A Comprehensive Review on the Integration of Antimicrobial Technologies onto Various Surfaces of the Built Environment
Abstract
:1. Introduction, Gaps, and Method
1.1. Research Gaps, Aims, and Objectives
1.2. Method
2. Criteria of Antimicrobial Technology for the Built Environment
- Price: Price point is crucial when applying an antimicrobial coating in different public areas, be it high-touched areas or large surface areas in public places such as lecture halls, playgrounds, supermarkets, and gyms. Affordability would encourage organizations to consider antimicrobial technologies without overspending.
- Sustainability: In order to ensure that our sustainable goals are within reach, the SDGs were set out by the United Nations (UN); it is important to consider SDGs when selecting antimicrobial technologies for the built environment. Antimicrobial products should be produced responsibly—the manufacturing process and materials used should consider their carbon footprint and minimize any forms of pollution whereas possible [28,56].
- Ease of application: Antimicrobial technologies should be easily applied via simple coating techniques such as easy-to-apply adhesive tapes and should not require an extremely tedious or lengthy process. Ease of application would therefore encourage the adoption of technology.
- Mechanical properties: Depending on the area of application, technology after application should retain good mechanical properties and effectiveness [57,58]. For example, suppose the antimicrobial coating is applied on an outdoor hand railing. In that case, the product should be able to resist different weathering conditions and not lose its antimicrobial properties upon exposure to rain, etc. The antimicrobial coating should also be able to withstand repetitive cleaning. Good mechanical and antimicrobial properties would result in long-term use of a coating, minimizing wastage of materials, meeting SDGs, and reducing the cost needed for coating replacement.
- Effectiveness on organisms: Antimicrobial technology would benefit if it can reduce or resist as many microbial types as possible without using broad spectrum biocides that could lead to microbial resistance.
- Authority: Obtaining approval from a relevant authority such as the United States Environmental Protection Agency (EPA), which regulates the effectiveness of antimicrobial technology, would prove its effectiveness and increase user confidence.
- Testing Standards: While there is currently no single, standard test method developed for evaluating the efficacy of antimicrobial coating, several test methods were developed by organizations. These include the American Society of Testing and Material (ASTM), International Organization for Standardization (ISO), and the Japanese Industrial Standard (JIS). For example, the ISO 22196, Test for Antimicrobial Activity on Plastic Surfaces [60], ASTM E1428, Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions [61], and JIS Z 2801, Test for Antimicrobial Activity and Efficacy [62].
- Functionality, Aesthetic, and Tactility: Lastly, functionality, aesthetic, and tactility are also important criteria to consider when designing antimicrobial technology [63,64] in the built environment. Antimicrobial technology, when used, should allow, e.g., doorknob and elevator buttons to retain their functionality even after application. When applied on a glass panel such as windows, it should not cause the window to lose its transparency or, when applied to a touchscreen, result in a loss of touchscreen sensitivity.
3. Antimicrobial Technologies for Built Environment
3.1. Ceramics
Glass
3.2. Textile
Method [Ref.] | Ease of Application | Durability | Sustainability | Microbial Tested |
---|---|---|---|---|
Plasma pretreated surface with Silver Nanoparticle [105] | +++ Plasma and Pad-Dry-Cure | + | + | E. coli, C. albicans, S. aureus |
Adhesive Nanosilver Glue [106] | ++++ Pad-Dry-Cure | ++++ | + | E. coli, S. aureus |
Pretreated with Citric Acid, then coated with Cu2O Nanoparticle [107] | +++ Pretreated and Dip Coating | ++ | + | S. aureus, E. coli |
Silver Nanoparticle with Silicone Binder [108] | ++ Dip Coating and Reduction | N/A | + | S. aureus, E. coli |
Nano Silver Particle Encapsulated in Alginate [110] | ++ Dip Coating and Drying | Varying | + | N/A |
ZnO Nanoparticle with Binder and Wax Emulsion [102] | ++++ Pad-Dry-Cure | +++ | + | E. coli, S. aureus |
ZnO Nanoparticles modified with Silanol and attached with Tertiary Amine-based Coupling Agent [103] | ++++ Dip Coating | ++ | + | S. aureus |
Graphene Oxide and Cu2O anchored with Polydopamine [111] | ++ Dip Coating, Stirring 24H, and Drying | ++++ | + | S. aureus, E. coli |
Ag0 and TiO2 Nanocoating [113] | ++++ Pad-Dry-Cure | + | + | E. coli |
PTFE Coating with Magnetite Particle [104] | ++ Ultrasonic, Yarn-Spinning with PTFE Extruding | ++++ * | + | C. albicans, S. aureus, E. coli |
Quaternary Ammonium and Benzophenone [71] | +++ Spray Coating, Drying, and UV Curing | ++ | ++ | S aureus, E. coli |
Pretreated with Carboxymethyl Chitosan, then apply Quaternary Ammonium that was copolymerized with Methyl Acrylate [114] | +++ Surface Modification and grafting (Dip, Heat, and Dry) | ++++ | + | S aureus, E. coli |
Silane-functionalized Polyionenes [73] | +++ Ultrasonic Incubation, Dry, and Cure | ++++ | ++ | S. aureus, E. coli, P. aeruginosa, C. albicans |
Ho3+ and Sm3+ doped ZnO Nanoparticles [120] | N/A (Tested as particles only) | N/A | + | S. epidermidis, B. subtilis, P. aeruginosa, E. coli |
Ag nanoparticle-coated Cationized Cotton | ++++ Pad-Dry-Cure | ++++ | ++ | E. coli, S, aureus |
3.3. Fibrous Material (Filter)
3.4. Polymer
3.5. Metal
Method [Ref.] | Ease of Application | Durability * | Sustainability | Microbial Tested |
---|---|---|---|---|
SiO2/TiO2 Core-Shell Polyurethane Nanocoating [140] | ++ Painting and Drying | ++++ | + | Cyanobacteria, F. solani, E. coli, Bacillus |
Copper-Incorporated Alumina PEO Coating [143] | + Plasma Electrolytic Oxidation | +++ | ++ | E. coli, S. aureus |
Superhydrophobic Silane-Based Coating [144] | + Spin Coating–Curing-Spray Coating–Curing | +++ | +++ | E. coli |
Quaternary Ammonium Polymer Coating [70] | ++ Electrospraying | N/A | ++ | HCoV-229E, SARS-CoV-2 |
Silver on Stainless Steel [141] | + Electrochemical Polishing and Pulse-Reverse Electrodeposition | ++++ | +++ | E. coli, S. aureus |
Graphene Oxide on Aluminum [145] | ++++ Simple Transfer Method (With Filter Paper) | +++ | + | E. coli |
Copper Surface on Stainless Steel [142] | ++ Cold Gas Spray | N/A | ++ | E. coli, S. aureus (MSSA), C. albicans |
Polyurethane Varnish Containing Gd(I)/Cs(III) Metal Complexes [147] | +++ Paint and cure at room temperature for 24H | N/A | +++ | ADeno-7, HSV-1, CV-B4, S. aureus, B. cereus, E. coli, P. aeruginosa |
3.6. Other Works and General Antimicrobial Applications (Nonsurface Specific)
3.7. Sustainability Considerations
3.8. Summary
4. Factors Affecting Microbes in Built Environment: Considerations and Potential Challenges
- Probability of contamination at the targeted surface;
- The survivability of the pathogens on these surfaces;
- Length of infectiousness, probability of the transfer of the infectious microorganism from the surfaces to humans and to other surfaces and host;
- Susceptibility of the new hosts to acquire the infection and;
- The personnel who will carry out the decontamination and factors such as training, equipment, and staff competencies.
