Shellac: From Isolation to Modification and Its Untapped Potential in the Packaging Application
Abstract
:1. Introduction
2. History of Shellac
3. Source, Extraction, and Production of Shellac
3.1. Production of Resin by Lac Bug on the Tree (Sticklac)
3.2. Processing of Sticklac to Seedlac
3.3. Production of Shellac by Purification of Seedlac
4. Structural Composition and Structure of Shellac
5. Physicochemical Properties of Shellac
6. Modification of Shellac
6.1. Physical Mixing
6.1.1. Addition of Plasticizers
6.1.2. Blending with Polymers
6.2. Chemical Modification
7. Shellac as Reinforcement in Other Polymers
8. Toxicity, Biodegradability, and Compostability
9. Potential in the Packaging Application
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koob, S.P. The Instability of Cellulose Nitrate Adhesives. Conservator 1982, 6, 31–34. [Google Scholar] [CrossRef]
- Massy, J. Cellulose and Casein in the 19th Century. In Springer Briefs in Materials; Springer: Berlin/Heidelberg, Germany, 2017; pp. 9–14. [Google Scholar]
- Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose Modification by Polymer Grafting: A Review. Chem. Soc. Rev. 2009, 38, 2046. [Google Scholar] [CrossRef] [PubMed]
- Mark, H.F. Hermann Staudinger Father of Modern Polymer Science. In Pioneers in Polymer Science; Springer: Dordrecht, The Netherlands, 1989; pp. 93–109. [Google Scholar]
- Seymour, R.B.; Mark, H.F.; Pauling, L.; Fisher, C.H.; Stahl, G.A.; Sperling, L.H.; Marvel, C.S.; Carraher, C.E.; Seymour, R.B. Pioneers in Polymer Science; Seymour, R.B., Ed.; Springer: Dordrecht, The Netherlands, 1989; ISBN 9789400924079. [Google Scholar]
- Birley, A. Plastics Used in Food Packaging and the Rôle of Additives. Food Chem. 1982, 8, 81–84. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Threat to Human Health from Environmental Plastics. BMJ 2017, 358, j4334. [Google Scholar] [CrossRef]
- Gupta, N.; Mahur, B.K.; Izrayeel, A.M.D.; Ahuja, A.; Rastogi, V.K. Biomass Conversion of Agricultural Waste Residues for Different Applications: A Comprehensive Review. Environ. Sci. Pollut. Res. 2022, 1, 73622–73647. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Mishra, P.K.; Izrayeel, A.M.D.; Mahur, B.K.; Ahuja, A.; Rastogi, V.K. A Comprehensive Review on Textile Waste Valorization Techniques and Their Applications. Environ. Sci. Pollut. Res. 2022, 29, 65962–65977. [Google Scholar] [CrossRef]
- Mokhothu, T.H.; John, M.J. Review on Hygroscopic Aging of Cellulose Fibres and Their Biocomposites. Carbohydr. Polym. 2015, 131, 337–354. [Google Scholar] [CrossRef]
- Xing, X.; Cui, S.W.; Nie, S.; Phillips, G.O.; Douglas Goff, H.; Wang, Q. A Review of Isolation Process, Structural Characteristics, and Bioactivities of Water-Soluble Polysaccharides from Dendrobium Plants. Bioact. Carbohydr. Diet. Fibre 2013, 1, 131–147. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.-W. Bionanocomposite Films for Food Packaging Applications. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Li, K.; Tang, B.; Zhang, W.; Tu, X.; Ma, J.; Xing, S.; Shao, Y.; Zhu, J.; Lei, F.; Zhang, H. A Novel Approach for Authentication of Shellac Resin in the Shellac-Based Edible Coatings: Contain Shellac or Not in the Fruit Wax Preservative Coating. Food Chem. X 2022, 14, 100349. [Google Scholar] [CrossRef]
- Thombare, N.; Kumar, S.; Kumari, U.; Sakare, P.; Yogi, R.K.; Prasad, N.; Sharma, K.K. Shellac as a Multifunctional Biopolymer: A Review on Properties, Applications and Future Potential. Int. J. Biol. Macromol. 2022, 215, 203–223. [Google Scholar] [CrossRef] [PubMed]
- Phan The, D.; Debeaufort, F.; Luu, D.; Voilley, A. Moisture Barrier, Wetting and Mechanical Properties of Shellac/Agar or Shellac/Cassava Starch Bilayer Bio-Membrane for Food Applications. J. Memb. Sci. 2008, 325, 277–283. [Google Scholar] [CrossRef]
- Barnes, C.E. Chemical Nature of Shellac. Ind. Eng. Chem. 1938, 30, 449–451. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; He, Y. Preparation of Environmentally Friendly Coatings Based on Natural Shellac Modified by Diamine and Its Applications for Copper Protection. Prog. Org. Coatings 2008, 62, 307–312. [Google Scholar] [CrossRef]
- Ray, D.; Sengupta, S.P.; Rana, A.K.; Bose, N.R. Static and Dynamic Mechanical Properties of Vinylester Resin Matrix Composites Reinforced with Shellac-Treated Jute Yarns. Ind. Eng. Chem. Res. 2006, 45, 2722–2727. [Google Scholar] [CrossRef]
- Patel, A.R.; Rajarethinem, P.S.; Grędowska, A.; Turhan, O.; Lesaffer, A.; De Vos, W.H.; Van de Walle, D.; Dewettinck, K. Edible Applications of Shellac Oleogels: Spreads, Chocolate Paste and Cakes. Food Funct. 2014, 5, 645–652. [Google Scholar] [CrossRef]
- Chellappan, K. Multi-Disciplinary Study Confirms Mahabharat True Chronicle of History. Available online: https://www.dailypioneer.com/2022/india/multi-disciplinary-study-confirms-mahabharat-true-chronicle-of-history.html (accessed on 18 September 2022).
