Reuse of Pretreated Red Mud and Phosphogypsum as Supplementary Cementitious Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Samples Preparation
2.3. Test Methods
2.3.1. The Non-Evaporable Water
2.3.2. Reaction Degree
2.3.3. Phase Analysis of Paste/Mortar with PG and RM
2.3.4. Mechanical Property and Pore Size Distribution of Mortar with PG and RM
3. Results and Discussion
3.1. Reaction Degree of PG and RM
3.2. The Non-Evaporable Water of Paste with RM and PG
3.3. Mechanical Property of Mortar with PG and RM
3.4. Porosity of Mortar with PG and RM
3.5. Pore Size Distribution of Mortar with PG and RM
3.6. Hydration Products of Paste Samples with PG and RM
3.7. Microstructure of Mortar with PG and RM
4. Conclusions
- (1)
- The non-evaporable water content, reaction degree, compressive strength, and flexural strength of cement systems show a downward trend after rising first when increasing the incorporation of PG, RM, and PG and RM, whose values reach the maximum with 10% PG and 10%RM, which are higher than a pure cement system, and the others have the reverse effect on cement systems.
- (2)
- The XRD, MIP, and SEM analyses revealed that the incorporation of PG, RM, and PG and RM can obviously transform the porous microstructure and produce more hydration products of cement systems.
- (3)
- The combination of PG and RM can efficaciously improve the interfacial transition zone as RM with high pH value and PG with high gypsum content are used, and PG and RM are finer than cement. The first mainly promotes the pozzolanic reaction of PG, RM, and PG and RM, and the second mainly improves the compactness of cement systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghalehnovi, M.; Roshan, N.; Hakak, E.; Shamsabadi, A.E.; Brito, J.D. Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete-incorporating various fillers. J. Clean Prod. 2019, 240, 118213. [Google Scholar] [CrossRef]
- Chandru, P.; Natarajan, C.; Karthikeyan, J. Influence of sustainable materials in strength and durability of self-compacting concrete: A review. J. Build. Pathol. Rehabil. 2018, 3, 8. [Google Scholar] [CrossRef]
- Jiang, Y.; Ahmad, M.; Chen, B. Properties of magnesium phosphate cement containing steel slag powder. Construct. Build. Mater. 2019, 195, 140–147. [Google Scholar] [CrossRef]
- Moreira, M.A.N.S.; Heitmann, A.P.; Bezerra, A.C.S.; Patrício, P.S.O.; Souza, P.P.D. Photocatalytic performance of cementitious materials with addition of red mud and Nb2O5 particles. Constr. Build. Mater. 2020, 259, 119851. [Google Scholar] [CrossRef]
- Nenadović, S.S.; Mucsi, G.; Kljajević, M.L.; Mirković, M.M.; Nenadović, T.M.; Kristaly, F.; Vukanac, S.I. Physicochemical, mineralogical and radiological properties of red mud samples as secondary raw materials. Nucl. Technol. Radiat. Prot. 2017, 32, 261–266. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Liu, S.J.; Yao, Z.Y.; Wu, S.P.; Jiang, H.G.; Liang, M.; Qiao, Y.N. Environmentalaspects and pavement properties of red mud waste as the replacement of mineral filler in asphaltmixture. Constr. Build. Mater. 2018, 178, 288–300. [Google Scholar]
