.; Hashim, N.H.; Halim, N.A.; Parmin, M.N.A.; Uda, P. Production and characterization of graphene from carbonaceous rice straw by cost-effect extraction. 3 Biotech 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, J.; Wu, Y.; Wang, Q.; Wu, S.; Gu, H. Preparation and Application of Graphene–Based Materials for Heavy Metal Removal in Tobacco Industry: A Review. Separations 2022, 9, 401. [Google Scholar] [CrossRef]
- Uda, M.N.A.; Hashim, U.; Gopinath, S.C.B.; Yaakub, A.R.W. Assessment of heavy metals contamination studies in paddy grains around paddy field in Perlis. AIP Conf. Proc. 2020, 2291, 020057. [Google Scholar] [CrossRef]
- Nawrocka, A.; Durkalec, M.; Michalski, M.; Posyniak, A. Simple and reliable determination of total arsenic and its species in seafood by ICP-MS and HPLC-ICP-MS. Food Chem. 2022, 379, 132045. [Google Scholar] [CrossRef]
- Limmer, M.A.; Seyfferth, A.L. Altering the localization and toxicity of arsenic in rice grain. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. AOAC Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1984. [Google Scholar]
- Wu, K.; Zhang, J.; Chang, B.; Liu, T.; Zhang, F.; Jin, P.; Wang, W.; Wang, X. Removal of arsenic(III,V) by a granular Mn-oxide-doped Al oxide adsorbent: Surface characterization and performance. Environ. Sci. Pollut. Res. 2017, 24, 18505–18519. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Jin, Q.; Li, Y.; Li, F. Oxidation and removal of As(iii) from soil using novel magnetic nanocomposite derived from biomass waste. Environ. Sci. Nano 2019, 6, 478–488. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Chen, J.; Li, Y.; Creamer, A.E.; Chen, H. Slow-release fertilizer encapsulated by graphene oxide films. Chem. Eng. J. 2014, 255, 107–113. [Google Scholar] [CrossRef]
- Yang, X.; Xia, L.; Song, S. Arsenic Adsorption from Water Using Graphene-based Materials as Adsorbents: A Critical Review. Surf. Rev. Lett. 2016, 24, 1730001. [Google Scholar] [CrossRef]
- Najafi, M.; Yousefi, Y.; Rafati, A. Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep. Purif. Technol. 2012, 85, 193–205. [Google Scholar] [CrossRef]
- Abu-Nada, A.; McKay, G.; Abdala, A. Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater. Nanomaterials 2020, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Huang, G.; Yi, J.; Cui, J.; Liu, C.; Li, F.; Li, X. Foliar application of silica nanoparticles alleviates arsenic accumulation in rice grain: Co-localization of silicon and arsenic in nodes. Environ. Sci. Nano 2022, 9, 1271–1281. [Google Scholar] [CrossRef]
- Zeng, G.; He, Y.; Liang, D.; Wang, F.; Luo, Y.; Yang, H.; Wang, Q.; Wang, J.; Gao, P.; Wen, X.; et al. Adsorption of Heavy Metal Ions Copper, Cadmium and Nickel by Microcystis aeruginosa. Int. J. Environ. Res. Public Health 2022, 19, 13867. [Google Scholar] [CrossRef]
- Singh, S.; Naik, T.; Basavaraju, U.; Khan, N.; Wani, A.; Behera, S.; Nath, B.; Bhati, S.; Singh, J.; Ramamurthy, P.C. A systematic study of arsenic adsorption and removal from aqueous environments using novel graphene oxide functionalized UiO-66-NDC nanocomposites. Sci. Rep. 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H.; Rahman, M.M.; Rahman, M.A.; Miah, M.A.M. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 2007, 69, 942–948. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Qian, L.; Zhou, K.; Hu, R.; Huang, M.; Wang, M.; Zhao, G.; Liu, Y.; Xu, Z.; Zhu, H. Graphene Oxide Promoted Cadmium Uptake by Rice in Soil. ACS Sustain. Chem. Eng. 2019, 7, 10283–10292. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Samal, A.C.; Majumdar, J.; Santra, S.C. Transfer of Arsenic from Groundwater and Paddy Soil toRice Plant (Oryza sativa L.): A Micro Level Study in West Bengal, India. World J. Agric. Sci. 2009, 5, 425–431. [Google Scholar]
- Zhang, M.; Gao, B.; Chen, J.; Li, Y. Effects of graphene on seed germination and seedling growth. J. Nanoparticle Res. 2015, 17, 1–8. [Google Scholar] [CrossRef]
- Gabbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M.; Natasha. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef]