- Sharma, K.K. File:Laakshagrah1.Jpg. Available online: https://commons.wikimedia.org/wiki/File:Laakshagrah1.jpg (accessed on 31 January 2023).
- Berbers, S.V.J.; Tamburini, D.; van Bommel, M.R.; Dyer, J. Historical Formulations of Lake Pigments and Dyes Derived from Lac: A Study of Compositional Variability. Dye. Pigment. 2019, 170, 107579. [Google Scholar] [CrossRef]
- Merrifield, M.P. Medieval and Renaissance Treatises on the Arts of Painting; Courier Dover Publications: New York, NY, USA, 1999; ISBN 9780486404400. [Google Scholar]
- Derrick, M.R.; Stulik, D.C.; Landry, J.M.; Bouffard, S.P. Furniture Finish Layer Identification by Infrared Linear Mapping Microspectroscopy. J. Am. Inst. Conserv. 1992, 31, 225–236. [Google Scholar] [CrossRef]
- Nolley, S. Sealing Wax–Conservation DistList. Available online: https://cool.culturalheritage.org/byform/mailing-lists/cdl/1998/1019.html (accessed on 18 September 2022).
- Rehding, A. On the Record. Cambridge Opera J. 2006, 18, 59–82. [Google Scholar] [CrossRef]
- Nabais, P.; Melo, M.J.; Lopes, J.A.; Vieira, M.; Castro, R.; Romani, A. Organic Colorants Based on Lac Dye and Brazilwood as Markers for a Chronology and Geography of Medieval Scriptoria: A Chemometrics Approach. Herit. Sci. 2021, 9, 32. [Google Scholar] [CrossRef]
- Mediatus File:Lilli Marlene 1939.Jpg. Available online: https://commons.wikimedia.org/wiki/File:Lilli_Marlene_1939.jpg (accessed on 31 January 2023).
- Nelika, G. File:Waxseal.Png. Available online: https://commons.wikimedia.org/wiki/File:Waxseal.png (accessed on 31 January 2023).
- Metropolitan Museum of Art File: Cassone MET SLP1939-1.Jpg. Available online: https://commons.wikimedia.org/wiki/File:Cassone_MET_SLP1939-1.jpg (accessed on 31 January 2023).
- Jimtaisong, A. Aluminium and Calcium Lake Pigments of Lac Natural Dye. Brazilian J. Pharm. Sci. 2020, 56, 1–9. [Google Scholar] [CrossRef]
- Ahmad, A.; Kaushik, S.; Ramamurthy, V.V.; Lakhanpaul, S.; Ramani, R.; Sharma, K.K.; Vidyarthi, A.S. Mouthparts and Stylet Penetration of the Lac Insect Kerria Lacca (Kerr) (Hemiptera: Tachardiidae). Arthropod. Struct. Dev. 2012, 41, 435–441. [Google Scholar] [CrossRef]
- Cambridge Dictionary Shellac. Available online: https://dictionary.cambridge.org/dictionary/english/shellac (accessed on 18 September 2022).
- Berenbaum, M.R. Ninety-Nine More Maggots, Mites, and Munchers; University of Illinois Press: Champaign, IL, USA, 1993. [Google Scholar]
- Sharma, K.K.; Chowdhury, A.R.; Srivastava, S. Chemistry and Applications of Lac and Its By-Product. In Natural Materials and Products from Insects: Chemistry and Applications; Springer International Publishing: Cham, Switzerland, 2020; pp. 21–37. ISBN 9783030366100. [Google Scholar]
- Pal, G. Impact of Scientific Lac Cultivation Training on Lac Economy—A Study in Jharkhand. Agric. Econ. Res. Rev. 2009, 22, 139–144. [Google Scholar] [CrossRef]
- Mohanta, J.; Dey, D.G.; Mohanty, N. Performance of Lac Insect, Kerria Lacca Kerr In Conventional And Non-Conventional Cultivation around Similipal Biosphere Reserve, Odisha, India. Bioscan 2012, 7, 237–240. [Google Scholar]
- Howlett, F.M. File:02-Indian-Insect-Life-Harold Maxwell-Lefroy-Kerria-Lacca.jpg. Available online: https://commons.wikimedia.org/wiki/File:02-Indian-Insect-Life_-_Harold_Maxwell-Lefroy_-_Kerria-Lacca.jpg. (accessed on 31 January 2023).