5. Research Gap and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burnett-Boothroyd, S.C.; McCarthy, B.J. Antimicrobial treatments of textiles for hygiene and infection control applications: An industrial perspective. In Textiles for Hygiene and Infection Control; Woodhead Publishing: Cambridge, UK, 2011; pp. 196–209. [Google Scholar] [CrossRef]
- Kline, J.; Betancourt-Román, C.M.; Fretz, M.; Brown, G.; Van Den Wymelenberg, K.; Huttenhower, C.; Green, J.L.; Levin, D.A.; Fahimipour, A.K.; Siemens, K.N.; et al. Daylight exposure modulates bacterial communities associated with household dust. Microbiome 2018, 6, 175. [Google Scholar]
- Fitzpatrick, M.C.; Bauch, C.T.; Townsend, J.P.; Galvani, A.P. Modelling microbial infection to address global health challenges. Nat. Microbiol. 2019, 4, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- WHO. Health Care-Associated Infections FACT SHEET Key; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance: London, UK, 2014. [Google Scholar]
- WHO. New report calls for urgent action to avert antimicrobial resistance crisis. Jt. News Release 2019, 29, 2019–2022. [Google Scholar]
- Gilbert, J.A.; Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 2018, 16, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Hospodsky, D.; Yamamoto, N.; Nazaroff, W.W.; Peccia, J. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 2012, 22, 339–351. [Google Scholar] [CrossRef]
- Dai, D.; Prussin, A.J.; Marr, L.C.; Vikesland, P.J.; Edwards, M.A.; Pruden, A. Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control. Environ. Sci. Technol. 2017, 51, 7759–7774. [Google Scholar] [CrossRef]
- Prussin, A.J.; Marr, L.C. Sources of airborne microorganisms in the built environment. Microbiome 2015, 3, 78. [Google Scholar] [CrossRef]
- Adams, R.I.; Bhangar, S.; Dannemiller, K.C.; Eisen, J.A.; Fierer, N.; Gilbert, J.A.; Green, J.L.; Marr, L.C.; Miller, S.L.; Siegel, J.A.; et al. Ten questions concerning the microbiomes of buildings. Build. Environ. 2016, 109, 224–234. [Google Scholar] [CrossRef]
- Shah, B.A.; Yuan, B.; Yan, Y.; Din, S.T.U.; Sardar, A. Boost antimicrobial effect of CTAB-capped NixCu1−xO (0.0 ≤ x ≤ 0.05) nanoparticles by reformed optical and dielectric characters. J. Mater. Sci. 2021, 56, 13291–13312. [Google Scholar] [CrossRef]
- Sharifipour, E.; Shams, S.; Esmkhani, M.; Khodadadi, J.; Fotouhi-Ardakani, R.; Koohpaei, A.; Doosti, Z.; Ej Golzari, S. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis. 2020, 20, 646. [Google Scholar] [CrossRef]
- Mahnert, A.; Moissl-Eichinger, C.; Zojer, M.; Bogumil, D.; Mizrahi, I.; Rattei, T.; Martinez, J.L.; Berg, G. Man-made microbial resistances in built environments. Nat. Commun. 2019, 10, 968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.F.; Goldberg, M.; Rosenthal, S.; Carlson, L.; Chen, J.; Chen, C.; Ramachandran, S. Global rise in human infectious disease outbreaks. J. R. Soc. Interface 2014, 11, 20140950. [Google Scholar] [CrossRef] [PubMed]
- Prussin, A.J.; Belser, J.A.; Bischoff, W.; Kelley, S.T.; Lin, K.; Lindsley, W.G.; Nshimyimana, J.P.; Schuit, M.; Wu, Z.; Bibby, K.; et al. Viruses in the Built Environment (VIBE) meeting report. Microbiome 2020, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Microbiomes of the Built Environment; The National Academies Press: Washington, DC, USA, 2017; ISBN 9780309449809. [Google Scholar]
- Scott, E.A.; Bruning, E.; Nims, R.W.; Rubino, J.R.; Ijaz, M.K. A 21st century view of infection control in everyday settings: Moving from the Germ Theory of Disease to the Microbial Theory of Health. Am. J. Infect. Control 2020, 48, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Belsky, J.A.; Tullius, B.P.; Lamb, M.G.; Sayegh, R. COVID-19 in immunocompromised patients: A systematic review of cancer, hematopoietic cell and solid organ transplant patients. J. Infect. J. 2021, 82, 329–338. [Google Scholar] [CrossRef]
- Frumkin, H. COVID-19, the built environment, and health. Environ. Health Perspect. 2021, 129, 075001. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.; Guan, C.H. The impacts of the built environment on the incidence rate of COVID-19: A case study of King County, Washington. Sustain. Cities Soc. 2021, 74, 103144. [Google Scholar] [CrossRef]
- Hamidi, S.; Sabouri, S.; Ewing, R. Does Density Aggravate the COVID-19 Pandemic?: Early Findings and Lessons for Planners. J. Am. Plan. Assoc. 2020, 86, 495–509. [Google Scholar] [CrossRef]
- Wong, D.W.S.; Li, Y. Spreading of COVID-19: Density matters. PLoS ONE 2020, 15, e0242398. [Google Scholar] [CrossRef]
- Coşkun, H.; Yıldırım, N.; Gündüz, S. The spread of COVID-19 virus through population density and wind in Turkey cities. Sci. Total Environ. 2021, 751, 141663. [Google Scholar] [CrossRef]
- Martins-Filho, P.R. Relationship between population density and COVID-19 incidence and mortality estimates: A county-level analysis. J. Infect. Public Health 2021, 14, 1087–1088. [Google Scholar] [CrossRef] [PubMed]
- Kadi, N.; Khelfaoui, M. Population density, a factor in the spread of COVID-19 in Algeria: Statistic study. Bull. Natl. Res. Cent. 2020, 44, 138. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Li, L.; Huang, T.; Li, S.; Zhang, M.; Yang, Y.; Jiang, Y.; Li, X.; Yuan, J.; Liu, Y. SARS-CoV-2 detected on environmental fomites for both asymptomatic and symptomatic patients with COVID-19. Am. J. Respir. Crit. Care Med. 2021, 203, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Sher, F.; Kumar, R.; Karahmet, E.; Haq, S.A.U.; Zafar, A.; Lima, E.C. Environmental and health impacts of spraying COVID-19 disinfectants with associated challenges. Environ. Sci. Pollut. Res. 2022, 29, 85648–85657. [Google Scholar] [CrossRef] [PubMed]
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef]
- Tharayil, A.; Rajakumari, R.; Mozetic, M.; Primc, G.; Thomas, S. Contact transmission of SARS-CoV-2 on fomite surfaces: Surface survival and risk reduction. Interface Focus 2021, 12, 20210042. [Google Scholar] [CrossRef]
- Marzoli, F.; Bortolami, A.; Pezzuto, A.; Mazzetto, E.; Piro, R.; Terregino, C.; Bonfante, F.; Belluco, S. A systematic review of human coronaviruses survival on environmental surfaces. Sci. Total Environ. 2021, 778, 146191. [Google Scholar] [CrossRef]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Goldman, E. Exaggerated risk of transmission of COVID-19 by fomites. Lancet Infect. Dis. 2020, 20, 892–893. [Google Scholar] [CrossRef]
- Chen, T. Fomites and the COVID-19 Pandemic: An Evidence Review on Its Role in Viral Transmission; National Collaborating Centre for Environmental Health: Vancouver, BC, Canada, 2021; pp. 1–24. [Google Scholar]
- Farrell, J.M.; Zhao, C.Y.; Tarquinio, K.M.; Brown, S.P. Causes and Consequences of COVID-19-Associated Bacterial Infections. Front. Microbiol. 2021, 12, 682571. [Google Scholar] [CrossRef]
- Hoque, M.M.; Akter, S.; Mishu, I.D.; Islam, M.I.; Rahman, M.S.; Akhter, M.; Islam, I.; Hasan, M.M.; Rahaman, M.M.; Sultana, M.; et al. Microbial co-infections in COVID-19: Associated microbiota and underlying mechanisms of pathogenesis. Microb. Pathog. 2021, 156, 104941. [Google Scholar] [CrossRef]
- Kuehn, B.M. News from the centers for disease control and prevention. JAMA—J. Am. Med. Assoc. 2022, 327, 711. [Google Scholar] [CrossRef]
- Wilensky, G.R. 2020 Revealed How Poorly the US Was Prepared for COVID-19—And Future Pandemics. JAMA—J. Am. Med. Assoc. 2021, 325, 1029–1030. [Google Scholar] [CrossRef]
- Nicker, B. Preparing for the Next Pandemic: Early Lessons from COVID-19; Brookings Institution: Washington, DC, USA, 2021; Available online: https://www.brookings.edu/research/preparing-for-the-next-pandemic-early-lessons-from-covid-19/ (accessed on 22 October 2022).
- Lau, J. Preparing for the Next Pandemic; Harvard T. H. Chan School of Public Health: Boston, MA, USA, 2022. Available online: https://www.hsph.harvard.edu/news/features/preparing-for-next-pandemic-g7-pact/ (accessed on 22 October 2022).
- Godshall, C.E.; Banach, D.B. Pandemic Preparedness. Infect. Dis. Clin. N. Am. 2021, 35, 1077–1089. [Google Scholar] [CrossRef]
- Ayub, M.; Othman, M.H.D.; Khan, I.U.; Yusop, M.Z.M.; Kurniawan, T.A. Graphene-based nanomaterials as antimicrobial surface coatings: A parallel approach to restrain the expansion of COVID-19. Surf. Interfaces 2021, 27, 101460. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Verma, D.; Saini, N.; Arbi, R.; Munir, M.; Jovic, M.; Turak, A. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. Nano Today 2021, 40, 101267. [Google Scholar] [CrossRef] [PubMed]
- Pemmada, R.; Zhu, X.; Dash, M.; Zhou, Y.; Ramakrishna, S.; Peng, X.; Thomas, V.; Jain, S.; Sekhar Nanda, H. Science-Based Strategies of Antiviral Coatings with Viricidal Properties for the COVID-19 Like Pandemics. Materials 2020, 13, 4041. [Google Scholar] [CrossRef]
- Salleh, A.; Naomi, R.; Utami, N.D.; Mohammad, A.W.; Mahmoudi, E.; Mustafa, N.; Fauzi, M.B. The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials 2020, 10, 1566. [Google Scholar] [CrossRef]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef]
- Sharpe, T.; McGill, G.; Dancer, S.J.; King, M.F.; Fletcher, L.; Noakes, C.J. Influence of ventilation use and occupant behaviour on surface microorganisms in contemporary social housing. Sci. Rep. 2020, 10, 11841. [Google Scholar] [CrossRef]
- Senatore, V.; Zarra, T.; Buonerba, A.; Choo, K.-H.; Hasan, S.W.; Korshin, G.; Li, C.-W.; Ksibi, M.; Belgiorno, V.; Naddeo, V. Indoor versus outdoor transmission of SARS-COV-2: Environmental factors in virus spread and underestimated sources of risk. Euro-Mediterr. J. Environ. Integr. 2021, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.J.; Tham, K.W. Public toilets with insufficient ventilation present high cross infection risk. Sci. Rep. 2021, 11, 20623. [Google Scholar] [CrossRef] [PubMed]
- Burridge, H.C.; Bhagat, R.K.; Stettler, M.E.J.; Kumar, P.; De Mel, I.; Demis, P.; Hart, A.; Johnson-Llambias, Y.; King, M.F.; Klymenko, O.; et al. The ventilation of buildings and other mitigating measures for COVID-19: A focus on wintertime. Proc. R. Soc. A 2021, 477, 20200855. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Jha, A.K.; Alat, P.; Das, S.S. Understanding coronaphobia. Asian J. Psychiatr. 2020, 54, 102384. [Google Scholar] [CrossRef]
- Chin, F. Benefits of Using Premium Antimicrobial Coating Technology; UNICHEM: Auckland, New Zealand, 2021; Available online: https://unicheminc.com/antimicrobial-coatings/benefits-of-using-premium-antimicrobial-coating-technology/ (accessed on 16 February 2022).
