Climate Change Projection and Its Impacts on Building Façades in Singapore
Abstract
:1. Introduction
2. Projected Climate Change Scenario in Singapore
2.1. Projected Dry-Bulb Temperature
2.2. Projected Humidity
2.3. Projected Rainfall
2.4. Projected Wind Speed
3. Impacts of Climate Change on Building Façades
3.1. Corrosion or Degradation
3.2. Material Fatigue
3.3. Adhesive Failure
3.4. Humidity or Dampness and Biological Attack
3.5. Vertical Greenery
4. Limitations
5. Conclusions
- A projected higher temperature can accelerate corrosion or degradation, material fatigue, and adhesive failure;
- A projected higher rainfall intensity and an increase in the number of extreme rainfall events can increase the period of water contact on façades and its components, thereby accelerating corrosion or degradation and adhesive failure, as well as increasing local humidity or dampness and the chance of biological attack;
- A projected higher wind gust speed can increase the penetration of wind-driven rain, which can induce corrosion or degradation, adhesion failure, biological attack, and humidity or dampness;
- How climate change will affect vertical greeneries is not well-understood. Heavy thunderstorms, high wind gust speeds, and long dry spells can cause the plants used in vertical greeneries to fail and fall.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.; Goldstein, A. Indoor Chemistry: Research Opportunities and Challenges. Indoor Air 2015, 25, 357–361. [Google Scholar] [PubMed]
- Al-Kodmany, K. Skyscrapers in the Twenty-First Century City: A Global Snapshot. Buildings 2018, 8, 175. [Google Scholar]
- Rubiera-Morollón, F.; Garrido-Yserte, R. Recent Literature about Urban Sprawl: A Renewed Relevance of the Phenomenon from the Perspective of Environmental Sustainability. Sustainability 2020, 12, 6551. [Google Scholar]
- Silva, A.; de Brito, J. Service Life of Building Envelopes: A Critical Literature Review. J. Build. Eng. 2021, 44, 102646. [Google Scholar]
- Ferreira, C.; Silva, A.; de Brito, J.; Flores-Colen, I. Maintainability of Buildings’ Envelope. In Maintainability of Building Envelope Elements; Springer: Berlin/Heidelberg, Germany, 2023; pp. 63–115. [Google Scholar]
- Daniotti, B.; Masera, G.; Bolognesi, C.M.; Spagnolo, S.L.; Pavan, A.; Iannaccone, G.; Signorini, M.; Ciuffreda, S.; Mirarchi, C.; Lucky, M.; et al. The Development of a BIM-Based Interoperable Toolkit for Efficient Renovation in Buildings: From BIM to Digital Twin. Buildings 2022, 12, 231. [Google Scholar]
- Dias, I.S.; Flores-Colen, I.; Silva, A. Critical Analysis about Emerging Technologies for Building’s Façade Inspection. Buildings 2021, 11, 53. [Google Scholar]
- Ferraz, G.; De Brito, J.; De Freitas, V.; Silvestre, J. State-of-the-Art Review of Building Inspection Systems. J. Perform. Constr. Facil. 2016, 30, 04016018. [Google Scholar] [CrossRef]
- Shariq, M.H.; Hughes, B.R. Revolutionising Building Inspection Techniques to Meet Large-Scale Energy Demands: A Review of the State-of-the-Art. Renew. Sustain. Energy Rev. 2020, 130, 109979. [Google Scholar] [CrossRef]
- Ruggiero, G.; Marmo, R.; Nicolella, M. A Methodological Approach for Assessing the Safety of Historic Buildings’ Façades. Sustainability 2021, 13, 2812. [Google Scholar]
- Agnisarman, S.; Lopes, S.; Madathil, K.C.; Piratla, K.; Gramopadhye, A. A Survey of Automation-Enabled Human-in-the-Loop Systems for Infrastructure Visual Inspection. Autom. Constr. 2019, 97, 52–76. [Google Scholar]
- Golding, V.P.; Gharineiat, Z.; Munawar, H.S.; Ullah, F. Crack Detection in Concrete Structures Using Deep Learning. Sustainability 2022, 14, 8117. [Google Scholar]
- Department of Statistics Singapore. Population Trend; Department of Statistics Singapore: Singapore, 2022. [Google Scholar]
- Housing and Development Board. HDB Annual Report 2020/2021; Housing and Development Board: Singapore, 2021. [Google Scholar]
- Chew, M.Y.L. Façade Inspection for Falling Objects from Tall Buildings in Singapore. Int. J. Build. Pathol. Adapt. 2021. ahead of print. [Google Scholar] [CrossRef]
- Meteorological Service Singapore. Observing The Weather. Available online: https://www.weather.gov.sg/learn_observations (accessed on 2 February 2023).
