Effect of Aggregate Mix Proportion on Static and Dynamic Mechanical Properties and Pore Structure of Alkali-Activated Slag Mortar with Sludge Pottery Sand
Abstract
:1. Introduction
2. Test Materials and Methods
2.1. Preparation for SPS
2.2. Experimental Instruments and Testing Items
2.3. Experimental Mix Ratio
3. Experimental Results and Discussion
3.1. Static Mechanical Properties
3.2. Dynamic Compressive Strength
3.3. Failure Morphology and Dynamic Absorption Energy
4. Pore Morphology and Air Content
5. SEM Microscopic Characterization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdel-Gawwad, H.A.; Sanad, S.A.; Mohammed, M.S. A clean approach through sustainable utilization of cement kiln dust, hazardous lead-bearing, and sewage sludges in the production of lightweight bricks. J. Clean. Prod. 2020, 273, 123129. [Google Scholar] [CrossRef]
- Cecconet, D.; Capodaglio, A.G. Sewage Sludge Biorefinery for Circular Economy. Sustainability 2022, 14, 14841. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Azevedo, T.; Rocha, F.; Nunes, E.; Homem, V. Plant uptake potential and soil persistence of volatile methylsiloxanes in sewage sludge amended soils. Chemosphere 2022, 308, 136314. [Google Scholar] [CrossRef] [PubMed]
- Bubalo, A.; Vouk, D.; Stirmer, N.; Nad, K. Use of Sewage Sludge Ash in the Production of Innovative Bricks—An Example of a Circular Economy. Sustainability 2021, 13, 9330. [Google Scholar] [CrossRef]
- Lu, J.X.; Zhou, Y.; He, P.; Wang, S.; Shen, P.; Poon, C.S. Sustainable reuse of waste glass and incinerated sewage sludge ash in insulating building products: Functional and durability assessment. J. Clean. Prod. 2019, 236, 117635. [Google Scholar] [CrossRef]
- Areias, I.O.R.; Vieira, C.M.F.; Colorado, H.A.; Delaqua, G.C.G.; Monteiro, S.N.; Azevedo, A.R.G. Could city sewage sludge be directly used into clay bricks for building construction? A comprehensive case study from Brazil. J. Build. Eng. 2020, 31, 101374. [Google Scholar] [CrossRef]
- Świerczek, L.; Cieślik, B.M.; Konieczka, P. Challenges and opportunities related to the use of sewage sludge ash in cement-based building materials–A review. J. Clean. Prod. 2021, 287, 125054. [Google Scholar] [CrossRef]
- Gu, C.; Ji, Y.; Zhang, Y.; Yang, Y.; Liu, J.; Ni, T. Recycling use of sulfate-rich sewage sludge ash (SR-SSA) in cement-based materials: Assessment on the basic properties, volume deformation and microstructure of SR-SSA blended cement pastes. J. Clean. Prod. 2021, 282, 124511. [Google Scholar] [CrossRef]
- Danish, A.; Ozbakkaloglu, T. Greener cementitious composites incorporating sewage sludge ash as cement replacement: A review of progress, potentials, and future prospects. J. Clean. Prod. 2022, 371, 133364. [Google Scholar] [CrossRef]
- Tang, P.; Xuan, D.; Li, J.; Cheng, H.W.; Poon, C.S.; Tsang, D.C. Investigation of cold bonded lightweight aggregates produced with incineration sewage sludge ash (ISSA) and cementitious waste. J. Clean. Prod. 2020, 251, 119709. [Google Scholar] [CrossRef]
- Chang, Z.; Long, G.; Xie, Y.; Zhou, J.L. Recycling sewage sludge ash and limestone for sustainable cementitious material production. J. Build. Eng. 2022, 49, 104035. [Google Scholar] [CrossRef]