- Zhao, H.; Gou, H. Unfired bricks prepared with red mud and calcium sulfoaluminate cement: Properties and environmental impact. J. Build. Eng. 2021, 38, 102238. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.G.; Ding, S.; Zhang, H.Y.; Yue, F. Utilization of red mud ingeopolymer-based pervious concrete with function of adsorption of heavy metal ions. J. Clean Prod. 2019, 207, 789–800. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, J.; Li, H.; Zhao, P.; Chen, Q. Reclycling red mud from the production of aluminium as a red cement-based mortar. Waste Manag. Res. 2017, 35, 500–507. [Google Scholar] [CrossRef]
- Kaya, K.; Soyer-Uzun, S. Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems. Ceram. Int. 2016, 42, 7406–7413. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ. Technol. 2011, 32, 231–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guangtao, W.; Luhua, S.; Jihua, M.; Zhongming, L.; Linye, Z. Preparation of a new Fenton-like catalyst from red mud using molasses wastewater as partial acidifying agent. Environ. Sci. Pollut. Res. Int. 2017, 24, 15067–15077. [Google Scholar]
- Wang, S.; Jin, H.; Deng, Y.; Xiao, Y. Comprehensive Utilization Status of Red Mud in China: A critical review. J. Clean. Prod. 2021, 289, 125136. [Google Scholar] [CrossRef]
- Qu, Y.; Li, H.; Tian, W.J. Leaching of valuable metals from red mud via batch and continuous processes by using fungi. Miner. Eng. 2015, 81, 1–4. [Google Scholar] [CrossRef]
- Liu, Y.; Naidu, R. Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag. 2014, 34, 2662–2673. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Hu, D.; Sheng, Y.; Lv, H.; Cheng, L.; Cheng, Y.D.; Sun, J. Paraffin/red mud phase change energy storage composite incorporated gypsum based and cement-based materials: Microstructures, thermal and mechanical properties. J. Hazard. Mater. 2019, 364, 608–620. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C. Experimental study on lime and fly ash stabilized sintered red mud in road base. J. Test. Eval. 2018, 46, 1539–1547. [Google Scholar] [CrossRef]
- Chen, R.; Cai, G.; Dong, X.; Mi, D.; Puppala, A.J.; Duan, W. Mechanical properties and micro-mechanism of loess roadbed filling using by-product red mud as a parti-al alternative. Constr. Build. Mater. 2019, 216, 188–201. [Google Scholar] [CrossRef]
- Ghalehnovi, M.; Shamsabadi, E.A.; Khodabakhshian, A.; Sourmeh, F.; Brito, J.D. Self-compacting architectural concrete production using red mud. Constr. Build. Mater. 2019, 226, 418–427. [Google Scholar] [CrossRef]
- Tang, W.C.; Wang, Z.; Liu, Y.; Cui, H.Z. Influence of red mud on fresh and hardened properties of self-compacting concrete. Constr. Build. Mater. 2018, 178, 288–300. [Google Scholar] [CrossRef]
- Krivenko, P.; Kovalchuk, O.; Pasko, A.; Croymans, T.; Hult, M. Development of alkali activated cements and concrete mixture design with high volumes of red mud. Constr. Build. Mater. 2017, 151, 819–826. [Google Scholar] [CrossRef]
- Hou, D.; Wua, D.; Wang, X.; Yu, S.; Li, R.; Wang, M.M.; Wang, P.; Shuai, Y. Sustainable use of red mud in ultra-high-performance concrete (UHPC): Design and performance evaluation. Cem. Concr. Compos. 2021, 115, 103862. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, N.; Chen, H.; Yuan, L.I. Preparation and properties of sintering red mud unburned road brick using orthogonal experiments. Constr. Build. Mater. 2020, 238, 117739. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Chen, B. Experimental research on magnesium phosphate cements modified by red mud. Constr. Build. Mater. 2020, 231, 117131. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Li, Z. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks. J. Clean. Prod. 2020, 273, 122972. [Google Scholar] [CrossRef]