- ASTM E2270-14; Standard Practice for Periodic Inspection of Building Facades for Unsafe Conditions. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM E2841-19; Standard Guide for Conducting Inspections of Building Facades for Unsafe Conditions. ASTM International: West Conshohocken, PA, USA, 2019.
- Hong Kong Government Buildings Department. Mandatory Building Inspection Scheme—Buildings Department. Available online: https://www.bd.gov.hk/en/safety-inspection/mbis/index.html (accessed on 1 October 2022).
- Building and Construction Authority. Guidelines on Periodic Facade Inspection; Building and Construction Authority: Singapore, 2022. [Google Scholar]
- Building and Construction Authority. Changes to Building Control Act to Enhance Safety and Improve Accessibility in the Built Environment. Available online: https://www1.bca.gov.sg/about-us/news-and-publications/media-releases (accessed on 29 December 2022).
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Oppenheimer, M.; Glavovic, B.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; Deconto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. [Google Scholar]
- Slangen, A.; Carson, M.; Katsman, C.; Van de Wal, R.; Köhl, A.; Vermeersen, L.; Stammer, D. Projecting Twenty-First Century Regional Sea-Level Changes. Clim. Change 2014, 124, 317–332. [Google Scholar] [CrossRef]
- Li, X.-X.; Yuan, C.; Hang, J. Heat Wave Trends in Southeast Asia: Comparison of Results From Observation and Reanalysis Data. Geophys. Res. Lett. 2022, 49, e2021GL097151. [Google Scholar]
- Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Wu, Q.; Casassa, G.; Menzel, A.; Root, T.L.; Estrella, N.; Seguin, B.; et al. Attributing Physical and Biological Impacts to Anthropogenic Climate Change. Nature 2008, 453, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Chew, L.W.; Liu, X.; Li, X.-X.; Norford, L.K. Interaction between Heat Wave and Urban Heat Island: A Case Study in a Tropical Coastal City, Singapore. Atmos. Res. 2021, 247, 105134. [Google Scholar]
- Catalao, J.; Raju, D.; Nico, G. InSAR Maps of Land Subsidence and Sea Level Scenarios to Quantify the Flood Inundation Risk in Coastal Cities: The Case of Singapore. Remote Sens. 2020, 12, 296. [Google Scholar] [CrossRef]
- Cannaby, H.; Palmer, M.D.; Howard, T.; Bricheno, L.; Calvert, D.; Krijnen, J.; Wood, R.; Tinker, J.; Bunney, C.; Harle, J.; et al. Projected Sea Level Rise and Changes in Extreme Storm Surge and Wave Events during the 21st Century in the Region of Singapore. Ocean Sci. 2016, 12, 613–632. [Google Scholar] [CrossRef]
- Ferreira, C.; Barrelas, J.; Silva, A.; de Brito, J.; Dias, I.S.; Flores-Colen, I. Impact of Environmental Exposure Conditions on the Maintenance of Facades’ Claddings. Buildings 2021, 11, 138. [Google Scholar]
- Grøntoft, T. Climate Change Impact on Building Surfaces and Façades. Int. J. Clim. Change Strateg. Manag. 2011, 3, 374–385. [Google Scholar] [CrossRef]
- Yanagawa, Y.; Jitsuiki, K.; Muramatsu, K.-I.; Ikegami, S.; Kushida, Y.; Nagasawa, H.; Nishio, R.; Takeuchi, I.; Ohsaka, H.; Oode, Y.; et al. Survey of Trauma Patients Injured by Falling or Flying Objects in Japan Based on the Japan Trauma Data Bank. Eur. J. Trauma Emerg. Surg. 2020, 48, 667–677. [Google Scholar] [PubMed]
- Marzin, C.; Rahmat, R.; Bernie, D.; Bricheno, L.; Buonomo, E.; Calvert, D.; Cannaby, H.; Chan, S.; Chattopadhyay, M.; Cheong, W.; et al. Singapore’s Second National Climate Change Study—Phase 1; Met Office: Exeter, UK; Centre for Climate Research Singapore: Singapore; National Oceanography Centre: Liverpool, UK; CSIRO: Canberra, Australia; Newcastle University: Newcastle, UK, 2015. [Google Scholar]
- Centre for Climate Research Singapore, Meteorological Service Singapore; Met Office Hadley Centre UK. Singapore’s Second National Climate Change Study-Climate Projections to 2100-Report to Stakeholders; Centre for Climate Research Singapore, Meteorological Service Singapore: Singapore; Met Office Hadley Centre UK: Exeter, UK, 2015. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Begum, S. S’pore’s Third National Climate Change Study to Be Completed in Sept 2023. The Straits Times, 12 July 2022. Available online: https://www.straitstimes.com/singapore/environment/spores-third-national-climate-change-study-to-be-completed-in-sept-2023 (accessed on 23 July 2022).