- Lotz, J.W. Common Lac Insect (Kerria Lacca). Available online: https://www.forestryimages.org/browse/detail.cfm?imgnum=5385241 (accessed on 9 October 2022).
- Schulz, K. File:Lac Insects on a Babybonnet Branch - Flickr - Treegrow (2).Jpg. Available online: https://commons.wikimedia.org/wiki/File:Lac_Insects_on_a_Babybonnet_Branch_-_Flickr_-_treegrow_%282%29.jpg (accessed on 31 January 2023).
- Derry, J. Investigating Shellac: Documenting the Process, Defining the Product: A Study on the Processing Methods of Shellac, and the Analysis of Selected Physical and Chemical Characteristics. Master’s Thesis, University of Oslo, Oslo, Norway, 2012. [Google Scholar]
- William Zinsser & Co. The Story of Shellac; William Zinsser & Co: Somerset, NJ, USA, 2004. [Google Scholar]
- Making Handmade Shellac—YouTube. Available online: https://www.youtube.com/watch?v=ALToZ4kB0fc (accessed on 9 October 2022).
- Eugster, S.A. File:Shellac Three Colours.Jpeg. Available online: https://commons.wikimedia.org/wiki/File:Shellac_three_colours.jpeg (accessed on 31 January 2023).
- Yuan, Y.; He, N.; Xue, Q.; Guo, Q.; Dong, L.; Haruna, M.H.; Zhang, X.; Li, B.; Li, L. Shellac: A Promising Natural Polymer in the Food Industry. Trends Food Sci. Technol. 2021, 109, 139–153. [Google Scholar] [CrossRef]
- Sharma, S.K.; Shukla, S.K.; Vaid, D.N. Shellac-Structure, Characteristics & Modification. Def. Sci. J. 1983, 33, 261–271. [Google Scholar] [CrossRef]
- Farag, Y.; Leopold, C.S. Physicochemical Properties of Various Shellac Types. Dissolution Technol. 2009, 16, 33–39. [Google Scholar] [CrossRef]
- Farag, Y. Characterization of Different Shellac Types and Development of Shellac-Coated Dosage Forms. Ph.D. Thesis, Der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität, Hamburg, Germany, 2010. [Google Scholar]
- Limmatvapirat, S.; Limmatvapirat, C.; Luangtana-anan, M.; Nunthanid, J.; Oguchi, T.; Tozuka, Y.; Yamamoto, K.; Puttipipatkhachorn, S. Modification of Physicochemical and Mechanical Properties of Shellac by Partial Hydrolysis. Int. J. Pharm. 2004, 278, 41–49. [Google Scholar] [CrossRef]
- Bar, H.; Bianco-Peled, H. Modification of Shellac Coating Using Jeffamine® for Enhanced Mechanical Properties and Stability. Prog. Org. Coatings 2020, 141, 105559. [Google Scholar] [CrossRef]
- Luangtana-anan, M.; Nunthanid, J.; Limmatvapirat, S. Effect of Molecular Weight and Concentration of Polyethylene Glycol on Physicochemical Properties and Stability of Shellac Film. J. Agric. Food Chem. 2010, 58, 12934–12940. [Google Scholar] [CrossRef]
- Muhammad, D.R.A.; Gupta, V.; Doost, A.S.; Dewettinck, K. Functionality of Xanthan and Almond Gum in Colloidal Shellac Nanoparticles Containing Cinnamon. IOP Conf. Ser. Mater. Sci. Eng. 2019, 633, 012030. [Google Scholar] [CrossRef]
- Walker, P.H.; Steele, L.L. Shellac; U.S. Government Printing Office: Washington, DC, USA, 1923. [Google Scholar]
- Arnautov, A.; Korhov, V.; Faitelson, E. Physicomechanical Properties of Shellac Films Grafted by Using Ultraviolet Irradiation. Mech. Compos. Mater. 2013, 49, 163–170. [Google Scholar] [CrossRef]
- Qussi, B.; Suess, W.G. The Influence of Different Plasticizers and Polymers on the Mechanical and Thermal Properties, Porosity and Drug Permeability of Free Shellac Films. Drug Dev. Ind. Pharm. 2006, 32, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Luangtana-Anan, M.; Limmatvapirat, S.; Nunthanid, J.; Wanawongthai, C. Effect of Salts and Plasticizers on Stability of Shellac Film. J. Agric. Food Chem. 2007, 55, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Soradech, S.; Limatvapirat, S.; Luangtana-anan, M. Stability Enhancement of Shellac by Formation of Composite Film: Effect of Gelatin and Plasticizers. J. Food Eng. 2013, 116, 572–580. [Google Scholar] [CrossRef]