- Alam, S.; Das, S.K.; Rao, B.H. Strength and durability characteristic of alkali activated GGBS stabilized red mud as geomaterial. Construct. Build. Mater. 2019, 211, 932–942. [Google Scholar] [CrossRef]
- Garanayak, L. Strength effect of alkali activated red mud slag cement in ambient condition. Mater. Today Proc. 2021, 44, 1437–1443. [Google Scholar] [CrossRef]
- Yang, Z.; Mocadlo, R.; Zhao, M.; Sisson, R.D.J.; Tao, M.; Liang, J. Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at ele-vated temperatures. Constr. Build. Mater. 2019, 221, 308–317. [Google Scholar] [CrossRef]
- Canbek, O.; Shakouri, S.; Sinan, T. Laboratory production of calcium sulfoaluminate cements with high industrial waste content. Cem. Concr. Compos. 2019, 106, 103475. [Google Scholar] [CrossRef]
- Li, Y.; Min, X.; Ke, Y.; Liu, D.; Tang, C. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Manag. 2019, 83, 202–208. [Google Scholar] [CrossRef]
- Tang, W.; Wang, Z.; Donne, S.; Forghani, M.; Liu, Y. Influence of red mud on mechanical and durability performance of self-compacting concrete. J. Hazard. Mater. 2019, 379, 120802. [Google Scholar] [CrossRef]
- Rashad, A.M. Phosphogypsum as a construction material. J. Clean. Prod. 2017, 166, 732–743. [Google Scholar] [CrossRef]
- Jiang, G.; Wu, A.; Wang, Y.; Li, J. The rheological behavior of paste prepare-d from hemihydrate phosphogypsum and tailing. Constr. Build. Mater. 2019, 229, 116870. [Google Scholar] [CrossRef]
- da Silva Calderón Morales Antonio García-Martínez, B.R.; Pineda, P.; García-Tenório, R. Valorization of phosphogypsum in cement-based materials: Limits and potential in eco-efficient construction. J. Build. Eng. 2021, 44, 102506. [Google Scholar]
- Holanda, F.C.; Schmidt, H.; Quarcioni, V.A. Influence of phosphorus from phosphogypsum on the initial hydration of Portland cement in the presence of superplasticcizers. Cem. Concr. Compos. 2017, 83, 384–393. [Google Scholar] [CrossRef]
- Xue, S.G.; Li, M.; Jiang, J.; Graeme, M.J.; Li, C.X.; Kong, X.F. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics. J. Environ. Sci. 2018, 77, 1–10. [Google Scholar] [CrossRef]
- Costa, A.R.D.; Matos, S.R.C.; Camarini, G.; Gonçalves, J.P. Hydration of sustainable ternary cements containing phosphogypsum. Sustain. Mater. Technol. 2021, 28, 280. [Google Scholar] [CrossRef]
- Chen, X.; Gao, J.; Zhao, Y. Investigation on the hydration of hemihydrate phosphogypsum after posttreatment. Constr. Build. Mater. 2019, 229, 116864. [Google Scholar] [CrossRef]
- Gijbels, K.; Nguyen, H.; Kinnunen, P.; Schroeyers, W.; Illikainen, M. Feasibility of incorporating phosphogypsum in ettringite-based binder from ladle slag. J. Clean. Prod. 2019, 237, 117793. [Google Scholar] [CrossRef]
- Campos, M.P.; Costa, L.J.P.; Nisti, M.B.; Mazzilli, B.P. Phosphogypsum recycling in the building materials industry: Assessment of the radon exhalation rate. J. Environ. Radioact. 2017, 172, 232–236. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, B.; Shen, W.; Wu, M.; Zhu, J. High industrial solid waste road base course binder: Performance regulation, hydration characteristics and practical application. J. Clean. Prod. 2021, 313, 127879. [Google Scholar] [CrossRef]