- van Dijk, H.F.G.; Verbrugh, H.A.; Abee, T.; Andriessen, J.W.; van Dijk, H.F.G.; ter Kuile, B.H.; Mevius, D.J.; Montforts, M.H.M.M.; van Schaik, W.; Schmitt, H.; et al. Resisting disinfectants. Commun. Med. 2022, 2, 6. [Google Scholar] [CrossRef]
- Cassidy, S.S.; Sanders, D.J.; Wade, J.; Parkin, I.P.; Carmalt, C.J.; Smith, A.M.; Allan, E. Antimicrobial surfaces: A need for stewardship? PLoS Pathog. 2020, 16, e1008880. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Disinfection and sterilization in healthcare facilities. In Bennett & Brachman’s Hospital Infections, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar] [CrossRef]
- Ghulam, N.; Yang, W.; Yujiang, H.; Suliman, K.; Yuefeng, W.; Dongming, L. Massive use of disinfectants against COVID-19 poses potential risks to urban wildlife. Environ. Res. 2020, 188, 109916. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Klapsa, W.; Dziechciarz, A. Self-Cleaning Coatings and Surfaces of Modern Building Materials for the Removal of Some Air Pollutants. Materials 2021, 14, 2161. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Chua, M.H.; Ong, P.J.; Cheng Lee, J.J.; Le Osmund Chin, K.; Wang, S.; Kai, D.; Ji, R.; Kong, J.; Dong, Z.; et al. Recent advances in nanotechnology-based functional coatings for the built environment. Mater. Today Adv. 2022, 15, 100270. [Google Scholar] [CrossRef]
- Collaborative of Health and Environment. The Science on Toxic Chemicals in the Built Environment: Environmental Health Disparities and Equity-Driven Solutions. Available online: https://www.healthandenvironment.org/webinars/96575 (accessed on 16 February 2022).
- ISO. ISO 22196:2011 Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. 2011. Available online: https://www.iso.org/standard/54431.html (accessed on 20 February 2022).
- ASTM. ASTM E2149-20 Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- JIS Z 2801: 2010; Antimicrobial Products—Test for Antimicrobial Activity and Efficacy. Japanese Industrial Standards Committee: Tokyo, Japan, 2010.
- Attia, S. Materials and Environmental Impact Assessment. In Net Zero Energy Buildings (NZEB); Butterworth-Heinemann: Oxford, UK, 2018; ISBN 9780128124611. [Google Scholar]
- Kaklauskas, A.; Gudauskas, R. Intelligent decision-support systems and the Internet of Things for the smart built environment. In Start-Up Creation: The Smart Eco-Efficient Built Environment; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081005491. [Google Scholar]
- Hosseini, M.; Chin, A.W.H.; Williams, M.D.; Behzadinasab, S.; Falkinham, J.O.; Poon, L.L.M.; Ducker, W.A. Transparent Anti-SARS-CoV-2 and Antibacterial Silver Oxide Coatings. ACS Appl. Mater. Interfaces 2022, 14, 8718–8727. [Google Scholar] [CrossRef]
- Khan, G.R.; Malik, S.I. Ag-enriched TiO2 nanocoating apposite for self-sanitizing/self-sterilizing/self-disinfecting of glass surfaces. Mater. Chem. Phys. 2022, 282, 125803. [Google Scholar] [CrossRef]
- Golshan, V.; Mirjalili, F.; Fakharpour, M. Self-Cleaning Surfaces with Superhydrophobicity of Ag–TiO2 Nanofilms on the Floor Ceramic Tiles. Glass Phys. Chem. 2022, 48, 35–42. [Google Scholar] [CrossRef]
- Delumeau, L.V.; Asgarimoghaddam, H.; Alkie, T.; Jones, A.J.B.; Lum, S.; Mistry, K.; Aucoin, M.G.; Dewitte-Orr, S.; Musselman, K.P. Effectiveness of antiviral metal and metal oxide thin-film coatings against human coronavirus 229E. APL Mater. 2021, 9, 111114. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Phadke, K.S.; Li, Z.; Ouyang, G.; Kim, T.H.; Zhou, L.; Slaughter, J.; Bellaire, B.; Ren, S.; Cui, J. Sprayable copper and copper-zinc nanowires inks for antiviral surface coating. RSC Adv. 2022, 12, 6093–6098. [Google Scholar] [CrossRef]
- Ikner, L.A.; Torrey, J.R.; Gundy, P.M.; Gerba, C.P. Efficacy of an antimicrobial surface coating against human coronavirus 229E and SARS-CoV-2. Am. J. Infect. Control 2021, 49, 1569–1571. [Google Scholar] [CrossRef]
- Phutthatham, L.; Ngernchuklin, P.; Kaewpa, D.; Chaiyasat, P.; Chaiyasat, A. UV-activated coating polymer particle containing quaternary ammonium for antimicrobial fabrics. Colloid Polym. Sci. 2022, 300, 351–364. [Google Scholar] [CrossRef]
- Ghosh, S.; Haldar, J. Cationic polymer À based antibacterial smart coatings. In Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications; Elsevier, Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128498705. [Google Scholar]
- Qiu, Q.; Yang, C.; Wang, Y.; Alexander, C.A.; Yi, G.; Zhang, Y.; Qin, X.; Yang, Y.Y. Silane-functionalized polyionenes-coated cotton fabrics with potent antimicrobial and antiviral activities. Biomaterials 2022, 284, 121470. [Google Scholar] [CrossRef] [PubMed]
- Jampílek, J.; Král’ová, K. Nanoantimicrobials: Activity, Benefits, and Weaknesses. In Nanostructures for Antimicrobial Therapy; Nanostructures in Therapeutic Medicine Series; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780323461511. [Google Scholar]
- Ziff, M. The Role of Glass in Interior Architecture: Aesthetics, Community, and Privacy. J. Aesthetic Educ. 2004, 38, 10–21. [Google Scholar] [CrossRef]
- Bechthold, M.; Kane, A.; King, N. Ceramic Material Systems: In Architecture and Interior Design; Birkhäuser: Basel, Switzerland, 2015. [Google Scholar]
- Reinosa, J.J.; Enríquez, E.; Fuertes, V.; Liu, S.; Menéndez, J.; Fernández, J.F. The challenge of antimicrobial glazed ceramic surfaces. Ceram. Int. 2022, 48, 7393–7404. [Google Scholar] [CrossRef]
- Matini, E.; Shayeghi, F.; Vaghar, M.; Nematian, J.; Hosseini, S.S.; Mojri, N.; Taherabadi, N.T.; Hakimi, R.; Ahmadi, N.; Badkoubeh, N.; et al. A survey of public restrooms microbial contamination in Tehran city, capital of Iran, during 2019. J. Fam. Med. Prim. Care 2020, 9, 3132–3135. [Google Scholar] [CrossRef]
- Lai, A.C.K.; Tan, T.F.; Li, W.S.; Ip, D.K.M. Emission strength of airborne pathogens during toilet flushing. Indoor Air 2018, 28, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Microban Products Company. Antimicrobial Ceramic Glaze; Microban Products Company: Hong Kong, China, 2005. [Google Scholar]
- Microban Products Company. Method for Applying a Ceramic Glaze Layer having Antimicrobial Property; Microban Products Company: Hong Kong, China, 2012. [Google Scholar]
- Monfort, E.; Mezquita, A.; Vaquer, E.; Celades, I.; Sanfelix, V.; Escrig, A. Ceramic Manufacturing Processes: Energy, Environmental, and Occupational Health Issues; Elsevier: Amsterdam, The Netherlands, 2014; Volume 8, ISBN 9780080965338. [Google Scholar]
- Kim, J.; Kim, U.; Han, K.; Choi, J. Antibacterial persistence of hydrophobically glazed ceramic tiles. J. Korean Ceram. Soc. 2022, 59, 920–928. [Google Scholar] [CrossRef]
- National Environmental Agency (NEA). General Sanitation and Hygiene Advisory for Premises Owners and Operators. 2020. Available online: https://www.nea.gov.sg/our-services/public-cleanliness/environmental-cleaning-guidelines/advisories/general-sanitation-and-hygiene-advisory-for-premises-owners-and-operators (accessed on 11 April 2022).