- Centre for Climate Research Singapore. Publications. Available online: http://ccrs.weather.gov.sg/publications-listing-page (accessed on 23 July 2022).
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar]
- NOAA National Centers for Environmental Information. State of the Climate: Monthly Global Climate Report for Annual 2021; NOAA National Centers for Environmental Information: Boulder, CO, USA, 2022. [Google Scholar]
- He, W.; Zhang, L.; Yuan, C. Future Air Temperature Projection in High-Density Tropical Cities Based on Global Climate Change and Urbanization–a Study in Singapore. Urban Clim. 2022, 42, 101115. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rajeevan, M.; Kesarkar, A.; Thampi, S.; Rao, T.; Radhakrishna, B.; Rajasekhar, M. Sensitivity of WRF Cloud Microphysics to Simulations of a Severe Thunderstorm Event over Southeast India. In Annales Geophysicae; Copernicus GmbH: Göttingen, Germany, 2010; Volume 28, pp. 603–619. [Google Scholar]
- Li, X.-X.; Koh, T.-Y.; Entekhabi, D.; Roth, M.; Panda, J.; Norford, L.K. A Multi-Resolution Ensemble Study of a Tropical Urban Environment and Its Interactions with the Background Regional Atmosphere. J. Geophys. Res. Atmos. 2013, 118, 9804–9818. [Google Scholar]
- Meteorological Service Singapore. Past Climate Trends. Available online: https://www.weather.gov.sg/climate-past-climate-trends (accessed on 23 January 2023).
- Ferreira, C.; Silva, A.; de Brito, J.; Dias, I.; Flores-Colen, I. The Impact of Imperfect Maintenance Actions on the Degradation of Buildings’ Envelope Components. J. Build. Eng. 2021, 33, 101571. [Google Scholar]
- Blocken, B.; Carmeliet, J. A Review of Wind-Driven Rain Research in Building Science. J. Wind. Eng. Ind. Aerodyn. 2004, 92, 1079–1130. [Google Scholar]
- Ooi, C.; Ge, Z.; Poh, H.J.; Xu, G. Assessing Effectiveness of Physical Barriers against Wind-Driven Rain for Different Raindrop Sizes. Eng. Anal. Bound. Elem. 2020, 111, 186–194. [Google Scholar]
- Ormondroyd, G.; Spear, M.; Curling, S. Modified Wood: Review of Efficacy and Service Life Testing. Proc. Inst. Civ. Eng. Constr. Mater. 2015, 168, 187–203. [Google Scholar] [CrossRef]
- Nik, V.M. Application of Typical and Extreme Weather Data Sets in the Hygrothermal Simulation of Building Components for Future Climate–A Case Study for a Wooden Frame Wall. Energy Build. 2017, 154, 30–45. [Google Scholar]
- Prieto, A.; Silva, A. Service Life Prediction and Environmental Exposure Conditions of Timber Claddings in South Chile. Build. Res. Inf. 2020, 48, 191–206. [Google Scholar]
- Soufeiani, L.; Foliente, G.; Nguyen, K.T.; San Nicolas, R. Corrosion Protection of Steel Elements in Façade Systems–A Review. J. Build. Eng. 2020, 32, 101759. [Google Scholar]
- Gräf, V.; Jamek, M.; Rohatsch, A.; Tschegg, E. Effects of Thermal-Heating Cycle Treatment on Thermal Expansion Behavior of Different Building Stones. Int. J. Rock Mech. Min. Sci. 2013, 64, 228–235. [Google Scholar]
- Spagnoli, A.; Ferrero, A.M.; Migliazza, M. A Micromechanical Model to Describe Thermal Fatigue and Bowing of Marble. Int. J. Solids Struct. 2011, 48, 2557–2564. [Google Scholar] [CrossRef]
- Chau, K.T.; Shao, J.-F. Subcritical Crack Growth of Edge and Center Cracks in Façade Rock Panels Subject to Periodic Surface Temperature Variations. Int. J. Solids Struct. 2006, 43, 807–827. [Google Scholar] [CrossRef]
- Begum, S. Warmer and Drier Days Ahead as Singapore Records Highest Temperature of 36.7 Deg C for May. The Straits Times, 17 May 2022. Available online: https://www.straitstimes.com/singapore/environment/warmer-and-drier-days-ahead-as-singapore-records-its-highest-ever-temperature-for-may (accessed on 26 July 2022).
