Building Information Modeling Execution Drivers for Sustainable Building Developments
Abstract
:1. Introduction
2. State of BIM Adoption in Nigeria for Sustainable Building Development
3. Drivers of BIM in the Building Industry
4. Research Methods
4.1. Construct Validity Analysis
4.2. Analytical Technique
4.3. Questionnaire Design and Data Collection
4.3.1. Target Population
4.3.2. Sample Frame
4.3.3. Sampling Techniques
5. Results
5.1. EFA Analysis
5.2. Common Method Bias
5.3. Measurement Model
- (a)
- Fornell–Larcker criteria;
- (b)
- Hetrotrait–Monotrait Criterion Ratio (HTMT).
5.4. Structural Model Analysis
6. Discussion
7. Conclusions
7.1. Conceptual and Empirical Contributions
- While there are several pieces of research on BIM deployment in industrialized nations, there is little on the topic in Nigeria [32]. The present research fills this void by analyzing the key factors influencing the widespread adoption of BIM;
- The study’s model represents the first predictive model to be built in the construction industry to quantify the impact of drivers for BIM use for sustainable building development in the AECO sector. Hopefully, this resource will accelerate the spread of BIM in underdeveloped nations. This approach is empirical since it seeks to achieve what no other researchers have done: investigate the theoretical links between the various components that make up the “BIM implementation drivers”.
7.2. Managerial Implications
- It offers AECO company’s critical drivers that can be implemented to deal with the problems and obstacles connected with BIM adoption, leading to greater client satisfaction due to higher-quality visualization;
- It facilitates choice-making by analyzing the effects of BIM drivers throughout the project’s lifecycle.
7.3. Limitations and Areas for Future Studies
- The sample size used for the study is small. Future studies should include more respondents to the survey in order to improve the generalization of the research;
- In terms of geographical scope, the work is limited to Nigeria only. Future research can target other developing countries in Africa to examine the drivers for BIM adoption because different countries may have different motivators;
- This study also showed that standards-related drivers significantly affect BIM adoption for sustainable developments compared to other categories of drivers. Future studies could focus on addressing the BIM standards gaps in developing countries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olanrewaju, O.; Idiake, J.; Oyewobi, L.; Akanmu, W.P. Global economic recession: Causes and effects on Nigeria building construction industry. J. Surv. Constr. 2018, 9, 9–18. [Google Scholar]
- Olanrewaju, O.I.; Babarinde, S.A.; Chileshe, N.; Sandanayake, M. Drivers for implementation of building information modeling (BIM) within the Nigerian construction industry. J. Financ. Manag. Prop. Constr. 2021, 26, 366–386. [Google Scholar] [CrossRef]
- Edwards, D.J.; Pärn, E.; Love, P.E.; El-Gohary, H. Research note: Machinery, manumission, and economic machinations. J. Bus. Res. 2017, 70, 391–394. [Google Scholar] [CrossRef]
- Owusu-Manu, D.-G.; Edwards, D.J.; Mohammed, A.; Thwala, W.D.; Birch, T. Short run causal relationship between foreign direct investment (FDI) and infrastructure development. J. Eng. Des. Technol. 2019, 17, 1202–1221. [Google Scholar] [CrossRef]
- Rady, M.; Mahfouz, S.Y. Effects of Concrete Grades and Column Spacings on the Optimal Design of Reinforced Concrete Buildings. Materials 2022, 15, 4290. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.; Almeida, M.; Bragança, L. Analysis of some Portuguese thermal regulation parameters. Energy Build. 2013, 58, 141–150. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Bragança, L.; Mateus, R. Optimising building sustainability assessment using BIM. Autom. Constr. 2019, 102, 170–182. [Google Scholar] [CrossRef]
- Mousa, A. A Business approach for transformation to sustainable construction: An implementation on a developing country. Resour. Conserv. Recycl. 2015, 101, 9–19. [Google Scholar] [CrossRef]
- Fang, Z.; Gao, X.; Sun, C. Do financial development, urbanization and trade affect environmental quality? Evidence from China. J. Clean. Prod. 2020, 259, 120892. [Google Scholar] [CrossRef]
- Kineber, A.F.; Kissi, E.; Hamed, M.M. Identifying and Assessing Sustainability Implementation Barriers for Residential Building Project: A Case of Ghana. Sustainability 2022, 14, 15606. [Google Scholar] [CrossRef]