- Prawira, R.A.; Ariyanti, D. TiO2-M self-cleaning coating with antimicrobial and superhydrophilic properties. Mater. Today Proc. 2022, 63, S214–S221. [Google Scholar] [CrossRef]
- Álvarez, Á.L.; Dalton, K.P.; Nicieza, I.; Abade Dos Santos, F.A.; de la Peña, P.; Domínguez, P.; Martin-Alonso, J.M.; Parra, F. Virucidal Properties of Photocatalytic Coating on Glass against a Model Human Coronavirus. Microbiol. Spectr. 2022, 10, e00269-22. [Google Scholar] [CrossRef] [PubMed]
- Vitelaru, C.; Parau, A.C.; Kiss, A.E.; Pana, I.; Dinu, M.; Constantin, L.R.; Vladescu, A.; Tonofrei, L.E.; Adochite, C.S.; Costinas, S.; et al. Silver-Containing Thin Films on Transparent Polymer Foils for Antimicrobial Applications. Coatings 2022, 12, 170. [Google Scholar] [CrossRef]
- Korani, M.; Ghazizadeh, E.; Korani, S.; Hami, Z.; Mohammadi-Bardbori, A. Effects of silver nanoparticles on human health. Eur. J. Nanomed. 2015, 7, 51–62. [Google Scholar] [CrossRef]
- Liu, P.; Guan, R.; Ye, X.; Jiang, J.; Liu, M.; Huang, G.; Chen, X. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02. J. Phys. Conf. Ser. 2011, 304, 012036. [Google Scholar] [CrossRef]
- Mude, H.; Maroju, P.A.; Balapure, A.; Ganesan, R.; Ray Dutta, J. Quaternized Polydopamine Coatings for Anchoring Molecularly Dispersed Broad-Spectrum Antimicrobial Silver Salts. ACS Appl. Bio Mater. 2021, 4, 8396–8406. [Google Scholar] [CrossRef]
- Pucelik, B.; Dąbrowski, J.M. Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. Adv. Inorg. Chem. 2022, 79, 65–103. [Google Scholar] [CrossRef]
- Pigareva, V.A.; Senchikhin, I.N.; Bolshakova, A.V.; Sybachin, A.V. Modification of Polydiallyldimethylammonium Chloride with Sodium Polystyrenesulfonate Dramatically Changes the Resistance of Polymer-Based Coatings towards Wash-Off from Both Hydrophilic and Hydrophobic Surfaces. Polymers 2022, 14, 1247. [Google Scholar] [CrossRef]
- Baigorria, E.; Durantini, J.E.; Martínez, S.R.; Milanesio, M.E.; Palacios, Y.B.; Durantini, A.M. Potentiation Effect of Iodine Species on the Antimicrobial Capability of Surfaces Coated with Electroactive Phthalocyanines. ACS Appl. Bio Mater. 2021, 4, 8559–8570. [Google Scholar] [CrossRef] [PubMed]
- Pigareva, V.A.; Stepanova, D.A.; Bolshakova, A.V.; Marina, V.I.; Osterman, I.A.; Sybachin, A.V. Hyperbranched Kaustamin as an antibacterial for surface treatment. Mendeleev Commun. 2022, 32, 561–563. [Google Scholar] [CrossRef]
- Nyga, A.; Czerwińska-Główka, D.; Krzywiecki, M.; Przystaś, W.; Zabłocka-Godlewska, E.; Student, S.; Kwoka, M.; Data, P.; Blacha-Grzechnik, A. Covalent immobilization of organic photosensitizers on the glass surface: Toward the formation of the light-activated antimicrobial nanocoating. Materials 2021, 14, 3093. [Google Scholar] [CrossRef]
- Ali, D.; Butt, M.Z.; Muneer, I.; Bashir, F.; Hanif, M.; Khan, T.M.; Abbasi, S.A. Synthesis, characterization and antibacterial performance of transparent c-axis oriented Al doped ZnO thin films. Surf. Interfaces 2021, 27, 101452. [Google Scholar] [CrossRef]
- Mogensen, J.E.; Poulsen, B.; Fisker, A.M. Interior Textiles and the Concept of Atmospheres—A Case Study on the Architectural Potential of Textiles in Danish Hospitals Interiors. In Textile Society of America Symposium Proceedings; Textile Society of America: Baltimore, MD, USA, 2014. [Google Scholar]
- Angelova, R.A. Non-Woven Textiles in the Indoor Environment. In Non-Woven Fabrics; InTech: Rijeka, Crotia, 2016. [Google Scholar] [CrossRef]
- Andreucci, M.B.; Marvuglia, A.; Baltov, M.; Hansen, P. Future City 15 Rethinking Sustainability Towards a Regenerative Economy; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 9783030718183. [Google Scholar]
- Grishanov, S. Structure and properties of textile materials. In Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes; Woodhead Publishing Limited: Cambridge, UK, 2011; Volume 1, ISBN 9780857093974. [Google Scholar]
- Joly, S.B. Architecture Fabric: The New Use of Textiles as A Building Material. 2021. Available online: https://www.fashionnovation.com/architecture-fabric-the-new-use-of-textiles-as-a-building-material/ (accessed on 17 April 2022).
- Tania, I.S.; Ali, M. Coating of ZnO nanoparticle on cotton fabric to create a functional textile with enhanced mechanical properties. Polymers 2021, 13, 2701. [Google Scholar] [CrossRef]
- Munir, M.U.; Ashraf, M.; Abid, H.A.; Javid, A.; Riaz, S.; Khanzada, H.; Rehman, A.; Iqbal, K. Coating of modified ZnO nanoparticles on cotton fabrics for enhanced functional characteristics. J. Coat. Technol. Res. 2022, 19, 467–475. [Google Scholar] [CrossRef]
- Prorokova, N.; Vavilova, S. Properties of polypropylene yarns with a polytetrafluoroethylene coating containing stabilized magnetite particles. Coatings 2021, 11, 830. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Khattab, T.A.; Abdelrahman, M.S.; Aldalbahi, A.; Hatshan, M.R. Development of antimicrobial, UV blocked and photocatalytic self-cleanable cotton fibers decorated with silver nanoparticles using silver carbamate and plasma activation. Cellulose 2021, 28, 1105–1121. [Google Scholar] [CrossRef]
- Feng, J.; Feng, L.; Xu, S.; Zhu, C.; Pan, G.; Yao, L. Universal Preparation Strategy for Ultradurable Antibacterial Fabrics through Coating an Adhesive Nanosilver Glue. Nanomaterials 2022, 12, 2429. [Google Scholar] [CrossRef]
- Shahid, M.; Ali, A.; Khaleeq, H.; Farrukh Tahir, M.; Militky, J.; Wiener, J. Development of Antimicrobial Multifunctional Textiles to Avoid from Hospital-Acquired Infections. Fibers Polym. 2021, 22, 3055–3067. [Google Scholar] [CrossRef]
- Islam, M.T.; Mamun, M.A.A.; Hasan, M.T.; Shahariar, H. Scalable coating process of AgNPs-silicone on cotton fabric for developing hydrophobic and antimicrobial properties. J. Coatings Technol. Res. 2021, 18, 887–898. [Google Scholar] [CrossRef]
- Andra, S.; Balu, S.K.; Jeevanandam, J.; Muthalagu, M.; Danquah, M.K. Surface cationization of cellulose to enhance durable antibacterial finish in phytosynthesized silver nanoparticle treated cotton fabric. Cellulose 2021, 28, 5895–5910. [Google Scholar] [CrossRef]
- Rezić, I.; Škoc, M.S.; Majdak, M.; Jurić, S.; Stracenski, K.S.; Vinceković, M. Functionalization of Polymer Surface with Antimicrobial Microcapsules. Polymers 2022, 14, 1961. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhao, Y.; Meng, Y.; Su, J.; Han, J. Long-lasting antimicrobial activity achieved through the synergy of graphene oxide and cuprous oxide coating on PET fabrics. Synth. Met. 2022, 286, 117033. [Google Scholar] [CrossRef]
- Yuzer, B.; Iberia, M.; Hilmi, A.; Inan, H.; Can, S.; Selcuk, H.; Kadmi, Y. Photocatalytic, self-cleaning and antibacterial properties of Cu (II) doped TiO2. J. Environ. Manag. 2022, 302, 114023. [Google Scholar] [CrossRef]
- Abualnaja, K.M.; ElAassar, M.R.; Ghareeb, R.Y.; Ibrahim, A.A.; Abdelsalam, N.R. Development of photo-induced Ag0/TiO2 nanocomposite coating for photocatalysis, self-cleaning and antimicrobial polyester fabric. J. Mater. Res. Technol. 2021, 15, 1513–1523. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, M.Y.; Qu, J.H.; Wang, L.J.; Geng, J.Z.; Fu, F.Y.; Liu, X.D. Antibacterial cotton fabric prepared by a “grafting to” strategy using a QAC copolymer. Cellulose 2022, 29, 3569–3581. [Google Scholar] [CrossRef]
- Hongrattanavichit, I.; Aht-Ong, D. Antibacterial and water-repellent cotton fabric coated with organosilane-modified cellulose nanofibers. Ind. Crops Prod. 2021, 171, 113858. [Google Scholar] [CrossRef]