- Luangtana-anan, M.; Saengsod, S.; Limmatvapirat, S. Improvement of Bleached Shellac as Enteric Coating by Composite Formation. AAPS PharmSciTech 2021, 22, 241. [Google Scholar] [CrossRef]
- Brydson, J.A. Miscellaneous Plastics Materials. In Plastics Materials; Elsevier: Amsterdam, The Netherlands, 1999; pp. 853–873. ISBN 978-0-7506-4132-6. [Google Scholar]
- Barik, A.; Patnaik, T.; Parhi, P.; Swain, S.K.; Dey, R.K. Synthesis and Characterization of New Shellac–Hydroxypropylmethylcellulose Composite for Pharmaceutical Applications. Polym. Bull. 2017, 74, 3467–3485. [Google Scholar] [CrossRef]
- Guidigo, J.; Molina, S.; Adjovi, E.C.; Merlin, A.; André, D.; Tagne, M.S. Polyethylene Low and High Density-Polyethylene Terephthalate and Polypropylene Blend as Matrices for Wood Flour. Int. J. Sci. Res. 2017, 6, 1069–1074. [Google Scholar] [CrossRef]
- Djellali, S.; Haddaoui, N.; Sadoun, T.; Bergeret, A.; Grohens, Y. Structural, Morphological and Mechanical Characteristics of Polyethylene, Poly(Lactic Acid) and Poly(Ethylene-Co-Glycidyl Methacrylate) Blends. Iran. Polym. J. 2013, 22, 245–257. [Google Scholar] [CrossRef]
- Xavier, J.R.; Babusha, S.T.; George, J.; Ramana, K.V. Material Properties and Antimicrobial Activity of Polyhydroxybutyrate (PHB) Films Incorporated with Vanillin. Appl. Biochem. Biotechnol. 2015, 176, 1498–1510. [Google Scholar] [CrossRef]
- Nuchanong, P.; Seadan, M.; Khankrua, R.; Suttiruengwong, S. Thermal Stability Enhancement of Poly(Hydroxybutyrate-Co-Hydroxyvalerate) through in situ Reaction. Des. Monomers Polym. 2021, 24, 113–124. [Google Scholar] [CrossRef]
- Vahabi, H.; Michely, L.; Moradkhani, G.; Akbari, V.; Cochez, M.; Vagner, C.; Renard, E.; Saeb, M.R.; Langlois, V. Thermal Stability and Flammability Behavior of Poly(3-Hydroxybutyrate) (PHB) Based Composites. Materials 2019, 12, 2239. [Google Scholar] [CrossRef] [PubMed]
- Khairuddin; Pramono, E.; Utomo, S.B.; Wulandari, V.; A’an Zahrotul, W.; Clegg, F. The Effect of Polyethylene Glycol on Shellac Stability. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012066. [Google Scholar] [CrossRef]
- Alhanish, A.; Abu Ghalia, M. Developments of Biobased Plasticizers for Compostable Polymers in the Green Packaging Applications: A Review. Biotechnol. Prog. 2021, 37, e3210. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, W.; Liu, C.; Tian, M.; Liu, P. A Novel Poly (Vinyl Alcohol)/Poly (Ethylene Glycol) Scaffold for Tissue Engineering with a Unique Bimodal Open-Celled Structure Fabricated Using Supercritical Fluid Foaming. Sci. Rep. 2019, 9, 9534. [Google Scholar] [CrossRef]
- Rastogi, V.; Samyn, P. Bio-Based Coatings for Paper Applications. Coatings 2015, 5, 887–930. [Google Scholar] [CrossRef]
- Ghoshal, S.; Khan, M.A.; Khan, R.A.; Gul-E-Noor, F.; Sarwaruddin Chowdhury, A.M. Study on the Thermo-Mechanical and Biodegradable Properties of Shellac Films Grafted with Acrylic Monomers by Gamma Radiation. J. Polym. Environ. 2010, 18, 216–223. [Google Scholar] [CrossRef]
- Limmatvapirat, S.; Panchapornpon, D.; Limmatvapirat, C.; Nunthanid, J.; Luangtanaanan, M.; Puttipipatkhachorn, S. Formation of Shellac Succinate Having Improved Enteric Film Properties through Dry Media Reaction. Eur. J. Pharm. Biopharm. 2008, 70, 335–344. [Google Scholar] [CrossRef]
- Byun, Y.; Ward, A.; Whiteside, S. Formation and Characterization of Shellac-Hydroxypropyl Methylcellulose Composite Films. Food Hydrocoll. 2012, 27, 364–370. [Google Scholar] [CrossRef]
- Du, Y.; Wang, L.; Mu, R.; Wang, Y.; Li, Y.; Wu, D.; Wu, C.; Pang, J. Fabrication of Novel Konjac Glucomannan/Shellac Film with Advanced Functions for Food Packaging. Int. J. Biol. Macromol. 2019, 131, 36–42. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, X.; Pan, Z.; Xue, Q.; Wu, Y.; Li, Y.; Li, B.; Li, L. Improving the Properties of Chitosan Films by Incorporating Shellac Nanoparticles. Food Hydrocoll. 2021, 110, 106164. [Google Scholar] [CrossRef]