- Kissi, E.; Boateng, E.; Adjei-Kumi, T. Strategies for implementing value management in the construction industry of Ghana. In Proceedings of the DII-2015 Conference on Infrastructure Development and Investment Strategies for Africa, Livingstone, Zambia, 16–18 September 2015; pp. 255–267. [Google Scholar]
- Adeyemi, L.A.; Idoko, M. Developing Local Capacity For Project Management—Key To Social And Business Transformation In Developing Countries, 2008; Project Management Institute: Newtown Square, PA, USA, 2008. [Google Scholar]
- Maceika, A.; Bugajev, A.; Šostak, O.R. The Modelling of Roof Installation Projects Using Decision Trees and the AHP Method. Sustainability 2020, 12, 59. [Google Scholar] [CrossRef] [Green Version]
- Acre, F.; Wyckmans, A. The impact of dwelling renovation on spatial quality: The case of the Arlequin neighbourhood in Grenoble, France. In Smart Sustainable Built Environment; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Parn, E.A.; Edwards, D. Cyber threats confronting the digital built environment: Common data environment vulnerabilities and block chain deterrence. In Engineering, Construction Architectural Management; Emerald: Bingley, UK, 2019. [Google Scholar]
- Ghosh, A.; Edwards, D.J.; Hosseini, M.R. Patterns and trends in Internet of Things (IoT) research: Future applications in the construction industry. Eng. Constr. Arch. Manag. 2020, 28, 457–481. [Google Scholar] [CrossRef]
- Alshami, A.; Elsayed, M.; Mohandes, S.R.; Kineber, A.F.; Zayed, T.; Alyanbaawi, A.; Hamed, M.M. Performance Assessment of Sewer Networks under Different Blockage Situations Using Internet-of-Things-Based Technologies. Sustainability 2022, 14, 14036. [Google Scholar] [CrossRef]
- Newman, C.; Edwards, D.; Martek, I.; Lai, J.; Thwala, W.D.; Rillie, I. Industry 4.0 deployment in the construction industry: A bibliometric literature review and UK-based case study. Smart Sustain. Built Environ. 2020, 10, 557–580. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Buniya, M.K. Impact of Value Management on Building Projects Success: Structural Equation Modeling Approach. J. Constr. Eng. Manag. 2021, 147, 04021011. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Sepasgozar, S.M.; Edwards, D.J.; Li, H.; Wang, C. BIM compatibility and its differentiation with interoperability challenges as an innovation factor. Autom. Constr. 2020, 112, 103086. [Google Scholar] [CrossRef]
- Autodesk. Building Information Modelling (BIM). 2020. Available online: https://www.autodesk.com/solutions/bim (accessed on 10 January 2021).
- Abubakar, M.; Ibrahim, Y.M.; Kado, D.; Bala, K. Contractors’ Perception of the Factors Affecting Building Information Modelling (BIM) Adoption in the Nigerian Construction Industry. In Proceedings of the Conference on Computing in Civil and Building Engineering, Orlando, FL, USA, 23–25 June 2014; pp. 167–178. [Google Scholar] [CrossRef]
- Pärn, E.A.; Edwards, D.J.; Sing, M.C.P. The building information modelling trajectory in facilities management: A review. Autom. Constr. 2017, 75, 45–55. [Google Scholar] [CrossRef]
- Oraee, M.; Hosseini, M.R.; Edwards, D.J.; Li, H.; Papadonikolaki, E.; Cao, D. Collaboration barriers in BIM-based construction networks: A conceptual model. Int. J. Proj. Manag. 2019, 37, 839–854. [Google Scholar] [CrossRef]
- Yan, H.; Demian, P. Benefits and Barriers of Building Information Modelling; Tingshua University Press: Beijing, China, 2008. [Google Scholar]
- Olanrewaju, O.I.; Chileshe, N.; Babarinde, S.A.; Sandanayake, M. Investigating the barriers to building information modeling (BIM) implementation within the Nigerian construction industry. Eng. Constr. Arch. Manag. 2020, 27, 2931–2958. [Google Scholar] [CrossRef]
- Olanrewaju, O.; Babarinde, S.A.; Salihu, C. Current State of Building Information Modelling in the Nigerian Construction Industry. J. Sustain. Arch. Civ. Eng. 2020, 27, 63–77. [Google Scholar] [CrossRef]
- Babatunde, S.O.; Perera, S.; Ekundayo, D.; Adeleye, T.E. An investigation into BIM-based detailed cost estimating and drivers to the adoption of BIM in quantity surveying practices. J. Financ. Manag. Prop. Constr. 2019, 25, 61–81. [Google Scholar] [CrossRef]
- Kineber, A.F.; Oke, A.E.; Elseknidy, M.; Hamed, M.M.; Kayode, F.S. Barriers to the Implementation of Radio Frequency Identification (RFID) for Sustainable Building in a Developing Economy. Sustainability 2023, 15, 825. [Google Scholar] [CrossRef]
- Eadie, R.; Odeyinka, H.; Browne, M.; McKeown, C.; Yohanis, M. An analysis of the drivers for adopting building information modelling. J. Inf. Technol. Constr. 2013, 18, 338–352. [Google Scholar]