- Hou, J.; Yang, Y.; Yu, D.G.; Chen, Z.; Wang, K.; Liu, Y.; Williams, G.R. Multifunctional fabrics finished using electrosprayed hybrid Janus particles containing nanocatalysts. Chem. Eng. J. 2021, 411, 128474. [Google Scholar] [CrossRef]
- Wang, D.; Li, K.; Zhou, C.; Lei, L.; de Mimérand, Y.d.R.; Jin, X.; Guo, J. Bi2MoO6 and Ag nanoparticles immobilized on textile by plasma-derived innovative techniques to generate antimicrobial activity. Appl. Surf. Sci. 2022, 585, 152591. [Google Scholar] [CrossRef]
- Ye, Z.; Li, S.; Zhao, S.; Deng, L.; Zhang, J.; Dong, A. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chem. Eng. J. 2021, 420, 127680. [Google Scholar] [CrossRef]
- Alzahrani, H.K.; Munshi, A.M.; Aldawsari, A.M.; Keshk, A.A.; Asghar, B.H.; Osman, H.E.; Khalifa, M.E.; El-Metwaly, N.M. Development of photoluminescent, superhydrophobic, and electrically conductive cotton fibres. Luminescence 2021, 36, 964–976. [Google Scholar] [CrossRef] [PubMed]
- Ayon, S.A.; Jamal, M.; Billah, M.M.; Neaz, S. Augmentation of magnetic properties and antimicrobial activities of band gap modified Ho3+ and Sm3+ doped ZnO nanoparticles: A comparative experimental study. J. Alloys Compd. 2022, 897, 163179. [Google Scholar] [CrossRef]
- Mirzaei, M.; Furxhi, I.; Murphy, F.; Mullins, M. A supervised machine-learning prediction of textile’s antimicrobial capacity coated with nanomaterials. Coatings 2021, 11, 1532. [Google Scholar] [CrossRef]
- Watson, R.; Oldfield, M.; Bryant, J.A.; Riordan, L.; Hill, H.J.; Watts, J.A.; Alexander, M.R.; Cox, M.J.; Stamataki, Z.; Scurr, D.J.; et al. Efficacy of antimicrobial and anti-viral coated air filters to prevent the spread of airborne pathogens. Sci. Rep. 2022, 12, 2803. [Google Scholar] [CrossRef]
- Hassan Al-abdalall, A.; Abdullah Al-dakheel, S.; Abdulhadi Al-Abkari, H. Impact of Air-Conditioning Filters on Microbial Growth and Indoor Air Pollution. In Low-Temperature Technologies; IntechOpen: London, UK, 2020; pp. 1–27. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Zhang, X.; Zhang, Y.; Gao, W.; Wang, R.; He, D. Air conditioner filters become sinks and sources of indoor microplastics fibers. Environ. Pollut. 2022, 292, 118465. [Google Scholar] [CrossRef]
- Park, K.; Kang, S.; Park, J.W.; Hwang, J. Fabrication of silver nanowire coated fibrous air filter medium via a two-step process of electrospinning and electrospray for anti-bioaerosol treatment. J. Hazard. Mater. 2021, 411, 125043. [Google Scholar] [CrossRef]
- Kasbe, P.S.; Gade, H.; Liu, S.; Chase, G.G.; Xu, W. Ultrathin Polydopamine-Graphene Oxide Hybrid Coatings on Polymer Filters with Improved Filtration Performance and Functionalities. ACS Appl. Bio Mater. 2021, 4, 5180–5188. [Google Scholar] [CrossRef]
- Tsutsumi-Arai, C.; Iwamiya, Y.; Hoshino, R.; Terada-Ito, C.; Sejima, S.; Akutsu-Suyama, K.; Shibayama, M.; Hiroi, Z.; Tokuyama-Toda, R.; Iwamiya, R.; et al. Surface Functionalization of Non-Woven Fabrics Using a Novel Silica-Resin Coating Technology: Antiviral Treatment of Non-Woven Fabric Filters in Surgical Masks. Int. J. Environ. Res. Public Health 2022, 19, 3639. [Google Scholar] [CrossRef]
- Goswami, M.; Yadav, A.K.; Chauhan, V.; Singh, N.; Kumar, S.; Das, A.; Yadav, V.; Mandal, A.; Tiwari, J.K.; Siddiqui, H.; et al. Facile development of graphene-based air filters mounted on a 3D printed mask for COVID-19. J. Sci. Adv. Mater. Devices 2021, 6, 407–414. [Google Scholar] [CrossRef]
- Mallakpour, S.; Azadi, E.; Mustansar, C. Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of COVID-19. Adv. Colloid Interface Sci. 2022, 303, 102653. [Google Scholar] [CrossRef] [PubMed]
- Sadiklar, Z.; Tavsan, F. A study on selection of polymer based surface materials in interior design. Glob. J. Humanit. Soc. Sci. 2016, 3, 387–396. [Google Scholar]
- Fischer, T.; Suttor, S.; Mansi, S.; Osthues, L.; Mela, P. Antimicrobial silicone rubbers based on photocatalytically active additives. J. Appl. Polym. Sci. 2021, 138, 51352. [Google Scholar] [CrossRef]
- Duvanova, E.; Krasnou, I.; Krumme, A.; Mikli, V.; Radio, S.; Rozantsev, G.M.; Karpichev, Y. Development of Functional Composite Cu(II)-Polyoxometalate/PLA with Antimicrobial Properties. Molecules 2022, 27, 2510. [Google Scholar] [CrossRef]
- Bedard, J.; Caschera, A.; Foucher, D.A. Access to thermally robust and abrasion resistant antimicrobial plastics: Synthesis of UV-curable phosphonium small molecule coatings and extrudable additives. RSC Adv. 2021, 11, 5548–5555. [Google Scholar] [CrossRef]
- Motas, J.G.; Gorji, N.E.; Nedelcu, D.; Brabazon, D.; Quadrini, F. Xps, sem, dsc and nanoindentation characterization of silver nanoparticle-coated biopolymer pellets. Appl. Sci. 2021, 11, 7706. [Google Scholar] [CrossRef]
- Sukhawipat, N.; Suwan, A.; Kalkornsurapranee, E.; Saetung, A.; Saetung, N. Cationic waterborne polyurethane–chitosan based on natural rubber as new green antimicrobial coating. Prog. Org. Coat. 2021, 161, 106497. [Google Scholar] [CrossRef]
- Francone, A.; Merino, S.; Retolaza, A.; Ramiro, J.; Alves, S.A.; de Castro, J.V.; Neves, N.M.; Arana, A.; Marimon, J.M.; Torres, C.M.S.; et al. Impact of surface topography on the bacterial attachment to micro- and nano-patterned polymer films. Surfaces Interfaces 2021, 27, 101494. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukherjee, R.; Mahajan, V.S.; Boucau, J.; Pillai, S.; Haldar, J. Permanent, Antimicrobial Coating to Rapidly Kill and Prevent Transmission of Bacteria, Fungi, Influenza, and SARS-CoV-2. ACS Appl. Mater. Interfaces 2022, 14, 42483–42493. [Google Scholar] [CrossRef]
- Colin, M.; Klingelschmitt, F.; Charpentier, E.; Josse, J.; Kanagaratnam, L.; De Champs, C.; Gangloff, S.C. Copper alloy touch surfaces in healthcare facilities: An effective solution to prevent bacterial spreading. Materials 2018, 11, 2479. [Google Scholar] [CrossRef]
- Birkett, M.; Dover, L.; Cherian Lukose, C.; Wasy Zia, A.; Tambuwala, M.M.; Serrano-Aroca, Á. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int. J. Mol. Sci. 2022, 23, 1162. [Google Scholar] [CrossRef]
- Verma, J.; Gupta, A.; Kumar, D. Progress in Organic Coatings Steel protection by SiO2/TiO2 core-shell based hybrid nanocoating. Prog. Org. Coat. 2022, 163, 106661. [Google Scholar] [CrossRef]
- Wang, X.; Ye, X.; Zhang, L.; Shao, Y.; Zhou, X.; Lu, M.; Chu, C.; Xue, F.; Bai, J. Corrosion and antimicrobial behavior of stainless steel prepared by one-step electrodeposition of silver at the grain boundaries. Surf. Coat. Technol. 2022, 439, 128428. [Google Scholar] [CrossRef]
- Da Silva, F.S.; de Paula e Silva, A.C.A.; Barbugli, P.A.; Cinca, N.; Dosta, S.; Cano, I.G.; Guilemany, J.M.; Vergani, C.E.; Benedetti, A.V. Anti-biofilm activity and in vitro biocompatibility of copper surface prepared by cold gas spray. Surf. Coat. Technol. 2021, 411, 126981. [Google Scholar] [CrossRef]
- Santos, J.S.; Márquez, V.; Buijnsters, J.G.; Praserthdam, S.; Praserthdam, P. Antimicrobial properties dependence on the composition and architecture of copper-alumina coatings prepared by plasma electrolytic oxidation (PEO). Appl. Surf. Sci. 2023, 607, 155072. [Google Scholar] [CrossRef]
- Nie, Y.; Ma, S.; Tian, M.; Zhang, Q.; Huang, J.; Cao, M.; Li, Y.; Sun, L.; Pan, J.; Wang, Y.; et al. Superhydrophobic silane-based surface coatings on metal surface with nanoparticles hybridization to enhance anticorrosion efficiency, wearing resistance and antimicrobial ability. Surf. Coat. Technol. 2021, 410, 126966. [Google Scholar] [CrossRef]
- Mandal, P.; Ghosh, S.K.; Grewal, H.S. Graphene oxide coated aluminium as an efficient antibacterial surface. Environ. Technol. Innov. 2022, 28, 102591. [Google Scholar] [CrossRef]