- Chew, L.W.; Glicksman, L.R.; Norford, L.K. Buoyant Flows in Street Canyons: Comparison of RANS and LES at Reduced and Full Scales. Build. Environ. 2018, 146, 77–87. [Google Scholar]
- Liu, H.; Chen, Z.; Zhou, T. Theoretical and Experimental Study on the Temperature Distribution of H-Shaped Steel Members under Solar Radiation. Appl. Therm. Eng. 2012, 37, 329–335. [Google Scholar]
- Bues, M.; Schuler, C.; Albiez, M.; Ummenhofer, T.; Fricke, H.; Vallée, T. Load Bearing and Failure Behaviour of Adhesively Bonded Glass-Metal Joints in Façade Structures. J. Adhes. 2019, 95, 653–674. [Google Scholar]
- White, C.C.; Hunston, D.L.; Tan, K.T.; Filliben, J.J.; Pintar, A.L.; Schueneman, G. A Systematic Approach to the Study of Accelerated Weathering of Building Joint Sealants. J. ASTM Int. 2012, 9, JAI10409. [Google Scholar]
- Machalická, K.; Vokáč, M.; Eliášová, M. Influence of Artificial Aging on Structural Adhesive Connections for Façade Applications. Int. J. Adhes. Adhes. 2018, 83, 168–177. [Google Scholar]
- Liu, J.; Yue, K.; Xu, L.; Wu, J.; Chen, Z.; Wang, L.; Liu, W.; Lu, W. Bonding Performance of Melamine-Urea–Formaldehyde and Phenol-Resorcinol–Formaldehyde Adhesive Glulams at Elevated Temperatures. Int. J. Adhes. Adhes. 2020, 98, 102500. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Q.; Cheng, Q.; Li, K.; Cao, B.; Huang, Y. Evaluating the Influence of Different Layouts of Residential Buildings on the Urban Thermal Environment. Sustainability 2022, 14, 10227. [Google Scholar]
- Nasrollahi, N.; Ghosouri, A.; Khodakarami, J.; Taleghani, M. Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review. Sustainability 2020, 12, 10000. [Google Scholar] [CrossRef]
- Asmone, A.S.; Chew, M.Y.L. A Study on the Effectiveness of Biological Growth Resistant Coatings on External Building Façade Systems in the Tropics. J. Build. Eng. 2020, 31, 101377. [Google Scholar]
- Chew, M.Y.L.; Tan, P.P. Staining of Facades; World Scientific: Singapore, 2003. [Google Scholar]
- Chew, L.W.; Norford, L.K. Pedestrian-Level Wind Speed Enhancement in Urban Street Canyons with Void Decks. Build. Environ. 2018, 146, 64–76. [Google Scholar] [CrossRef]
- Yuan, C.; Ng, E. Building Porosity for Better Urban Ventilation in High-Density Cities—A Computational Parametric Study. Build. Environ. 2012, 50, 176–189. [Google Scholar]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a Mitigation and Adaptation Strategy to Urban Heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar]
- Soderlund, J.; Newman, P. Biophilic Architecture: A Review of the Rationale and Outcomes. AIMS Environ. Sci. 2015, 2, 950–969. [Google Scholar]
- Cabeza, L.F.; Chàfer, M. Technological Options and Strategies towards Zero Energy Buildings Contributing to Climate Change Mitigation: A Systematic Review. Energy Build. 2020, 219, 110009. [Google Scholar]
- Raji, B.; Tenpierik, M.J.; Van Den Dobbelsteen, A. The Impact of Greening Systems on Building Energy Performance: A Literature Review. Renew. Sustain. Energy Rev. 2015, 45, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Tan, C.L.; Lu, Y.; Wong, N.H. Holistic Analysis and Prediction of Life Cycle Cost for Vertical Greenery Systems in Singapore. Build. Environ. 2021, 196, 107735. [Google Scholar] [CrossRef]
- Manso, M.; Castro-Gomes, J. Green Wall Systems: A Review of Their Characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863–871. [Google Scholar]
- Ng, L. A City in a Garden. In Dense and Green Building Typologies; Springer: Berlin/Heidelberg, Germany, 2019; pp. 5–6. [Google Scholar]