- Olawumi, T.O.; Chan, D.W. An empirical survey of the perceived benefits of executing BIM and sustainability practices in the built environment. Constr. Innov. 2019, 19, 321–342. [Google Scholar] [CrossRef]
- Olanrewaju, O.I.; Kineber, A.F.; Chileshe, N.; Edwards, D.J. Modelling the Impact of Building Information Modelling (BIM) Implementation Drivers and Awareness on Project Lifecycle. Sustainability 2021, 13, 8887. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Ho, D.C.K.; Tam, C.M. Design and Build Project Success Factors: Multivariate Analysis. J. Constr. Eng. Manag. 2001, 127, 93–100. [Google Scholar] [CrossRef]
- Yu, A.T.; Shen, Q.; Kelly, J.; Lin, G. A Value Management Approach to Strategic Briefing: An Exploratory Study. Arch. Eng. Des. Manag. 2006, 2, 245–259. [Google Scholar] [CrossRef]
- Rodgers, C.; Hosseini, M.R.; Chileshe, N.; Rameezdeen, R. Building information modelling (BIM) within the Australian construction related small and medium sized enterprises: Awareness, practices and drivers. In Proceedings of the ARCOM 2015: 31st Annual Conference of the Association of Researchers in Construction Management, Lincoln, UK, 7–9 September 2015; pp. 691–700. [Google Scholar]
- Rady, M.; Mahfouz, S.Y.; Taher, S.E.-D.F. Optimal Design of Reinforced Concrete Materials in Construction. Materials 2022, 15, 2625. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.K.-K. Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Mark. Bull. 2013, 24, 1–32. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Azhar, S.; Khalfan, M.; Maqsood, T. Building information modeling (BIM): Now and beyond. Australas. J. Constr. Econ. Build. 2012, 12, 15–28. [Google Scholar]
- Succar, B.; Kassem, M. Macro-BIM adoption: Conceptual structures. Autom. Constr. 2015, 57, 64–79. [Google Scholar] [CrossRef]
- Ahmed, A.L.; Kassem, M. A unified BIM adoption taxonomy: Conceptual development, empirical validation and application. Autom. Constr. 2018, 96, 103–127. [Google Scholar] [CrossRef]
- Hedayati, A.; Mohandes, S.; Preece, C. Studying the obstacles to implementing BIM in educational system and making some recommendations. J. Basic Appl. Sci. Res. 2015, 5, 29–35. [Google Scholar]
- Demirdoven, J. An interdisciplinary approach to integrate BIM in the construction management and engineering curriculum. In Proceedings of the BIMAS2015 9th BIM Academic Symposium, Washington, DC, USA, 7–8 April 2015; Volume 1, pp. 211–251. [Google Scholar]
- Saka, A.B.; Chan, D.W.M. A Scientometric Review and Metasynthesis of Building Information Modelling (BIM) Research in Africa. Buildings 2019, 9, 85. [Google Scholar] [CrossRef]
- Stransky, M.; Dlask, P. Process of matching work items between bim model and cost estimating software. Eng. Rural Dev. 2018, 17, 856–864. [Google Scholar] [CrossRef]
- Eastman, C.M.; Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Nagalingam, G.; Jayasena, H.S.; Ranadewa, K. Building information modelling and future quantity surveyor’s practice in Sri Lankan construction industry. In Proceedings of the Second World Construction Symposium, Abu Dhabi, United Arab Emirates, 22–24 October 2013; pp. 81–92. [Google Scholar]
- Chahrour, R.; Hafeez, M.A.; Ahmad, A.M.; Sulieman, H.I.; Dawood, H.; Rodriguez-Trejo, S.; Kassem, M.; Naji, K.K.; Dawood, N. Cost-benefit analysis of BIM-enabled design clash detection and resolution. Constr. Manag. Econ. 2021, 39, 55–72. [Google Scholar] [CrossRef]
- McNamara, A.J.; Sepasgozar, S.M. Intelligent contract adoption in the construction industry: Concept development. Autom. Constr. 2021, 122, 103452. [Google Scholar] [CrossRef]
- Badi, S.; Ochieng, E.; Nasaj, M.; Papadaki, M. Technological, organisational and environmental determinants of smart contracts adoption: UK construction sector viewpoint. Constr. Manag. Econ. 2021, 39, 36–54. [Google Scholar] [CrossRef]
- Aidy, A.; Rady, M.; Mashhour, I.M.; Mahfouz, S.Y. Structural Design Optimization of Flat Slab Hospital Buildings Using Genetic Algorithms. Buildings 2022, 12, 2195. [Google Scholar] [CrossRef]
- Chileshe, N.; Jayasinghe, R.S.; Rameezdeen, R. Information flow-centric approach for reverse logistics supply chains. Autom. Constr. 2019, 106, 102858. [Google Scholar] [CrossRef]
- Kineber, A.F.; Oke, A.E.; Hamed, M.M.; Rached, E.F.; Elmansoury, A.; Alyanbaawi, A. A Partial Least Squares Structural Equation Modeling of Robotics Implementation for Sustainable Building Projects: A Case in Nigeria. Sustainability 2023, 15, 604. [Google Scholar] [CrossRef]