- Świerczek, L.; Cieślik, B.M.; Konieczka, P. The potential of raw sewage sludge in construction industry—A review. J. Clean. Prod. 2018, 200, 342–356. [Google Scholar] [CrossRef]
- Ducoli, S.; Zacco, A.; Bontempi, E. Incineration of sewage sludge and recovery of residue ash as building material: A valuable option as a consequence of the COVID-19 pandemic. J. Environ. Manag. 2021, 282, 111966. [Google Scholar] [CrossRef]
- Zhang, Y.; Maierdan, Y.; Guo, T.; Chen, B.; Fang, S.; Zhao, L. Biochar as carbon sequestration material combines with sewage sludge incineration ash to prepare lightweight concrete. Constr. Build. Mater. 2022, 343, 128116. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y.; Mao, H.; Cui, K.; Liu, H. Structure evolution, properties and synthesis mechanism of ultra-lightweight eco-friendly ceramics prepared from kaolin clay and sewage sludge. J. Environ. Chem. Eng. 2022, 11, 109061. [Google Scholar] [CrossRef]
- Singh, J.; Chaudhary, A.; Dhiman, V.K.; Kumar, A.; Goyal, A. Impact of dry sewage sludge on characteristics of concrete. Mater. Today Proc. 2022, 52, 818–824. [Google Scholar] [CrossRef]
- Mojapelo, K.S.; Kupolati, W.K.; Ndambuki, J.M.; Sadiku, E.R.; Ibrahim, I.D.; Maepa, C. Sustainable usage and the positive environmental impact of wastewater dry sludge-based concrete. Results Mater. 2022, 16, 100336. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, M.; Zhao, Y.; Chi, X.; Lu, Z.; Tang, K.; Guo, J. Utilization of sewage sludge ash in ultra-high performance concrete (UHPC): Microstructure and life-cycle assessment. J. Environ. Manag. 2023, 326, 116690. [Google Scholar] [CrossRef]
- Mun, K.J. Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Constr. Build. Mater. 2007, 21, 1583–1588. [Google Scholar] [CrossRef]
- Lau, P.C.; Teo, D.C.L.; Mannan, M.A. Characteristics of lightweight aggregate produced from lime-treated sewage sludge and palm oil fuel ash. Constr. Build. Mater. 2017, 152, 558–567. [Google Scholar] [CrossRef]
- Chang, Z.; Long, G.; Xie, Y.; Zhou, J.L. Pozzolanic reactivity of aluminum-rich sewage sludge ash: Influence of calcination process and effect of calcination products on cement hydration. Constr. Build. Mater. 2022, 318, 126096. [Google Scholar] [CrossRef]
- Song, Y.; Chetty, K.; Garbe, U.; Wei, J.; Bu, H.; O’moore, L.; Jiang, G. A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers. Sci. Total Environ. 2021, 791, 148270. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, C.; Lv, Y.; Jian, S.; Jiang, W.; Jiang, D.; Dan, J. Effect of sintering temperature and dwelling time on the characteristics of lightweight aggregate produced from sewage sludge and waste glass powder. Ceram. Int. 2021, 47, 33435–33443. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, L.; Wang, J.; Mao, H.; Cui, K. Microstructure and mechanical properties of high strength porous ceramics with high sewage sludge content. J. Clean. Prod. 2022, 380, 135084. [Google Scholar] [CrossRef]
- Jiao, Z.; Wang, Y.; Zheng, W.; Huang, W. Effect of the activator on the performance of alkali-activated slag mortars with pottery sand as fine aggregate. Constr. Build. Mater. 2019, 197, 83–90. [Google Scholar] [CrossRef]