- Luangtana-anan, M.; Soradech, S.; Saengsod, S.; Nunthanid, J.; Limmatvapirat, S. Enhancement of Moisture Protective Properties and Stability of Pectin through Formation of a Composite Film: Effects of Shellac and Plasticizer. J. Food Sci. 2017, 82, 2915–2925. [Google Scholar] [CrossRef]
- Saberi, B.; Chockchaisawasdee, S.; Golding, J.B.; Scarlett, C.J.; Stathopoulos, C.E. Development of Biocomposite Films Incorporated with Different Amounts of Shellac, Emulsifier, and Surfactant. Food Hydrocoll. 2017, 72, 174–184. [Google Scholar] [CrossRef]
- Wang, R.; An, N.; Feng, W.; Zhang, H.; Wang, T. Antibacterial Fresh-Keeping Films Assembled by Synergistic Interplay Between Casein and Shellac. Food Biophys. 2022, 17, 47–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Zhang, H.; Zhang, H.; Chi, Y.; Zhao, X.; Li, H.; Wen, Y. Blending with Shellac to Improve Water Resistance of Soybean Protein Isolate Film. J. Food Process Eng. 2020, 43, e13515. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; El-Sakhawy, M.; Nashy, E.-S.H.A.; Othman, A.M. Novel Natural Composite Films as Packaging Materials with Enhanced Properties. Int. J. Biol. Macromol. 2019, 136, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Thombare, N. Safety Assessment of Shellac as Food Additive through Long Term Toxicity Study. Trends Biosci. 2017, 10, 733–740. [Google Scholar]
- Hoang-Dao, B.-T.; Hoang-Tu, H.; Tran-Hung, L.; Camps, J.; Koubi, G.; About, I. Evaluation of a Natural Resin-Based New Material (Shellac F) as a Potential Desensitizing Agent. Dent. Mater. 2008, 24, 1001–1007. [Google Scholar] [CrossRef]
- Poulin, A.; Aeby, X.; Siqueira, G.; Nyström, G. Versatile Carbon-Loaded Shellac Ink for Disposable Printed Electronics. Sci. Rep. 2021, 11, 23784. [Google Scholar] [CrossRef]
- Lu, S.; Li, C.; Liu, R.; Lv, A. PVP-Assisted Shellac Nanofiber Membrane as Highly Efficient, Eco-Friendly, Translucent Air Filter. Appl. Sci. 2021, 11, 11094. [Google Scholar] [CrossRef]
- Irimia-Vladu, M.; Głowacki, E.D.; Schwabegger, G.; Leonat, L.; Akpinar, H.Z.; Sitter, H.; Bauer, S.; Sariciftci, N.S. Natural Resin Shellac as a Substrate and a Dielectric Layer for Organic Field-Effect Transistors. Green Chem. 2013, 15, 1473. [Google Scholar] [CrossRef]
- Poovarodom, N.; Permyanwattana, W. Development of Starch/Shellac-Based Composites for Food Contact Applications. J. Thermoplast. Compos. Mater. 2015, 28, 597–609. [Google Scholar] [CrossRef]
- Iewkittayakorn, J.; Khunthongkaew, P.; Wongnoipla, Y.; Kaewtatip, K.; Suybangdum, P.; Sopajarn, A. Biodegradable Plates Made of Pineapple Leaf Pulp with Biocoatings to Improve Water Resistance. J. Mater. Res. Technol. 2020, 9, 5056–5066. [Google Scholar] [CrossRef]
- Klayya, S.; Tawichai, N.; Intatha, U.; Zhang, H.; Bilotti, E.; Soykeabkaew, N. Sustainable Nanocomposite Coating for Moulded Pulp with Enhanced Barrier Properties for Food Packaging Applications. Polym. Int. 2022. [Google Scholar] [CrossRef]
- Licciardello, F.; Wittenauer, J.; Saengerlaub, S.; Reinelt, M.; Stramm, C. Rapid Assessment of the Effectiveness of Antioxidant Active Packaging—Study with Grape Pomace and Olive Leaf Extracts. Food Packag. Shelf Life 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Song, G.; Sun, R.; Li, H.; Zhang, H.; Xia, N.; Guo, P.; Jiang, L.W.; Zhang, X.; Rayan, A.M. Effects of Pine Needle Essential Oil Combined with Chitosan Shellac on Physical and Antibacterial Properties of Emulsions for Egg Preservation. Food Biophys. 2022, 17, 260–272. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Q.; Chen, J.; Li, L. Effects of Coaxial Electrospun Eugenol Loaded Core-Sheath PVP/Shellac Fibrous Films on Postharvest Quality and Shelf Life of Strawberries. Postharvest Biol. Technol. 2020, 159, 111028. [Google Scholar] [CrossRef]