- Amarasinghe, I.A.; Soorige, D.; Geekiyanage, D. Comparative study on Life Cycle Assessment of buildings in developed countries and Sri Lanka. Built Environ. Proj. Asset Manag. 2021, 11, 304–329. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Hsu, Y.-T. Enhancing the Visualization of Problems Tracking and Management Integrated BIM Technology for General Contractor in Construction. In Collaboration and Integration in Construction, Engineering, Management and Technology; Springer: Berlin/Heidelberg, Germany, 2021; pp. 427–432. [Google Scholar] [CrossRef]
- Costa, A.A.; Grilo, A. BIM-Based E-Procurement: An Innovative Approach to Construction E-Procurement. Sci. World J. 2015, 2015, 905390. [Google Scholar] [CrossRef]
- Grilo, A.; Jardim-Goncalves, R. Challenging electronic procurement in the AEC sector: A BIM-based integrated perspective. Autom. Constr. 2011, 20, 107–114. [Google Scholar] [CrossRef]
- Vasudevan, G.; Wei, C.C. Implementation of BIM with Integrated E-Procurement System in Malaysian Construction Industry. In Advances in Civil Engineering Materials; Springer: Berlin/Heidelberg, Germany, 2021; pp. 165–171. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, Y.; He, Q.; Hong, Q.; Chen, C.; Antwi-Afari, M.F. Investigating the Key Hindering Factors and Mechanism of BIM Applications Based on Social Network Analysis. Buildings 2022, 12, 1270. [Google Scholar] [CrossRef]
- Ebekozien, A.; Aigbavboa, C.O.; Aigbedion, M.; Ogbaini, I.F.; Aginah, I.L. Integrated project delivery in the Nigerian construction sector: An unexplored approach from the stakeholders’ perspective. Eng. Constr. Arch. Manag. 2022. ahead of print. [Google Scholar] [CrossRef]
- Aka, A.; Iji, J.; Isa, R.B.; Bamgbade, A.A. Assessing the relationships between underlying strategies for effective building information modeling (BIM) implementation in Nigeria construction industry. Arch. Eng. Des. Manag. 2021, 17, 434–446. [Google Scholar] [CrossRef]
- Peng, P.; Ao, Y.; Li, M.; Wang, Y.; Wang, T.; Bahmani, H. Building Information Modeling Learning Behavior of AEC Undergraduate Students in China. Behav. Sci. 2022, 12, 269. [Google Scholar] [CrossRef]
- Rathnasinghe, A.P.; Wijewickrama, M.K.C.S.; Kulatunga, U.; Jayasena, H.S. Integration of BIM and Construction Supply Chain Through Supply Chain Management; An Information Flow Model. In Proceedings of the International Conference on Sustainable Built Environment, Kandy, Sri Lanka, 13–15 December 2008; pp. 604–614. [Google Scholar] [CrossRef]
- Bouška, R. Evaluation of Maturity of BIM Tools across Different Software Platforms. Procedia Eng. 2016, 164, 481–486. [Google Scholar] [CrossRef]
- Olugboyega, O.; Windapo, A. Modelling the indicators of a reduction in BIM adoption barriers in a developing country. Int. J. Constr. Manag. 2021, 1–11. [Google Scholar] [CrossRef]
- Semaan, J.; Underwood, J.; Hyde, J. An Investigation of Work-Based Education and Training Needs for Effective BIM Adoption and Implementation: An Organisational Upskilling Model. Appl. Sci. 2021, 11, 8646. [Google Scholar] [CrossRef]
- Crowther, J.; Ajayi, S.O. Impacts of 4D BIM on construction project performance. Int. J. Constr. Manag. 2021, 21, 724–737. [Google Scholar] [CrossRef]
- Maina, J.J. Barriers to effective use of CAD and BIM in architecture education in Nigeria. Int. J. Built Environ. Sustain. 2018, 5. [Google Scholar] [CrossRef]
- Lee, S.; Yu, J.; Jeong, D. BIM Acceptance Model in Construction Organizations. J. Manag. Eng. 2015, 31, 04014048. [Google Scholar] [CrossRef]
- Zou, P.X.W.; Xu, X.; Jin, R.; Painting, N.; Li, B. AEC Students’ Perceptions of BIM Practice at Swinburne University of Technology. J. Prof. Issues Eng. Educ. Pract. 2019, 145, 05019002. [Google Scholar] [CrossRef]
- Peterson, F.; Hartmann, T.; Fruchter, R.; Fischer, M. Teaching construction project management with BIM support: Experience and lessons learned. Autom. Constr. 2011, 20, 115–125. [Google Scholar] [CrossRef]
- Tzortzopoulos, P.; Ma, L.; Junior, J.S.; Koskela, L. Evaluating Social Housing Retrofit Options to Support Clients’ Decision Making—SIMPLER BIM Protocol. Sustainability 2019, 11, 2507. [Google Scholar] [CrossRef]
- Durdyev, S.; Mbachu, J.; Thurnell, D.; Zhao, L.; Hosseini, M. BIM Adoption in the Cambodian Construction Industry: Key Drivers and Barriers. ISPRS Int. J. Geo-Inf. 2021, 10, 215. [Google Scholar] [CrossRef]
- Li, P.; Zheng, S.; Si, H.; Xu, K. Critical Challenges for BIM Adoption in Small and Medium-Sized Enterprises: Evidence from China. Adv. Civ. Eng. 2019, 1–14. [Google Scholar] [CrossRef]