- Sadiqul Islam, G.M.; Chowdhury, F.H.; Raihan, M.T.; Amit, S.K.S.; Islam, M.R. Effect of phosphogypsum on the properties of portland cement. Procedia. Eng. 2017, 171, 744–751. [Google Scholar] [CrossRef]
- Huang, Y.; Qian, J.; Kang, X.; Yu, J.; Fan, Y.; Dang, Y.; Zhang, W.; Wang, S. Belite-calcium sulfoaluminate cement prepared with phosphogypsum: Influence of P2O5 and F on the clinker formation and cement performances. Constr. Build. Mater. 2019, 203, 432–442. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Yu, B. Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement. Constr. Build. Mater. 2019, 214, 9–16. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, R. A novel gypsum-based self-leveling mortar produced by phosphorus building gypsum. Constr. Build. Mater. 2019, 226, 11–20. [Google Scholar] [CrossRef]
- Gu, K.; Chen, B.; Bi, W.; Guan, Y. Recycling of waste gypsum in preparation of magnesium oxychloride cement (MOC). J. Clean. Prod. 2021, 313, 127958. [Google Scholar] [CrossRef]
- Li, M.; Chen, Z. Strength properties of phosphogypsum based composite filling materials. Adv. Energy Environ. Mater. 2018, 555–567. [Google Scholar] [CrossRef]
- Jin, Z.; Ma, B.; Su, Y.; Lu, W.; Hu, P. Effect of calcium sulphoaluminate cement on mechanical strength and waterproof properties of beta-hemihydrate phosphogypsum. Constr. Build. Mater. 2020, 242, 118198. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, C.; Zhou, W.B.; Zhu, J.Z. Influence of phosphogypsum on physical properties and hydration process of Portland cement (in Chinese). World Build. Mater. 2010, 31, 4–7. [Google Scholar]
- Zhang, J.; Tan, H.; He, X.; Yang, W.; Yang, J. Compressive strength and hydration process of ground granulated blast furnace slag-waste gypsum system managed by wet grinding. Constr. Build. Mater. 2019, 228, 116777. [Google Scholar] [CrossRef]
- Ortega, J.M.; Cabeza, M.; Tenza-Abril, A.J.; Real-Herraiz, T.; Climent, M.Á.; Sánchez, I. Effects of red mud addition in the microstructure, durability and mechanical performance of cement mortars. Appl. Sci. 2019, 9, 984. [Google Scholar] [CrossRef]
- Liu, R.-X.; Poon, C.-S. Utilization of red mud derived from bauxite in self-compacting concrete. J. Clean. Prod. 2016, 112, 384–391. [Google Scholar] [CrossRef]
- Venkatesh, C.; Chand, M.; Nerella, R. Experimental investigation of strength, durability, and microstructure of red-mud concrete. J. Korean Ceram. Soc. 2020, 57, 167–174. [Google Scholar] [CrossRef]
- Kang, S.-P.; Kwon, S.-J. Effects of red mud and alkali-activated slag cement on efflorescence in cement mortar. Constr. Build. Mater. 2017, 133, 459–467. [Google Scholar] [CrossRef]
- Jothilingam, M.; Preethi, V. Feasibility, compressive strength and utilization of red mud in geopolymer concrete for sustainable constructions. Mater. Today Proc. 2021, 45, 7016–7022. [Google Scholar] [CrossRef]
- Venkatesh, C.; Chand, M.; Nerella, R. Red mud as an additive in concrete: Comprehensive characterization. J. Korean Ceram. Soc. 2020, 57, 281–289. [Google Scholar] [CrossRef]