- Ariyanto, H.D.; Chiba, M.; Oguma, K.; Tatsuki, M.; Yoshii, H. Release Behavior of 1-Methylcylopropene Coated Paper-Based Shellac Solution in Response to Stepwise Humidity Changes to Develop Novel Functional Packaging for Fruit. Packag. Technol. Sci. 2019, 32, 523–533. [Google Scholar] [CrossRef]
- Kazemi Najafi, S. Use of Recycled Plastics in Wood Plastic Composites—A Review. Waste Manag. 2013, 33, 1898–1905. [Google Scholar] [CrossRef] [PubMed]
- Alaerts, L.; Augustinus, M.; Van Acker, K. Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability 2018, 10, 1487. [Google Scholar] [CrossRef]
- Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef]
- Sharma, P.; Ahuja, A.; Dilsad Izrayeel, A.M.; Samyn, P.; Rastogi, V.K. Physicochemical and Thermal Characterization of Poly (3-Hydroxybutyrate-Co-4-Hydroxybutyrate) Films Incorporating Thyme Essential Oil for Active Packaging of White Bread. Food Control 2022, 133, 108688. [Google Scholar] [CrossRef]
- Bastarrachea, L.; Dhawan, S.; Sablani, S.S. Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review. Food Eng. Rev. 2011, 3, 79–93. [Google Scholar] [CrossRef]
- Ding, Y.; Han, A.; Zhou, H.; Zhou, Q.; Song, H.; Chen, R.; Guo, S. Preparation of Poly(ε-Caprolactone) Based Composites through Multistage Biaxial-Stretching Extrusion with Excellent Oxygen and Water Vapor Barrier Performance. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106494. [Google Scholar] [CrossRef]
- Rhim, J.-W. Preparation and Characterization of Vacuum Sputter Silver Coated PLA Film. LWT—Food Sci. Technol. 2013, 54, 477–484. [Google Scholar] [CrossRef]
- Kraisit, P.; Limmatvapirat, S.; Nunthanid, J.; Luangtana-Anan, M.; Terada, K.; Yonemochi, E.; Yoshihashi, Y. Determination of Surface Free Energy and Contact Angle for Hydrolyzed Shellac. Adv. Mater. Res. 2012, 506, 270–273. [Google Scholar] [CrossRef]
- Hild, F. Surface Energy of Plastics. Available online: https://www.tstar.com/blog/bid/33845/surface-energy-of-plastics (accessed on 28 September 2022).
- Belibi, P.C.; Daou, T.J.; Ndjaka, J.-M.B.; Michelin, L.; Brendlé, J.; Nsom, B.; Durand, B. Tensile and Water Barrier Properties of Cassava Starch Composite Films Reinforced by Synthetic Zeolite and Beidellite. J. Food Eng. 2013, 115, 339–346. [Google Scholar] [CrossRef]
- Saranti, T.F.d.S.; Melo, P.T.S.; Cerqueira, M.A.; Aouada, F.A.; de Moura, M.R. Performance of Gelatin Films Reinforced with Cloisite Na+ and Black Pepper Essential Oil Loaded Nanoemulsion. Polymers 2021, 13, 4298. [Google Scholar] [CrossRef]
- Younis, H.G.R.; Zhao, G. Physicochemical Properties of the Edible Films from the Blends of High Methoxyl Apple Pectin and Chitosan. Int. J. Biol. Macromol. 2019, 131, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Ahuja, A.; Kadam, A.A.; Rastogi, V.K.; Negi, Y.S. Antioxidant Film Based on Chitosan and Tulsi Essential Oil for Food Packaging. Food Bioprocess Technol. 2023, 16, 342–355. [Google Scholar] [CrossRef]
- Tripathi, J.; Ambolikar, R.; Gupta, S.; Jain, D.; Bahadur, J.; Variyar, P.S. Methylation of Guar Gum for Improving Mechanical and Barrier Properties of Biodegradable Packaging Films. Sci. Rep. 2019, 9, 14505. [Google Scholar] [CrossRef] [PubMed]
- Żołek-Tryznowska, Z.; Kałuża, A. The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance. Materials 2021, 14, 1146. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, S.; Nomadolo, N.; Matshe, W.M.R.; Cele, Z.; Balogun, M. Exploring the Potential of N-Acylated Chitosan for the Removal of Toxic Pollutants from Wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2019, 655, 012047. [Google Scholar] [CrossRef]