- Redmond, A.; Hore, A.; Alshawi, M.; West, R. Exploring how information exchanges can be enhanced through Cloud BIM. Autom. Constr. 2012, 24, 175–183. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Dallasega, P.; Rauch, E.; Linder, C. Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. Comput. Ind. 2018, 99, 205–225. [Google Scholar] [CrossRef]
- Elmualim, A.; Gilder, J. BIM: Innovation in design management, influence and challenges of implementation. Archit. Eng. Des. Manag. 2014, 10, 183–199. [Google Scholar] [CrossRef]
- Machado, R.L.; Vilela, C. Conceptual framework for integrating bim and augmented reality in construction management. J. Civ. Eng. Manag. 2020, 26, 83–94. [Google Scholar] [CrossRef]
- Shukra, Z.A.; Zhou, Y. Holistic green BIM: A scientometrics and mixed review. Eng. Constr. Arch. Manag. 2021, 28, 2273–2299. [Google Scholar] [CrossRef]
- Olugboyega, O.; Aina, O.O. Analysis of building information modelling usage indices and facilitators in the Nigerian construction industry. J. Logist. Inf. Serv. Sci. 2016, 3, 1–36. [Google Scholar]
- Qin, X.; Shi, Y.; Lyu, K.; Mo, Y. Using a tam-toe model to explore factors of building information modelling (bim) adoption in the construction industry. J. Civ. Eng. Manag. 2020, 26, 259–277. [Google Scholar] [CrossRef]
- Besné Yanguas, A.; Pérez, M.Á.; Necchi, S.; Peña Camarillas, E.; Fonseca Escudero, D.; Navarro Delgado, I.; Redondo Domínguez, E. A Systematic Review of Current Strategies and Methods for BIM Implementation in the Academic Field. Appl. Sci. 2021, 11, 5530. [Google Scholar] [CrossRef]
- Othman, I.; Al-Ashmori, Y.Y.; Rahmawati, Y.; Amran, Y.M.; Al-Bared, M.A.M. The level of Building Information Modelling (BIM) Implementation in Malaysia. Ain Shams Eng. J. 2021, 12, 455–463. [Google Scholar] [CrossRef]
- Le, P.L.; Chaabane, A.; Dao, T.-M. BIM contributions to construction supply chain management trends: An exploratory study in Canada. Int. J. Constr. Manag. 2022, 22, 66–84. [Google Scholar] [CrossRef]
- Papadonikolaki, E.; Vrijhoef, R.; Wamelink, H. The interdependences of BIM and supply chain partnering: Empirical explorations. Arch. Eng. Des. Manag. 2016, 12, 476–494. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Teo, E.A.L. Organizational Change Perspective on People Management in BIM Implementation in Building Projects. J. Manag. Eng. 2018, 34, 04018008. [Google Scholar] [CrossRef]
- Murphy, M. Implementing innovation: A stakeholder competency-based approach for BIM. Constr. Innov. 2014, 14, 433–452. [Google Scholar] [CrossRef]
- Farnsworth, C.B.; Beveridge, S.; Miller, K.R.; Christofferson, J.P. Application, advantages, and methods associated with using BIM in commercial construction. Int. J. Constr. Educ. Res. 2015, 11, 218–236. [Google Scholar] [CrossRef]
- Gao, G.; Liu, Y.-S.; Wang, M.; Gu, M.; Yong, J.-H. A query expansion method for retrieving online BIM resources based on Industry Foundation Classes. Autom. Constr. 2015, 56, 14–25. [Google Scholar] [CrossRef]
- Dakhil, A.; Underwood, J.; Al Shawi, M. BIM benefits-maturity relationship awareness among UK construction clients. In Proceedings of the First International Conference of the BIM Academic Forum, Glasgow, UK, 13–15 September 2006; pp. 13–15. [Google Scholar]
- Wetzel, E.M.; Thabet, W.Y. The use of a BIM-based framework to support safe facility management processes. Autom. Constr. 2015, 60, 12–24. [Google Scholar] [CrossRef]
- Whyte, J.K.; Hartmann, T. How digitizing building information transforms the built environment. Build. Res. Inf. 2017, 45, 591–595. [Google Scholar] [CrossRef]
- Papadonikolaki, E.; Wamelink, H. Inter-and intra-organizational conditions for supply chain integration with BIM. Build. Res. Inf. 2017, 45, 649–664. [Google Scholar] [CrossRef]
- Shepherd, D. Assessing your Practice and Guiding it to BIM-Readiness. In BIM Management Handbook; RIBA Publishing: London, UK, 2019; pp. 36–49. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Eastman, C.M.; Solihin, W.; See, R. Modularized rule-based validation of a BIM model pertaining to model views. Autom. Constr. 2016, 63, 1–11. [Google Scholar] [CrossRef]
- Pinheiro, S.; Wimmer, R.; O’Donnell, J.; Muhic, S.; Bazjanac, V.; Maile, T.; Frisch, J.; van Treeck, C. MVD based information exchange between BIM and building energy performance simulation. Autom. Constr. 2018, 90, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Kassem, M.; Iqbal, N.; Kelly, G.; Lockley, S.; Dawood, N. Building information modelling: Protocols for collaborative design processes. J. Inf. Technol. Constr. 2014, 19, 126–149. [Google Scholar]