- Luo, S.; Liu, M.; Yang, L.; Chang, J.; Yang, W.; Yan, X.; Yu, H.; Shen, Y. Utilization of waste from alumina industry to produce sustainable cement-based materials. Constr. Build. Mater. 2019, 229, 116795. [Google Scholar] [CrossRef]
- Zhang, N.; Li, H.; Liu, X. Hydration mechanism and leaching behavior of bauxite calcination-metho-d red mud-coal gangue based cementitious materials. J. Hazard. Mater. 2016, 314, 172–180. [Google Scholar] [CrossRef]
- Tan, Y.; Yu, H.; Li, Y.; Bi, W.; Yao, X. The effect of slag on the properties of magnesium potassium phosphate cement. Constr. Build. Mater. 2016, 126, 313–320. [Google Scholar] [CrossRef]
- Guo, T.; Malone, R.F.; Rusch, K.A. Stabilized phosphogypsum: Class C fly ash: Portland type II cement composites for potential marine application. Environ. Sci. Technol. 2001, 35, 3967–3973. [Google Scholar] [CrossRef]
- Gu, K.; Chen, B.; Pan, Y. Utilization of untreated-phosphogypsum as filling and binding material in preparing grouting materials. Constr. Build. Mater. 2020, 265, 120749. [Google Scholar] [CrossRef]
- Neto, J.S.A.; Bersch, J.D.; Silva, T.S.; Rodríguez, E.D.; Kirchheim, A.P. Influence of phosphogypsum purification with lime on the properties of cementitious matrices with and without plasticizer. Constr. Build. Mater. 2021, 299, 123935. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Q.; Fourie, A.; Chen, X. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill. J. Environ. Manag. 2017, 201, 19–27. [Google Scholar] [CrossRef] [PubMed]
Element | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O |
---|---|---|---|---|---|---|---|---|
Cement | 27.5 | 6.59 | 4.89 | 54.87 | 2.69 | 2.66 | 0.46 | 0.34 |
PG | 8.34 | 1.52 | 1.12 | 38.29 | 0.25 | 50.24 | 0.22 | 0.02 |
RM | 31.33 | 32.23 | 8.77 | 19.95 | 0.97 | 0.94 | 4.26 | 1.55 |
NO. | Cement | RM | PG | Standard Sand | Water | Superplasticizer |
---|---|---|---|---|---|---|
C0 | 450 | 0 | 0 | 1350 | 225 | 0 |
RM1 | 405 | 45 | 0 | 1350 | 225 | 0.9 |
RM2 | 135 | 315 | 0 | 1350 | 225 | 3.6 |
PG1 | 405 | 0 | 45 | 1350 | 225 | 0.5 |
PG2 | 135 | 0 | 315 | 1350 | 225 | 1.3 |
RP1 | 90 | 45 | 315 | 1350 | 225 | 1.5 |
RP2 | 90 | 315 | 45 | 1350 | 225 | 3.6 |
NO. | Cement | RM | PG | Water | Superplasticizer |
---|---|---|---|---|---|
C0 | 450 | 0 | 0 | 225 | 0 |
RM1 | 405 | 45 | 0 | 225 | 0.9 |
RM2 | 135 | 315 | 0 | 225 | 3.6 |
PG1 | 405 | 0 | 45 | 225 | 0.5 |
PG2 | 135 | 0 | 315 | 225 | 1.3 |
RP1 | 90 | 45 | 315 | 225 | 1.5 |
RP2 | 90 | 315 | 45 | 225 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, S.; Zhuo, Q.; Chen, L.; Wu, F.; Xie, L. Reuse of Pretreated Red Mud and Phosphogypsum as Supplementary Cementitious Material. Sustainability 2023, 15, 2856. https://doi.org/10.3390/su15042856
Dong S, Zhuo Q, Chen L, Wu F, Xie L. Reuse of Pretreated Red Mud and Phosphogypsum as Supplementary Cementitious Material. Sustainability. 2023; 15(4):2856. https://doi.org/10.3390/su15042856
Chicago/Turabian StyleDong, Shuangkuai, Qi Zhuo, Liangliang Chen, Fufei Wu, and Lilan Xie. 2023. "Reuse of Pretreated Red Mud and Phosphogypsum as Supplementary Cementitious Material" Sustainability 15, no. 4: 2856. https://doi.org/10.3390/su15042856
APA StyleDong, S., Zhuo, Q., Chen, L., Wu, F., & Xie, L. (2023). Reuse of Pretreated Red Mud and Phosphogypsum as Supplementary Cementitious Material. Sustainability, 15(4), 2856. https://doi.org/10.3390/su15042856