- Calfee, M.W.; Ryan, S.P.; Abdel-Hady, A.; Monge, M.; Aslett, D.; Touati, A.; Stewart, M.; Lawrence, S.; Willis, K. Virucidal efficacy of antimicrobial surface coatings against the enveloped bacteriophage Φ6. J. Appl. Microbiol. 2022, 132, 1813–1824. [Google Scholar] [CrossRef]
- Eliwa, E.M.; Elgammal, W.E.; Sharaf, M.H.; Elsawy, M.M.; Kalaba, M.H.; El-Fakharany, E.M.; Owda, M.E.; Abd El-Wahab, H. New Gd(I)/Cs(III) complexes of benzil-based thiocarbohydrazone macrocyclic ligand: Chemical synthesis, characterization, and study their biological effectiveness as antibacterial, antioxidant, and antiviral additives for polyurethane surface coating. Appl. Organomet. Chem. 2022, 36, e6689. [Google Scholar] [CrossRef]
- Faheim, A.A.; Elsawy, M.M.; Salem, S.S.; Abd El-Wahab, H. Novel antimicrobial paint based on binary and ternary dioxouranium (VI) complexes for surface coating applications. Prog. Org. Coat. 2021, 151, 106027. [Google Scholar] [CrossRef]
- Machado Querido, M.; Paulo, I.; Hariharakrishnan, S.; Rocha, D.; Pereira, C.C.; Barbosa, N.; Bordado, J.M.; Teixeira, J.P.; Galhano Dos Santos, R. Auto-disinfectant acrylic paints functionalised with triclosan and isoborneol—Antibacterial assessment. Polymers 2021, 13, 2197. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Pang, Y.; Xue, M.; Ma, L.; Peng, L.; Liu, X.; Xiong, S.; He, J. Colorful superhydrophobic materials with durability and chemical stability based on kaolin. Surf. Interface Anal. 2021, 53, 365–373. [Google Scholar] [CrossRef]
- Freitas, D.S.; Teixeira, P.; Pinheiro, B.; Castanheira, E.M.S. Chitosan Nano/Microformulations for Antimicrobial Protection of Leather with a Potential Impact in Tanning Industry. Materials 2022, 15, 1750. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, C.; Yan, K. CQDs-MoS2 QDs loaded on Dendritic fibrous Nanosilica/Hydrophobic waterborne polyurethane acrylate for antibacterial coatings. Chem. Eng. J. 2022, 429, 132170. [Google Scholar] [CrossRef]
- Wu, X.; Yang, F.; Gan, J.; Kong, Z.; Wu, Y. A superhydrophobic, antibacterial, and durable surface of poplar wood. Nanomaterials 2021, 11, 1885. [Google Scholar] [CrossRef]
- Kim, M.J.; Linstadt, R.T.H.; Ahn Ando, K.; Ahn, J. Gemini-Mediated Self-Disinfecting Surfaces to Address the Contact Transmission of Infectious Diseases. Langmuir 2022, 38, 2162–2173. [Google Scholar] [CrossRef]
- Druvari, D.; Antonopoulou, A.; Lainioti, G.C.; Vlamis-gardikas, A.; Bokias, G.; Kallitsis, J.K. Preparation of antimicrobial coatings from cross-linked copolymers containing quaternary dodecyl-ammonium compounds. Int. J. Mol. Sci. 2021, 22, 13236. [Google Scholar] [CrossRef]
- Hosseini, M.; Behzadinasab, S.; Chin, A.W.H.; Poon, L.L.M.; Ducker, W.A. Reduction of Infectivity of SARS-CoV-2 by Zinc Oxide Coatings. ACS Biomater. Sci. Eng. 2021, 7, 5022–5027. [Google Scholar] [CrossRef]
- Sportelli, M.C.; Izzi, M.; Loconsole, D.; Sallustio, A.; Picca, R.A.; Felici, R.; Chironna, M.; Cioffi, N. On the Efficacy of ZnO Nanostructures against SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 3040. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Yao, B.; Narasimalu, S.; Dong, Z.L. Rapid preparation and antimicrobial activity of polyurea coatings with RE-Doped nano-ZnO. Microb. Biotechnol. 2022, 15, 548–560. [Google Scholar] [CrossRef]
- Hutasoit, N.; Topa, S.H.; Javed, M.A.; Rahman Rashid, R.A.; Palombo, E.; Palanisamy, S. Antibacterial efficacy of cold-sprayed copper coatings against gram-positive staphylococcus aureus and gram-negative escherichia coli. Materials 2021, 14, 6744. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Shao, Y.; Zhang, H.; Zhang, H.; Zhu, J. Development of a novel silver ions-nanosilver complementary composite as antimicrobial additive for powder coating. Chem. Eng. J. 2021, 420, 127633. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, N.T.; Thomas, R.M.; John, H. Antibacterial self-cleaning binary and ternary hybrid photocatalysts of titanium dioxide with silver and graphene. J. Environ. Chem. Eng. 2022, 10, 107275. [Google Scholar] [CrossRef]
- Linzner, N.; Antelmann, H. The Antimicrobial Activity of the AGXX® Surface Coating Requires a Small Particle Size to Efficiently Kill Staphylococcus aureus. Front. Microbiol. 2021, 12, 731564. [Google Scholar] [CrossRef]
- Blomberg, E.; Herting, G.; Rajarao, G.K.; Mehtiö, T.; Uusinoka, M.; Ahonen, M.; Mäkinen, R.; Mäkitalo, T.; Odnevall, I. Weathering and Antimicrobial Properties of Laminate and Powder Coatings Containing Silver Phosphate Glass Used as High-Touch Surfaces. Sustainability 2022, 14, 7102. [Google Scholar] [CrossRef]
- Lam, W.T.; Babra, T.S.; Smith, J.H.D.; Bagley, M.C.; Spencer, J.; Wright, E.; Greenland, B.W. Synthesis and Evaluation of a Silver Nanoparticle/Polyurethane Composite That Exhibits Antiviral Activity against SARS-CoV-2. Polymers 2022, 14, 4172. [Google Scholar] [CrossRef]
- Pulit-Prociak, J.; Staroń, A.; Staroń, P.; Chwastowski, J.; Kosiec, A.; Porębska, H.; Sikora, E.; Banach, M. Functional antimicrobial coatings for application on microbiologically contaminated surfaces. Mater. Technol. 2021, 36, 11–25. [Google Scholar] [CrossRef]
- Valenzuela, L.; Faraldos, M.; Bahamonde, A.; Rosal, R. High performance of electrosprayed graphene oxide/TiO2/Ce-TiO2 photoanodes for photoelectrocatalytic inactivation of S. aureus. Electrochim. Acta 2021, 395, 139203. [Google Scholar] [CrossRef]
- Walji, S.D.; Bruder, M.R.; Aucoin, M.G. Virus matrix interference on assessment of virucidal activity of high-touch surfaces designed to prevent hospital-acquired infections. Antimicrob. Resist. Infect. Control 2021, 10, 133. [Google Scholar] [CrossRef]
- Pulit-Prociak, J.; Staroń, A.; Prokopowicz, M.; Magielska, K.; Banach, M. Analysis of Antimicrobial Properties of PVA-Based Coatings with Silver and Zinc Oxide Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2306–2318. [Google Scholar] [CrossRef]
- Singhal, A.V.; Malwal, D.; Thiyagarajan, S.; Lahiri, I. Antimicrobial and antibiofilm activity of GNP-Tannic Acid-Ag nanocomposite and their epoxy-based coatings. Prog. Org. Coat. 2021, 159, 106421. [Google Scholar] [CrossRef]
- Marín-Caba, L.; Bodelón, G.; Negrín-Montecelo, Y.; Correa-Duarte, M.A. Sunlight-Sensitive Plasmonic Nanostructured Composites as Photocatalytic Coating with Antibacterial Properties. Adv. Funct. Mater. 2021, 31, 2105807. [Google Scholar] [CrossRef]
- Bucuresteanu, R.; Ionita, M.; Chihaia, V.; Ficai, A.; Trusca, R.D.; Ilie, C.I.; Kuncser, A.; Holban, A.M.; Mihaescu, G.; Petcu, G.; et al. Antimicrobial Properties of TiO2 Microparticles Coated with Ca- and Cu-Based Composite Layers. Int. J. Mol. Sci. 2022, 23, 6888. [Google Scholar] [CrossRef]
- Gorthy, R.; Wasa, A.; Land, J.G.; Yang, Z.; Heinemann, J.A.; Bishop, C.M.; Krumdieck, S.P. Effects of post-deposition heat treatment on nanostructured TiO2-C composite structure and antimicrobial properties. Surf. Coat. Technol. 2021, 409, 126857. [Google Scholar] [CrossRef]
- Ghosh, S.; Jolly, L.; Haldar, J. Polymeric paint coated common-touch surfaces that can kill bacteria, fungi and influenza virus. MRS Commun. 2021, 11, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Gentili, V.; Pazzi, D.; Rizzo, S.; Schiuma, G.; Marchini, E.; Papadia, S.; Sartorel, A.; Di Luca, D.; Caccuri, F.; Bignozzi, C.A.; et al. Transparent Polymeric Formulations Effective against SARS-CoV-2 Infection. ACS Appl. Mater. Interfaces 2021, 13, 54648–54655. [Google Scholar] [CrossRef]