- Suwal, S.; Jäväjä, P.; Salin, J. BIM Education: Implementing and Reviewing “OpeBIM”—BIM for Teachers. In Computing in Civil and Building Engineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 2151–2158. [Google Scholar]
- Jang, R.; Collinge, W. Improving BIM asset and facilities management processes: A Mechanical and Electrical (M&E) contractor perspective. J. Build. Eng. 2020, 32, 101540. [Google Scholar] [CrossRef]
- Pérez, J.J.; Senderos, M.; Leon, I. Implementing BIM in Architectural Graphic Expression Subjects in the First-Degree Courses. In Proceedings of the Congreso Internacional de Expresión Gráfica Arquitectónica, Cartagena, Spain, 2–4 June 2022; pp. 107–114. [Google Scholar] [CrossRef]
- Arayici, Y.; Aouad, G. Building information modelling (BIM) for construction lifecycle management. Constr. Build. Des. Mater. Tech. 2010, 2010, 99–118. [Google Scholar]
- Liao, L.; Teo, E.A.L. Managing critical drivers for building information modelling implementation in the Singapore construction industry: An organizational change perspective. Int. J. Constr. Manag. 2019, 19, 240–256. [Google Scholar] [CrossRef]
- Shields, P.M.; Tajalli, H. Intermediate Theory: The Missing Link in Successful Student Scholarship. J. Public Aff. Educ. 2006, 12, 313–334. [Google Scholar] [CrossRef]
- Christensen, C.M. The Ongoing Process of Building a Theory of Disruption. J. Prod. Innov. Manag. 2006, 23, 39–55. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Zayed, T. Exploring the value management critical success factors for sustainable residential building—A structural equation modelling approach. J. Clean. Prod. 2021, 293, 126115. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS (3. Baskı); Sage Publications: New York, NY, USA, 2009. [Google Scholar]
- Costello, A.B.; Osborne, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 10, 7. [Google Scholar]
- Robert, O.K.; Dansoh, A.; Kuragu, J.K.O. Reasons for adopting Public–Private Partnership (PPP) for construction projects in Ghana. Int. J. Constr. Manag. 2014, 14, 227–238. [Google Scholar] [CrossRef]
- Al-Mekhlafi, A.-B.; Isha, A.; Chileshe, N.; Abdulrab, M.; Saeed, A.; Kineber, A. Modelling the Relationship between the Nature of Work Factors and Driving Performance Mediating by Role of Fatigue. Int. J. Environ. Res. Public Health 2021, 18, 6752. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Zayed, T. Value management implementation barriers for sustainable building: A bibliometric analysis and partial least square structural equation modeling. Constr. Innov. 2021. ahead of print. [Google Scholar] [CrossRef]
- Amaratunga, D.; Kulatunga, U.; Liyanage, C.; Hui, E.C.; Zheng, X. Measuring customer satisfaction of FM service in housing sector. Facilities 2010, 28, 306–320. [Google Scholar] [CrossRef]
- Fotovatfard, A.; Heravi, G. Identifying Key Performance Indicators for Healthcare Facilities Maintenance. J. Build. Eng. 2021, 42, 102838. [Google Scholar] [CrossRef]
- Byrne, B.M. Multivariate Applications Series. In Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming; Routledge/Taylor & Francis Group: New York, NY, USA, 2010. [Google Scholar]
- Ringle, C.M.; Sarstedt, M.; Straub, D.W. Editor’s Comments: A Critical Look at the Use of PLS-SEM in “MIS Quarterly”. MIS Q. 2012, 36, 3–14. [Google Scholar] [CrossRef]
- Yuan, K.-H.; Wu, R.; Bentler, P.M. Ridge structural equation modelling with correlation matrices for ordinal and continuous data. Br. J. Math. Stat. Psychol. 2011, 64, 107–133. [Google Scholar] [CrossRef]
- Kineber, A.F.; Hamed, M.M. Exploring the Sustainable Delivery of Building Projects in Developing Countries: A PLS-SEM Approach. Sustainability 2022, 14, 15460. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Williams, L.J.; Cote, J.A.; Buckley, M.R. Lack of method variance in self-reported affect and perceptions at work: Reality or artifact? J. Appl. Psychol. 1989, 74, 462. [Google Scholar] [CrossRef]
- Strandholm, K.; Kumar, K.; Subramanian, R. Examining the interrelationships among perceived environmental change, strategic response, managerial characteristics, and organizational performance. J. Bus. Res. 2004, 57, 58–68. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; Organ, D.W. Self-Reports in Organizational Research: Problems and Prospects. J. Manag. 1986, 12, 531–544. [Google Scholar] [CrossRef]
- Oke, A.E.; Kineber, A.F.; Albukhari, I.; Dada, A.J. Modeling the robotics implementation barriers for construction projects in developing countries. Int. J. Build. Pathol. Adapt. 2021. ahead of print. [Google Scholar] [CrossRef]