- Das, D.K.; Sur, P.; Das, K. Mobilisation of arsenic in soils and in rice (Oryza sativa L.) plants affected by organic matter and zinc application in irrigation water contaminated with arsenic. Plant Soil Environ. 2008, 54, 30–37. [Google Scholar] [CrossRef]
- Johnston, S.G.; Burton, E.D.; Moon, E.M. Arsenic Mobilization Is Enhanced by Thermal Transformation of Schwertmannite. Environ. Sci. Technol. 2016, 50, 8010–8019. [Google Scholar] [CrossRef]
- González-Moscoso, M.; Martínez-Villegas, N.; Cadenas-Pliego, G.; Juárez-Maldonado, A. Effect of Silicon Nanoparticles on Tomato Plants Exposed to Two Forms of Inorganic Arsenic. Agronomy 2022, 12, 2366. [Google Scholar] [CrossRef]
- Lee, C.-H.; Huang, H.-H.; Syu, C.-H.; Lin, T.-H.; Lee, D.-Y. Increase of as release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application. J. Hazard. Mater. 2014, 276, 253–261. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Wen, S.-L.; Chen, P.; Zhang, L.; Cen, K.; Sun, G.-X. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. Environ. Sci. Pollut. Res. 2015, 23, 3781–3788. [Google Scholar] [CrossRef]
- Ray, P.Z.; Shipley, H.J. Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Adv. 2015, 5, 29885–29907. [Google Scholar]
- Tolkou, A.K.; Katsoyiannis, I.A.; Zouboulis, A.I. Removal of Arsenic, Chromium and Uranium from Water Sources by Novel Nanostructured Materials Including Graphene-Based Modified Adsorbents: A Mini Review of Recent Developments. Appl. Sci. 2020, 10, 3241. [Google Scholar] [CrossRef]
- Rehman, H.-U.; Aziz, T.; Farooq, M.; Wakeel, A.; Rengel, Z. Zinc nutrition in rice production systems: A review. Plant Soil 2012, 361, 203–226. [Google Scholar] [CrossRef]
Soil Parameters (%) | Range Condition |
---|---|
Clay | 66–69 |
Sand | 9–16 |
Silt | 17–24 |
Texture | Clay foam |
pH | 7.7 ± 0.2 |
No of Sample | Concentration of Arsenic (mg/kg) | Location |
---|---|---|
1 | 0.57 | 06°24′43.28” N 100°11’33.83” E |
2 | 3.07 | 06°25′50.87″ N, 100°13′23.05″ E |
3 | 0.54 | 06°33′19.59″ N, 100°14′37.40″ E |
4 | 0.49 | 06°21′46.32″ N, 100°10′21.50″ E |
5 | 0.52 | 06°23′27.13″ N, 100°08′55.60″ E |
6 | 0.63 | 06°38′12.94″ N, 100°15′41.62″ E |
7 | 0.53 | 06°38′50.83″ N, 100°14′44.83″ E |
8 | 0.56 | 06°24′31.78″ N, 100°14′01.41″ E |
9 | 0.56 | 06°28′03.76″ N, 100°17′35.23″ E |
Nanomaterial | Arsenic Concentration (mg/mL) | 25 days | 50 days | 75 days | 100 days |
---|---|---|---|---|---|
Silica | 0 | ||||
2 | |||||
7 | |||||
12 | |||||
Graphene | 0 | ||||
2 | |||||
7 | |||||
12 | - | - |
Nanomaterial | Arsenic Concentration (mg/mL) | Tiller Number | Number of Grains | Weight of Grains (g) |
---|---|---|---|---|
Silica | 0 | 8 | 728 | 20 |
2 | 8 | 456 | 16 | |
7 | 6 | 348 | 12 | |
12 | 5 | 178 | 10 | |
Graphene | 0 | 8 | 735 | 19 |
2 | 7 | 313 | 14 | |
7 | 5 | 309 | 11 | |
12 | 5 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uda, M.N.A.; Gopinath, S.C.B.; Hashim, U.; Uda, M.N.A.; Adam, T.; Parmin, N.A.; Subramaniam, S.; Chinni, S.V.; Lebaka, V.R.; Gobinath, R. Controlling Arsenic Accumulation in Rice Grain under Nanomaterials-Assisted Optimal Greenhouse Set-Up. Sustainability 2023, 15, 2633. https://doi.org/10.3390/su15032633
Uda MNA, Gopinath SCB, Hashim U, Uda MNA, Adam T, Parmin NA, Subramaniam S, Chinni SV, Lebaka VR, Gobinath R. Controlling Arsenic Accumulation in Rice Grain under Nanomaterials-Assisted Optimal Greenhouse Set-Up. Sustainability. 2023; 15(3):2633. https://doi.org/10.3390/su15032633
Chicago/Turabian StyleUda, Muhammad Nur Aiman, Subash C. B. Gopinath, Uda Hashim, Muhammad Nur Afnan Uda, Tijjani Adam, Nor Azizah Parmin, Sreeramanan Subramaniam, Suresh V. Chinni, Veeranjaneya Reddy Lebaka, and Ramachawolran Gobinath. 2023. "Controlling Arsenic Accumulation in Rice Grain under Nanomaterials-Assisted Optimal Greenhouse Set-Up" Sustainability 15, no. 3: 2633. https://doi.org/10.3390/su15032633
APA StyleUda, M. N. A., Gopinath, S. C. B., Hashim, U., Uda, M. N. A., Adam, T., Parmin, N. A., Subramaniam, S., Chinni, S. V., Lebaka, V. R., & Gobinath, R. (2023). Controlling Arsenic Accumulation in Rice Grain under Nanomaterials-Assisted Optimal Greenhouse Set-Up. Sustainability, 15(3), 2633. https://doi.org/10.3390/su15032633