- Beaussart, A.; Retourney, C.; Quilès, F.; Dos Santos Morais, R.; Gaiani, C.; Fiérobe, H.P.; El-Kirat-Chatel, S. Supported lysozyme for improved antimicrobial surface protection. J. Colloid Interface Sci. 2021, 582, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Enderle, A.G.; Franco-Castillo, I.; Atrián-Blasco, E.; Martín-Rapún, R.; Lizarraga, L.; Culzoni, M.J.; Bollini, M.; De La Fuente, J.M.; Silva, F.; Streb, C.; et al. Hybrid Antimicrobial Films Containing a Polyoxometalate-Ionic Liquid. ACS Appl. Polym. Mater. 2022, 4, 4144–4153. [Google Scholar] [CrossRef]
- Cullen, A.A.; Rajagopal, A.; Heintz, K.; Heise, A.; Murphy, R.; Sazanovich, I.V.; Greetham, G.M.; Towrie, M.; Long, C.; Fitzgerald-Hughes, D.; et al. Exploiting a neutral BODIPY copolymer as an effective agent for photodynamic antimicrobial inactivation. J. Phys. Chem. B 2021, 125, 1550–1557. [Google Scholar] [CrossRef]
- Reynoso, E.; Durantini, A.M.; Solis, C.A.; Macor, L.P.; Otero, L.A.; Gervaldo, M.A.; Durantini, E.N.; Heredia, D.A. Photoactive antimicrobial coating based on a PEDOT-fullerene C60polymeric dyad. RSC Adv. 2021, 11, 23519–23532. [Google Scholar] [CrossRef]
- Paxton, W.F.; Rozsa, J.L.; Brooks, M.M.; Running, M.P.; Schultz, D.J.; Jasinski, J.B.; Jung, H.J.; Akram, M.Z. A scalable approach to topographically mediated antimicrobial surfaces based on diamond. J. Nanobiotechnol. 2021, 19, 458. [Google Scholar] [CrossRef]
- Yi, G.; Gao, S.; Lu, H.; Khoo, W.Z.; Liu, S.; Chng, S.; Yang, Y.Y.; Ying, J.Y.; Zhang, Y. Surface Antimicrobial Treatment by Biocompatible, Vertically Aligned Layered Double Hydroxide Array. Adv. Mater. Interfaces 2022, 9, 2101872. [Google Scholar] [CrossRef]
- Wasa, A.; Aitken, J.; Jun, H.; Bishop, C.; Krumdieck, S.; Godsoe, W.; Heinemann, J.A. Copper and nanostructured anatase rutile and carbon coatings induce adaptive antibiotic resistance. AMB Express 2022, 12, 117. [Google Scholar] [CrossRef]
- Siyanbola, T.O.; Ajayi, A.A.; Vinukonda, S.; Jena, K.K.; Alhassan, S.M.; Basak, P.; Akintayo, E.T.; Narayan, R.; Raju, K.V.S.N. Surface modification of TiO2 nanoparticles with 1,1,1-Tris(hydroxymethyl)propane and its coating application effects on castor seed oil-PECH blend based urethane systems. Prog. Org. Coat. 2021, 161, 106469. [Google Scholar] [CrossRef]
- Cox, H.J.; Sharples, G.J.; Badyal, J.P.S. Tea-Essential Oil-Metal Hybrid Nanocoatings for Bacterial and Viral Inactivation. ACS Appl. Nano Mater. 2021, 4, 12619–12628. [Google Scholar] [CrossRef]
- Philip, A.; Ghiyasi, R.; Karppinen, M. Photoactive Thin-Film Structures of Curcumin, TiO2 and ZnO. Molecules 2021, 26, 3214. [Google Scholar] [CrossRef]
- Branco, R.; Sousa, R.; Dias, C.; Serra, C.; Morais, P.V.; Coelho, J.F.J.; Fernandes, J.R. Light-Activated Antimicrobial Surfaces Using Industrial Varnish Formulations to Mitigate the Incidence of Nosocomial Infections. ACS Appl. Mater. Interfaces 2021, 13, 7567–7579. [Google Scholar] [CrossRef]
- Cox, H.J.; Li, J.; Saini, P.; Paterson, J.R.; Sharples, G.J.; Badyal, J.P.S. Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces. J. Mater. Chem. B 2021, 9, 2918–2930. [Google Scholar] [CrossRef]
- Anwar, M.; Shukrullah, S.; Haq, I.U.; Saleem, M.; AbdEl-Salam, N.M.; Ibrahim, K.A.; Mohamed, H.F.; Khan, Y. Ultrasonic Bioconversion of Silver Ions into Nanoparticles with Azadirachta indica Extract and Coating over Plasma-Functionalized Cotton Fabric. ChemistrySelect 2021, 6, 1920–1928. [Google Scholar] [CrossRef]
- Štular, D.; Savio, E.; Simončič, B.; Šobak, M.; Jerman, I.; Poljanšek, I.; Ferri, A.; Tomšič, B. Multifunctional antibacterial and ultraviolet protective cotton cellulose developed by in situ biosynthesis of silver nanoparticles into a polysiloxane matrix mediated by sumac leaf extract. Appl. Surf. Sci. 2021, 563, 150361. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, J.; Liu, Y.; Zheng, X.; Tang, K. Green synthesis of silver nanoparticles using soluble soybean polysaccharide and their application in antibacterial coatings. Int. J. Biol. Macromol. 2021, 166, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Anwar, Y.; Ullah, I.; Ul-Islam, M.; Alghamdi, K.M.; Khalil, A.; Kamal, T. Adopting a green method for the synthesis of gold nanoparticles on cotton cloth for antimicrobial and environmental applications. Arab. J. Chem. 2021, 14, 103327. [Google Scholar] [CrossRef]
- Garg, R.; Rani, P.; Garg, R.; Eddy, N.O. Study on potential applications and toxicity analysis of green synthesized nanoparticles. Turkish J. Chem. 2021, 45, 1690–1706. [Google Scholar] [CrossRef]
- Usmani, Z.; Lukk, T.; Kumar, D.; Kumar, V. Current Research in Green and Sustainable Chemistry Biosafe sustainable antimicrobial encapsulation and coatings for targeted treatment and infections prevention: Preparation for another pandemic. Curr. Res. Green Sustain. Chem. 2021, 4, 100074. [Google Scholar] [CrossRef]
- University of Minnesota. Nanoparticles may have bigger impact on the environment than previously thought. ScienceDaily. 2019. Available online: www.sciencedaily.com/releases/2019/10/191009162439.htm (accessed on 17 April 2022).
- Stabryla, L.M.; Johnston, K.A.; Diemler, N.A.; Cooper, V.S.; Millstone, J.E.; Haig, S.J.; Gilbertson, L.M. Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat. Nanotechnol. 2021, 16, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.D.; Zucchi, P.C.; Phung, A.; Leonard, S.N.; Hirsch, E.B. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized. PLoS ONE 2016, 11, e0160728. [Google Scholar] [CrossRef]
- Jegel, O.; Pfitzner, F.; Gazanis, A.; Oberländer, J.; Pütz, E.; Lange, M.; Von Der Au, M.; Meermann, B.; Mailänder, V.; Klasen, A.; et al. Transparent polycarbonate coated with CeO2nanozymes repel: Pseudomonas aeruginosa PA14 biofilms. Nanoscale 2022, 14, 86–98. [Google Scholar] [CrossRef]
- Kelley, S.T.; Gilbert, J.A. Studying the microbiology of the indoor environment. Genome Biol. 2013, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- United State Environmental Protection Agency. The Indoor Microbiome. 2022. Available online: https://www.epa.gov/indoor-air-quality-iaq/indoor-microbiome (accessed on 1 July 2022).
- Li, S.; Yang, Z.; Hu, D.; Cao, L.; He, Q. Understanding building-occupant-microbiome interactions toward healthy built environments: A review. Front. Environ. Sci. Eng. 2021, 15, 65. [Google Scholar] [CrossRef]
- Beasley, D.E.; Monsur, M.; Hu, J.; Dunn, R.R.; Madden, A.A. The bacterial community of childcare centers: Potential implications for microbial dispersal and child exposure. Environ. Microbiomes 2022, 17, 8. [Google Scholar] [CrossRef]
- Kembel, S.W.; Meadow, J.F.; O’Connor, T.K.; Mhuireach, G.; Northcutt, D.; Kline, J.; Moriyama, M.; Brown, G.Z.; Bohannan, B.J.M.; Green, J.L. Architectural design drives the biogeography of indoor bacterial communities. PLoS ONE 2014, 9, e87093. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.K.; Zargar, B.; Wright, K.E.; Rubino, J.R.; Sattar, S.A. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies. Am. J. Infect. Control 2016, 44, S109–S120. [Google Scholar] [CrossRef] [PubMed]
- Lax, S.; Cardona, C.; Zhao, D.; Winton, V.J.; Goodney, G.; Gao, P.; Gottel, N.; Hartmann, E.M.; Henry, C.; Thomas, P.M.; et al. Microbial and metabolic succession on common building materials under high humidity conditions. Nat. Commun. 2019, 10, 1767. [Google Scholar] [CrossRef] [PubMed]
- Horve, P.F.; Lloyd, S.; Mhuireach, G.A.; Dietz, L.; Fretz, M.; MacCrone, G.; Van Den Wymelenberg, K.; Ishaq, S.L. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Freepik. Set Room Office Isometric Image by Macrovector. Available online: https://www.freepik.com/free-vector/set-room-office-isometric_9461863.htm (accessed on 1 July 2022).