- Al-Ashmori, Y.Y.; Othman, I.; Rahmawati, Y.; Amran, Y.H.M.; Sabah, S.H.A.; Rafindadi, A.D.; Mikić, M. BIM benefits and its influence on the BIM implementation in Malaysia. Ain Shams Eng. J. 2020, 11, 1013–1019. [Google Scholar] [CrossRef]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Babin, B.J.; Black, W.C. Multivariate Data Analysis: A Global Perspective; Pearson: Upper Saddle River, NJ, USA, 2010; Volume 7. [Google Scholar]
- MacKenzie, S.B.; Podsakoff, P.M. Common Method Bias in Marketing: Causes, Mechanisms, and Procedural Remedies. J. Retail. 2012, 88, 542–555. [Google Scholar] [CrossRef]
- Harman, H.H. Modern Factor Analysis; Univirsity of Chicago: Chicago, IL, USA, 1967. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: New York, NY, USA, 2016. [Google Scholar]
- Olanrewaju, O.I.; Kineber, A.F.; Chileshe, N.; Edwards, D.J. Modelling the relationship between Building Information Modelling (BIM) implementation barriers, usage and awareness on building project lifecycle. Build. Environ. 2021, 207, 108556. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Perry, R.H.; Charlotte, B.; Isabella, M.; Bob, C. SPSS Explained; Routledge: London, UK, 2004. [Google Scholar]
- Othman, I.; Kineber, A.; Oke, A.; Zayed, T.; Buniya, M. Barriers of value management implementation for building projects in Egyptian construction industry. Ain Shams Eng. J. 2020, 12, 21–30. [Google Scholar] [CrossRef]
- Amos, D.; Au-Yong, C.P.; Musa, Z.N. The mediating effects of finance on the performance of hospital facilities management services. J. Build. Eng. 2021, 34, 101899. [Google Scholar] [CrossRef]
- Shah, R.; Goldstein, S.M. Use of structural equation modeling in operations management research: Looking back and forward. J. Oper. Manag. 2006, 24, 148–169. [Google Scholar] [CrossRef]
- Shook, C.L.; Ketchen, D.J., Jr.; Hult, G.T.M.; Kacmar, K.M. An assessment of the use of structural equation modeling in strategic management research. Strateg. Manag. J. 2004, 25, 397–404. [Google Scholar] [CrossRef]
- Chin, W.W.; Newsted, P.R. Structural equation modeling analysis with small samples using partial least squares. Stat. Strateg. Small Sample Res. 1999, 1, 307–341. [Google Scholar]
- Hair, J.F., Jr.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. Int. J. Multivar. Data Anal. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- Chin, W.W. Commentary: Issues and opinion on structural equation modeling. MIS Quarterly. 1998, 22, 7–16. [Google Scholar]
- Chin, W. Issues and opinion on structural equation modeling management. Inf. Syst. Q. 1998, 22, 19–24. [Google Scholar]
- Adabre, M.A.; Chan, A.P.; Edwards, D.J.; Adinyira, E. Assessing critical risk factors (CRFs) to sustainable housing: The perspective of a sub-Saharan African country. J. Build. Eng. 2021, 41, 102385. [Google Scholar] [CrossRef]
- Manzoor, B.; Othman, I.; Gardezi, S.S.S.; Altan, H.; Abdalla, S.B. BIM-Based Research Framework for Sustainable Building Projects: A Strategy for Mitigating BIM Implementation Barriers. Appl. Sci. 2021, 11, 5397. [Google Scholar] [CrossRef]
- Ayinla, K.; Adamu, Z. Bridging the digital divide gap in BIM technology adoption. Eng. Constr. Arch. Manag. 2018, 25, 1398–1416. [Google Scholar] [CrossRef]
- Cao, D.; Li, H.; Wang, G.; Huang, T. Identifying and contextualising the motivations for BIM implementation in construction projects: An empirical study in China. Int. J. Proj. Manag. 2017, 35, 658–669. [Google Scholar] [CrossRef]
- Silva, M.J.F.; Salvado, F.; Couto, P.; e Azevedo, V. Roadmap Proposal for Implementing Building Information Modelling (BIM) in Portugal. Open J. Civ. Eng. 2016, 6, 475–481. [Google Scholar] [CrossRef] [Green Version]
S/N | Drivers for BIM | References |
---|---|---|
D1 | A strong comprehension of the BIM procurement process | [56,57,58] |
D2 | Create a BIM Technology for construction policy | [26,59] |
D3 | Encourage stakeholder cooperation in the building sector in Nigeria | [2,60] |
D4 | Encouragement should be given to aspiring software engineers | [61,62] |
D5 | Accept the BIM specifications for the supply chain for construction | [58,63] |
D6 | The software packages chosen should work together | [20,64] |
D7 | Provide continuous employee training about BIM | [65,66] |
D8 | More technical professionals should be encouraged | [67,68] |
D9 | Adequate propagation of BIM knowledge to the construction firms in Nigeria | [26,27] |
D10 | Developing the construction industry’s BIM perspective | [69,70] |
D11 | Projects are carried out in an integrated manner | [71,72] |
D12 | Strengthening the legal environment for BIM adoption in the construction industry | [73,74] |