- Chew, M.Y.L.; Conejos, S.; Azril, F.H.B. Design for Maintainability of High-Rise Vertical Green Facades. Build. Res. Inf. 2019, 47, 453–467. [Google Scholar]
- Pérez, G.; Coma, J.; Martorell, I.; Cabeza, L.F. Vertical Greenery Systems (VGS) for Energy Saving in Buildings: A Review. Renew. Sustain. Energy Rev. 2014, 39, 139–165. [Google Scholar] [CrossRef]
- Schmidlin, T.W. Human Fatalities from Wind-Related Tree Failures in the United States, 1995–2007. Nat. Hazards 2009, 50, 13–25. [Google Scholar] [CrossRef]
- Brookes, A. Preventing Death and Serious Injury from Falling Trees and Branches. J. Outdoor Environ. Educ. 2007, 11, 50–59. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shiru, M.S.; Shahid, S. Comparison between CMIP5 and CMIP6 Models over MENA Region Using Historical Simulations and Future Projections. Sustainability 2022, 14, 10375. [Google Scholar]
- Shepherd, T.G. Atmospheric Circulation as a Source of Uncertainty in Climate Change Projections. Nat. Geosci. 2014, 7, 703–708. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The Representative Concentration Pathways: An Overview. Clim. Change 2011, 109, 5–31. [Google Scholar]
- Flores-Colen, I.; de Brito, J.M.C.L.; de Freitas, V.P. On-Site Performance Assessment of Rendering Façades for Predictive Maintenance. Struct. Surv. 2011, 29, 133–146. [Google Scholar]
- Rodrigues, R.; Gaboreau, S.; Gance, J.; Ignatiadis, I.; Betelu, S. Reinforced Concrete Structures: A Review of Corrosion Mechanisms and Advances in Electrical Methods for Corrosion Monitoring. Constr. Build. Mater. 2021, 269, 121240. [Google Scholar]
- Ma, F.; Zhang, D.; Wang, Z.; Chen, X.; Jiang, L. Risk Assessment of Falling Objects from Façades of Existing Buildings. Buildings 2023, 13, 190. [Google Scholar] [CrossRef]
- Yau, Y.; Ho, D.C.W.; Chau, K.W. Determinants of the Safety Performance of Private Multi-Storey Residential Buildings in Hong Kong. Soc. Indic. Res. 2008, 89, 501–521. [Google Scholar]
- Asyraf, F. Contractor Faces Probe after Falling Panel Damages Parked Car. Available online: https://www.freemalaysiatoday.com/category/nation/2023/01/13/contractor-faces-probe-after-falling-debris-damages-parked-car (accessed on 25 January 2023).
Projected Period | Scenario | Minimum | Mean | Maximum |
---|---|---|---|---|
2040–2069 | RCP4.5 | 1.3–2.3 | 1.3–2.2 | 1.3–2.7 |
RCP8.5 | 1.8–3.0 | 1.8–2.9 | 2.0–3.1 | |
2070–2099 | RCP4.5 | 1.4–2.9 | 1.4–2.7 | 1.5–2.8 |
RCP8.5 | 2.9–4.8 | 2.9–4.6 | 3.1–4.9 |
Common Root Causes of Defects on Façades | Associated Meteorological Parameters |
---|---|
Corrosion or degradation | Temperature, humidity, rainfall, wind |
Material fatigue | Temperature |
Adhesive failure | Temperature, humidity, rainfall |
Humidity or dampness | Humidity, rainfall, wind |
Biological attack | Humidity, rainfall, wind |
Poor workmanship | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chew, L.W.; Li, X.-X.; Chew, M.Y.L. Climate Change Projection and Its Impacts on Building Façades in Singapore. Sustainability 2023, 15, 3156. https://doi.org/10.3390/su15043156
Chew LW, Li X-X, Chew MYL. Climate Change Projection and Its Impacts on Building Façades in Singapore. Sustainability. 2023; 15(4):3156. https://doi.org/10.3390/su15043156
Chicago/Turabian StyleChew, Lup Wai, Xian-Xiang Li, and Michael Y. L. Chew. 2023. "Climate Change Projection and Its Impacts on Building Façades in Singapore" Sustainability 15, no. 4: 3156. https://doi.org/10.3390/su15043156
APA StyleChew, L. W., Li, X. -X., & Chew, M. Y. L. (2023). Climate Change Projection and Its Impacts on Building Façades in Singapore. Sustainability, 15(4), 3156. https://doi.org/10.3390/su15043156