- Leung, M.H.Y.; Lee, P.K.H. The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: A review. Microbiome 2016, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, Q.; Zhou, R.; Feng, T.; Hilal, M.G.; Li, H. Nationality and body location alter human skin microbiome. Appl. Microbiol. Biotechnol. 2021, 105, 5241–5256. [Google Scholar] [CrossRef]
- Cao, L.; Yang, L.; Swanson, C.S.; Li, S.; He, Q. Comparative analysis of impact of human occupancy on indoor microbiomes. Front. Environ. Sci. Eng. 2021, 15, 89. [Google Scholar] [CrossRef]
- Oh, J.; Byrd, A.L.; Park, M.; NISC Comparative Sequencing Program; Kong, H.H.; Segre, J. Temporal Stability of the Human Skin Microbiome. Cell 2016, 154, 854–866. [Google Scholar] [CrossRef]
- Chaudhari, D.S.; Dhotre, D.P.; Agarwal, D.M.; Gaike, A.H.; Bhalerao, D.; Jadhav, P.; Mongad, D.; Lubree, H.; Sinkar, V.P.; Patil, U.K.; et al. Gut, oral and skin microbiome of Indian patrilineal families reveal perceptible association with age. Sci. Rep. 2020, 10, 5685. [Google Scholar] [CrossRef] [Green Version]
- Sanmiguel, A.; Grice, E.A. Interactions between host factors and the skin microbiome. Cell. Mol. Life Sci. 2015, 72, 1499–1515. [Google Scholar] [CrossRef]
- Smith, A.; Hunneyball, l.M. Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. Int. J. Pharm. 1986, 30, 215–220. [Google Scholar] [CrossRef]
- Vickery, K.; Deva, A.; Jacombs, A.; Allan, J.; Valente, P.; Gosbell, I.B. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. J. Hosp. Infect. 2012, 80, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Kwan, S.E.; Shaughnessy, R.J.; Hegarty, B.; Haverinen-Shaughnessy, U.; Peccia, J. The reestablishment of microbial communities after surface cleaning in schools. J. Appl. Microbiol. 2018, 125, 897–906. [Google Scholar] [CrossRef]
- Hui, D.S.; Woo, J.; Hui, E.; Foo, A.; Ip, M.; To, K.W.; Cheuk, E.S.C.; Lam, W.Y.; Sham, A.; Chan, P.K.S. Influenza-like illness in residential care homes: A study of the incidence, aetiological agents, natural history and health resource utilisation. Thorax 2008, 63, 690–698. [Google Scholar] [CrossRef]
- Augustine, J.M.; Gordon, R.; Crosnoe, R. Common Illness and Preschooler’s Experiences in Child Care. J. Health Soc. Behav. 2013, 54, 315–334. [Google Scholar] [CrossRef]
- Gorgels, K.M.F.; Dingemans, J.; van der Veer, B.M.J.W.; Hackert, V.; Hensels, A.Y.J.; den Heijer, C.D.J.; van Alphen, L.B.; Savelkoul, P.H.M.; Hoebe, C.J.P.A. Linked nosocomial COVID-19 outbreak in three facilities for people with intellectual and developmental disabilities due to SARS-CoV-2 variant B.1.1.519 with spike mutation T478K in the Netherlands. BMC Infect. Dis. 2022, 22, 139. [Google Scholar] [CrossRef] [PubMed]
Method [Ref.] | Ease of Application | Durability | Sustainability | Microbial Tested |
---|---|---|---|---|
Polycation polymer (PDADMAC) interpolyelectrolyte complex [92] | ++++ Dip Coating | + | ++ | N/A |
Silver Oxide (Ag2O) Coating [65] | ++++ Dip Coating | + | ++ | N/A |
Silver-enriched TiO2 Nanocoating [66] | ++ Spin Coating and Annealing | N/A | + | N/A |
Iron, Graphene, Silver-infused TiO2 Nanocoating [85] | ++++ Dip Coating | N/A | + | E. coli |
Silver Nanoparticle embedded in TiO2/SiO2 [87] | +++ Sputtering | N/A | + | E coli |
Nano Cu, Cu2O, Ag, ZnO, ZTO and TiO2 [68] | +++ Thermal Evaporation | Varying | + | SARS-CoV-2 |
Quaternized Polydopamine-Ag Nanoparticle Complex [90] | N/A | +++ | ++ | E. coli, S. aureus, A. nigger |
Metalated phthalocyanine (ZnPc-EDOT and CuPc-EDOT) with Potassium Iodide (KI) [96] | ++ Electro-polymerization | N/A | + | E. coli, S. aureus |
Al-doped ZnO Nanorods [96] | ++ Spray Pyrolysis | N/A | + | E. coli |
Hyperbranched Polymer Kaustamin [94] | ++++ Dip Coating | + | ++ | B. subtilis, E. coli |
Azure A (AA) and 5-(4-aminophenyl)-10,15,20-(triphenyl)porhyrin (APTPP) [95] | + Chemical Grafting and Chemical Post modification | N/A | ++ | E. coli |
Method [Ref.] | Ease of Application | Durability | Sustainability | Microbial Tested |
---|---|---|---|---|
Polydopamine-Graphene Oxide Hybrid Coating [126] | ++++ Spray Coating | N/A | ++ | E. coli |
Pretreatment of Filter with Chlorhexidine Digluconate [122] | N/A | ++++ | ++ | E. coli, C. albicans, SARS-CoV-2 |
Silver Nanowire coated Fibrous Air Filter [125] | ++++ Electrospraying | N/A | + | S. aureus, E. coli |
Method [Ref.] | Ease of Application | Durability | Sustainability | Microbial Tested |
---|---|---|---|---|
Silver-coated Sustainable Biopolymer Pellets for Injection Molding [134] | ++++ Sputtering | N/A | ++ | N/A |
Polylactic Acid/Polyoxometalates with Double Sodium-copper(II) paratungstate B | ++++ Solvent Casting/Melt Extrusion | N/A | + | E. coli |
Protonated chitosan mixed with Cationic Waterborne Polyurethane [135] | ++++ High Speed Mixing | N/A | +++ | E. coli |
Incorporation of TiO2 and ZnO into Silicone Rubber [131] | ++++ Roller Mixing | N/A | + | E. coli, S. aureus, P. fluorescens |
Sprayable Quaternary Small Molecule [137] | ++++ Spray Coating | ++++ | ++ | C. albicans, S. aureus (MRSA) |
UV-curable Phosphonium with Benzophenone | +++ Electrospraying and UV Curing | ++++ (Coextruded material) | + | Arthrobacter sp., E. coli |
Office Zones | High-Touch Surfaces and Bacterial Reservoir |
---|---|
All rooms | Switches, door handles, floor/carpet, curtain/blinds, window handle, phones, dust, air, and HVAC filters |
Office space | Keyboard, mouse, laptop, telephone, desks, chair, LCD screen, cabinet handle, printer interface, water fountain, and coffee machine |
Meeting/conference rooms | Conference equipment, keyboard, mouse, laptop, telephone, desks, and chair |
Restroom | Sink, faucet handles, toilet seat, toilet flush, hand towel dispenser, hand blower button, countertop, soap dispenser, stall door and handles, and water |
Kitchen | Kettle, coffee machine, microwave oven buttons, refrigerator handle, countertop, sink, faucet handles, table, chair, water fountain, soap dispenser, and water |
Lobby, reception, and front desk | Telephone, keyboard, mouse, desk, chair, sofa, coffee table, and coffee/snack machine |
Hallway and corridors | Elevator switches and handrails |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, L.X.; Calautit, J.K. A Comprehensive Review on the Integration of Antimicrobial Technologies onto Various Surfaces of the Built Environment. Sustainability 2023, 15, 3394. https://doi.org/10.3390/su15043394
Yong LX, Calautit JK. A Comprehensive Review on the Integration of Antimicrobial Technologies onto Various Surfaces of the Built Environment. Sustainability. 2023; 15(4):3394. https://doi.org/10.3390/su15043394
Chicago/Turabian StyleYong, Ling Xin, and John Kaiser Calautit. 2023. "A Comprehensive Review on the Integration of Antimicrobial Technologies onto Various Surfaces of the Built Environment" Sustainability 15, no. 4: 3394. https://doi.org/10.3390/su15043394
APA StyleYong, L. X., & Calautit, J. K. (2023). A Comprehensive Review on the Integration of Antimicrobial Technologies onto Various Surfaces of the Built Environment. Sustainability, 15(4), 3394. https://doi.org/10.3390/su15043394