- Xie, J.; Liu, J.; Liu, F.; Wang, J.; Huang, P. Investigation of a new lightweight green concrete containing sludge ceramsite and recycled fine aggregates. J. Clean. Prod. 2019, 235, 1240–1254. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Tam, V.W.; Luo, Z. Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete. Compos. Part B Eng. 2020, 185, 107776. [Google Scholar] [CrossRef]
- Luo, X.; Xu, J.Y.; Bai, E.L.; Li, W. Research on the dynamic compressive test of highly fluidized geopolymer concrete. Constr. Build. Mater. 2013, 48, 166–172. [Google Scholar] [CrossRef]
- Kong, L.; Zhao, W.; Xuan, D.; Wang, X.; Liu, Y. Application potential of alkali-activated concrete for antimicrobial induced corrosion: A review. Constr. Build. Mater. 2022, 317, 126169. [Google Scholar] [CrossRef]
- Yao, W.; Shi, Y.; Xia, K.; Peterson, K. Dynamic fracture behavior of alkali-activated mortars: Effects of composition, curing time and loading ratio. Eng. Fract. Mech. 2019, 208, 119–130. [Google Scholar] [CrossRef]
- Wang, X.; Cui, J.; Shen, J.H.; Wang, X.Z.; Zhu, C.Q. Particle breakage behavior of a foundation filling material on island-reefs in the South China Sea under impact loading. Bull. Eng. Geol. Environ. 2022, 81, 345. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Liao, C.; Cui, J.; Shen, J.H.; Wang, X.Z.; Zhu, C.Q. Particle breakage mechanism and particle shape evolution of calcareous sand under impact loading. Bull. Eng. Geol. Environ. 2022, 81, 372. [Google Scholar] [CrossRef]
- ASTM C109/C109M-2011a; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2-in. or [50-mm] Cube Specimens). ASTM International: Philadelphia, PA, USA, 2011.
- Xie, H.; Yang, L.; Zhang, Q.; Huang, C.; Chen, M.; Zhao, K. Research on energy dissipation and damage evolution of dynamic splitting failure of basalt fiber reinforced concrete. Constr. Build. Mater. 2022, 330, 127292. [Google Scholar] [CrossRef]
Element | O | Si | Al | Fe | K | Ca | Na | Ti | Mg | Mn | P | Cl |
---|---|---|---|---|---|---|---|---|---|---|---|---|
%wt | 48.22 | 32.03 | 7.95 | 4.85 | 2.96 | 1.31 | 0.93 | 0.75 | 0.61 | 0.13 | 0.09 | 0.05 |
Particle Size Range | 0.15~2.36 mm | 2.36~4.75 mm | 4.75~9 mm |
---|---|---|---|
Apparent density (kg/m3) | 1.121 | 0.984 | 0.826 |
Cylinder compressive strength (MPa) | 12.1 | 7.38 | 4.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Ma, Q.; Ma, D.; Huang, K.; Gu, Y. Effect of Aggregate Mix Proportion on Static and Dynamic Mechanical Properties and Pore Structure of Alkali-Activated Slag Mortar with Sludge Pottery Sand. Sustainability 2023, 15, 2771. https://doi.org/10.3390/su15032771
Shi Y, Ma Q, Ma D, Huang K, Gu Y. Effect of Aggregate Mix Proportion on Static and Dynamic Mechanical Properties and Pore Structure of Alkali-Activated Slag Mortar with Sludge Pottery Sand. Sustainability. 2023; 15(3):2771. https://doi.org/10.3390/su15032771
Chicago/Turabian StyleShi, Yuhang, Qinyong Ma, Dongdong Ma, Kun Huang, and Yuqi Gu. 2023. "Effect of Aggregate Mix Proportion on Static and Dynamic Mechanical Properties and Pore Structure of Alkali-Activated Slag Mortar with Sludge Pottery Sand" Sustainability 15, no. 3: 2771. https://doi.org/10.3390/su15032771
APA StyleShi, Y., Ma, Q., Ma, D., Huang, K., & Gu, Y. (2023). Effect of Aggregate Mix Proportion on Static and Dynamic Mechanical Properties and Pore Structure of Alkali-Activated Slag Mortar with Sludge Pottery Sand. Sustainability, 15(3), 2771. https://doi.org/10.3390/su15032771