- Kirtil, E.; Aydogdu, A.; Svitova, T.; Radke, C.J. Assessment of the Performance of Several Novel Approaches to Improve Physical Properties of Guar Gum Based Biopolymer Films. Food Packag. Shelf Life 2021, 29, 100687. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Sauraj; Kumar, B.; Deeba, F.; Kulshreshtha, A.; Negi, Y.S. Chitosan Films Incorporated with Apricot (Prunus Armeniaca) Kernel Essential Oil as Active Food Packaging Material. Food Hydrocoll. 2018, 85, 158–166. [Google Scholar] [CrossRef]
Constituents | Sticklac | Seedlac | Shellac |
---|---|---|---|
Resin (%) | 68 | 88.5 | 90.9 |
Dye (%) | 10 | 2.5 | 0.5 |
Wax (%) | 6 | 4.5 | 4.0 |
Gluten (%) | 5.5 | 2 | 2.8 |
Foreign bodies (%) | 6.5 | - | - |
Impurities (%) | 4 | 2.5 | 1.8 |
Property | Description | Reference |
---|---|---|
Appearance | Flakes | [54] |
Type | Complex polyester | [15] |
Color | Yellow to brown | [23,54] |
Refractive index | 1.521–1.527 | [15] |
Acid value | 60–75 | [15,50] |
Saponification | 225–230 | [50] |
Ester value | 155–165 | [15] |
Hydroxyl number | 250–280 | [15] |
Carboxyl value | 7.8–27.5 | [15] |
Basicity | 2 | [15] |
Molecular weight | 1000–1006 | [15] |
Solubility | Insoluble in water, hydrocarbon solvents, and esters Soluble in alcohol and organic solvent | [15,49] |
Density | 1.035–1.21 | [15] |
Tensile strength | 5.7–14 MPa | [15,55] |
Young’s modulus | 338.4 MPa | [56] |
Elongation at break | 3.05 % | [56] |
Stress | 2.25–2.5 MPa | [52,57] |
Strain | 3.05–3.5% | [52,57] |
Puncture strength | 3.8 MPa | [58] |
Puncture elongation | 4% | [58] |
WVPC | (4–5.5) × 10–9 gm/h-mm-mmHg | [52,58,59] |
Glass transition | 38–40 °C | [15] |
Softening point | 65–70 °C | [15] |
Melting | 75–90 °C | [15] |
Aging/cross-linking | 45 min at 150 °C | [60] |
Decomposition temperature | 280 °C (Onset TGA) | [61] |
Plasticizer | wt.% of Shellac | Stress (MPa) | Strain (%) | Elastic Modulus (MPa) | Elongation at Break (%) | WVPC × 109 (g/h-mm-mmHg) | Reference |
---|---|---|---|---|---|---|---|
Triacetin | 10 | 1.60 | 62 | N.A. | N.A. | 4.5 | [52] |
Diethyl Phthalate | 10 | 1.75 | 58 | N.A. | N.A. | 4.8 | [52] |
Triethyl citrate | 10 | N.A. | N.A. | 291 | 3.1 | N.A. | [56] |
Triethyl citrate | 30 | N.A. | N.A. | 108.6 | 22.35 | N.A. | [56] |
PEG 200 | 10 | 0.25 | 98 | N.A. | N.A. | 3.25 | [57] |
PEG 400 | 10 | 1.6–1.75 | 40–45 | N.A. | N.A. | 6.2–6.5 | [52,57] |
PEG 600 | 10 | N.A. | N.A. | 308.8 | 3 | N.A. | [56] |
PEG 600 | 30 | N.A. | N.A. | 40.1 | 85 | N.A. | [56] |
PEG 1500 | 10 | N.A. | N.A. | 338.4 | 3.1 | N.A. | [56] |
PEG 1500 | 30 | N.A. | N.A. | 37.9 | 117.3 | N.A. | [56] |
PEG 4000 | 10 | 0.25 | 22 | 443.7 | 2.9 | 7 | [56,57] |
PEG 4000 | 30 | N.A. | N.A. | 25.7 | 153 | N.A. | [56] |
PEG 6000 | 10 | N.A. | N.A. | 495 | 2.95 | N.A. | [56] |
PEG 6000 | 30 | N.A. | N.A. | 24.5 | 160 | N.A. | [56] |
Polymer | wt.% of Shellac | Tensile Strength (MPa) | Elongation at Break (%) | Elastic Modulus (MPa) | Puncture Elongation (%) | Puncture Strength (Mpa) | WVPC × 109 (g/h-mm-mmHg) | Reference |
---|---|---|---|---|---|---|---|---|
HPMC | 20 | N.A. | 22.3 | 144 | N.A. | N.A. | N.A. | [56] |
MC | 20 | N.A. | 140.3 | 63.1 | N.A. | N.A. | N.A. | [56] |
EC | 20 | N.A. | 2.8 | 360.1 | N.A. | N.A. | N.A. | [56] |
EC | 40 | 12.28 | 1.67 | N.A. | N.A. | N.A. | 4.09 | [59] |
Carbomer | 2 | N.A. | 31.91 | 110.2 | N.A. | N.A. | N.A. | [56] |
PVA | 20 | N.A. | 2.8 | 489 | N.A. | N.A. | N.A. | [56] |
Gelatin | 40 | N.A. | N.A. | N.A. | 26.66 | 14.07 | 6.12 | [58] |
Gelatin+ PEG 400 (10%) | 40 | N.A. | N.A. | N.A. | 134.28 | 3.71 | 7.95 | [58] |
Gelatin + DEP (10%) | 40 | N.A. | N.A. | N.A. | 108.17 | 7.34 | 2.86 | [58] |
Modifier | Weight (%) | In Presence of | Reaction | Chemical Change | Tensile Strength (MPa) | Elongation at Break (%) | Puncture Strength (MPa) | Puncture Elongation (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
HEM | 3 | UV Irradiation | 6 h | Grafting with acrylic (Ether bonds) | 7.8 | 2 | N.A. | N.A. | [55] |
HEM | 5 | Gamma Radiation | 1 kGy | Grafting with acrylic (Ether bonds) | 8.59 | 4.36 | N.A. | N.A. | [71] |
EHA | 5 | Gamma Radiation | 1 kGy | Grafting with acrylic (Ether bonds) | 9.31 | 3.356 | N.A. | N.A. | [71] |
BDDA | 5 | Gamma Radiation | 1 kGy | Grafting with acrylic (Ether bonds) | 11.96 | 7.28 | N.A. | N.A. | [71] |
Succinic anhydride | 72.86 | 60 °C | 6 h | Ester | N.A. | N.A. | 6 | 88 | [72] |
Jeffamine D-2000 | 20 | 100 °C | 4 h | amine-carboxyl reaction | N.A. | N.A. | 3.5 | 85 | [51] |
Matrix | Shellac | Other Additives | Elongation | Moisture Barrier | Tensile Strength | Stress | Strain | Reference |
---|---|---|---|---|---|---|---|---|
HPMC | 0.5% | 0.025% Lauric Acid | Decreased by 37% | Increased by 1.36 times | Decreased by 23% | N.A. | N.A. | [73] |
KGM | 1 gm | 400 µL glycerol | Increased by 100% | Increased by 1.28 times | Increased 253% | N.A. | N.A. | [74] |
Chitosan | Nano shellac | 300 µL glycerol | Decreased by 36% | Increased by 1.4 times | Increased by 40% | N.A. | N.A. | [75] |
Pectin | 30% | N.A. | N.A. | Increased by 2.19 times | N.A. | Decreased by 60% | Decreased by 66.6% | [76] |
Pea starch/guar gum/glycerol | 40% | 1% Stearic acid, 0.3% Tween-20 | Increased by 31.12% | Increased by 68 times | Decreased by 40.43% | N.A. | N.A. | [77] |
Casein | 10% | N.A. | N.A. | Increased by 1.33 times | Decreased by 42.7% | N.A. | N.A. | [78] |
Soybean protein isolate | 9.6 wt.% | 30 wt.% Glycerol | Decreased by 28.80% | Increased by 2 times | Increased by 17.58% | N.A. | N.A. | [79] |
CMC | 20% | N.A. | Deceased by 19.37% | N.A. | N.A. | N.A. | N.A. | [80] |
Properties | Shellac | PE | PP | PET | PVC | PCL | PLA | P3HB4HB |
---|---|---|---|---|---|---|---|---|
Melting Point (°C) | 75–90 [15] | 115–135 [93,94] | 170 [93] | 245–255 [93,94] | 210 [94] | 68 [95] | 155–165 [95] | 167.59 [96] |
Tensile Strength (MPa) | 5.7–14 [55] | 7–25 [97] | 27–98 [97] | 157–177 [97] | 42–55 [97] | 38.3 [98] | 37.6 [99] | 87.4 [96] |
Elongation (%) | 3.05 [56] | 300–900 [97] | 200–1000 [97] | 70 [97] | 20–180 [97] | 839.2 [98] | 59.2 [99] | 28.1 [96] |
Water Contact Angle (°) | 88.07 [100] | 88 [101] | 88 [101] | 76 [101] | 90 [101] | 80 [98] | 65.2 [99] | 64.7 [96] |
WVP × 1014 (gm-m/m2-s-Pa) | 834–1150 [52,58,59] | 6.673–8.704 [97] | 201–401 [97] | 501–1980 [97] | 18.279 [97] | 1680 [98] | 4820 [99] | 359 [96] |
Properties | Shellac | Starch | Gelatin | Pectin | Chitosan | Guar Gum |
---|---|---|---|---|---|---|
Tensile Strength (MPa) | 5.7–14 [55] | 2.4 [102] | 57.16 [103] | 3.63 [104] | 14.95 [105] | 18.01 [106] |
Elongation (%) | 3.05 [56] | 50 [102] | 2.96 [103] | 43.77 [104] | 8.26 [105] | 31.58 [106] |
Water Contact Angle (°) | 88.07 [100] | 23.18–66.91 [107] | 72 [103] | 31.69 [104] | 52.5 [108] | N.A. |
WVP × 1014 (gm-m/m2-s-Pa) | 834–1150 [52,58,59] | 23,000–35,000 [102] | 8890 [103] | 55,300 [104] | 63,400 [109] | 386,100 [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahuja, A.; Rastogi, V.K. Shellac: From Isolation to Modification and Its Untapped Potential in the Packaging Application. Sustainability 2023, 15, 3110. https://doi.org/10.3390/su15043110
Ahuja A, Rastogi VK. Shellac: From Isolation to Modification and Its Untapped Potential in the Packaging Application. Sustainability. 2023; 15(4):3110. https://doi.org/10.3390/su15043110
Chicago/Turabian StyleAhuja, Arihant, and Vibhore Kumar Rastogi. 2023. "Shellac: From Isolation to Modification and Its Untapped Potential in the Packaging Application" Sustainability 15, no. 4: 3110. https://doi.org/10.3390/su15043110
APA StyleAhuja, A., & Rastogi, V. K. (2023). Shellac: From Isolation to Modification and Its Untapped Potential in the Packaging Application. Sustainability, 15(4), 3110. https://doi.org/10.3390/su15043110