D13 | Using cloud computing to develop locally optimized software and standards | [75,76] |
D14 | Use of supply chain process and advanced procurement for designs | [77,78] |
D15 | Use of a scientific approach | [79,80] |
D16 | Regulation of BIM usage by the government | [81,82] |
D17 | Increase cooperation between the public and commercial sectors in implementing BIM | [83,84] |
D18 | Promote stakeholder cooperation | [39,40] |
D19 | Supply chain and BIM may work together if the BIM elements are correctly integrated. | [85,86] |
D20 | People management is key to implementing BIM | [87,88] |
D21 | Standardize the BIM process and define the procedure for its utilization | [89,90] |
D22 | Organize adequate seminars for proper understanding and interpretation of BIM | [26,91] |
D23 | Certain training to implement the latest BIM equipment | [92,93] |
D24 | Commitment through the investment of BIM | [94,95] |
D25 | Identification of the type of group and the software to use | [96,97] |
D26 | Given Proper training for BIM users | [92,93] |
D27 | Align manufacturers of BIM applications to simplify their concept | [94,98] |
D28 | Consistent publication of practices and skills necessary for BIM adoption strategy adoption | [26,27] |
D29 | The evolution of BIM standards on a national and international scale | [98,99] |
D30 | BIM accreditation | [99,100] |
D31 | Instruction and the presentation of a rationale for implementing BIM | [26,101] |
D32 | Established a strategic initiative to drive transformation in the construction industry by the use of information modeling | [102,103] |
Drivers | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
D1 | 0.762 | |||||||
D2 * | 0.379 | |||||||
D3 | ||||||||
D4 | 0.539 | |||||||
D5 | 0.753 | |||||||
D6 | 0.594 | |||||||
D7 | 0.545 | |||||||
D8 | 0.834 | |||||||
D9 | 0.644 | |||||||
D10 | 0.602 | |||||||
D11 | 0.626 | |||||||
D12 | 0.590 | |||||||
D13 | ||||||||
D14 | ||||||||
D15 | 0.667 | |||||||
D16 * | 0.351 | |||||||
D17 | 0.581 | |||||||
D18 | 0.565 | |||||||
D19 | 0.597 | |||||||
D20 | 0.673 | |||||||
D21 * | 0.353 | |||||||
D22 | ||||||||
D23 | 0.614 | |||||||
D24 | ||||||||
D25 | 0.633 | |||||||
D26 | ||||||||
D27 | 0.757 | |||||||
D28 | 0.575 | |||||||
D29 | 0.532 | |||||||
D30 | 0.639 | |||||||
D31 * | 0.394 | |||||||
D32 | 0.500 |
Constructs | Cronbach’s Alpha | Composite Reliability | Average Variance Extracted (AVE) |
---|---|---|---|
Training | 0.770 | 0.737 | 0.584 |
Knowledge | 0.795 | 0.828 | 0.617 |
Legalization | 0.757 | 0.763 | 0.526 |
Management | 0.755 | 0.812 | 0.591 |
Software | 0.743 | 0.806 | 0.581 |
Standards | 0.796 | 0.860 | 0.551 |
Constructs | Training | Knowledge | Legalization | Management | Software | Standards |
---|---|---|---|---|---|---|
Training | 0.696 | |||||
Knowledge | 0.586 | 0.785 | ||||
Legalization | 0.462 | 0.301 | 0.725 | |||
Management | 0.521 | 0.344 | 0.501 | 0.769 | ||
Software | 0.511 | 0.351 | 0.318 | 0.400 | 0.762 | |
Standards | 0.610 | 0.443 | 0.448 | 0.572 | 0.537 | 0.742 |
Constructs | Training | Knowledge | Legalization | Management | Software | Standards |
---|---|---|---|---|---|---|
Training | ||||||
Knowledge | 0.800 | |||||
Legalization | 0.754 | 0.470 | ||||
Management | 0.729 | 0.496 | 0.806 | |||
Software | 0.710 | 0.499 | 0.488 | 0.586 | ||
Standards | 0.784 | 0.580 | 0.622 | 0.783 | 0.739 |
Paths | B | SD | T Statistics (|O/STDEV|) | p Values |
---|---|---|---|---|
Training -> BIM Implementation Drivers | 0.187 | 0.027 | 7.010 | 0 |
Knowledge -> BIM Implementation Drivers | 0.190 | 0.042 | 4.565 | 0 |
Legalization -> BIM Implementation Drivers | 0.158 | 0.038 | 4.186 | 0 |
Management -> BIM Implementation Drivers | 0.210 | 0.046 | 4.587 | 0 |
Software -> BIM Implementation Drivers | 0.190 | 0.033 | 5.743 | 0 |
Standards -> BIM Implementation Drivers | 0.383 | 0.044 | 8.674 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Famakin, I.O.; Othman, I.; Kineber, A.F.; Oke, A.E.; Olanrewaju, O.I.; Hamed, M.M.; Olayemi, T.M. Building Information Modeling Execution Drivers for Sustainable Building Developments. Sustainability 2023, 15, 3445. https://doi.org/10.3390/su15043445
Famakin IO, Othman I, Kineber AF, Oke AE, Olanrewaju OI, Hamed MM, Olayemi TM. Building Information Modeling Execution Drivers for Sustainable Building Developments. Sustainability. 2023; 15(4):3445. https://doi.org/10.3390/su15043445
Chicago/Turabian StyleFamakin, Ibukun O., Idris Othman, Ahmed Farouk Kineber, Ayodeji Emmanuel Oke, Oludolapo Ibrahim Olanrewaju, Mohammed Magdy Hamed, and Taiwo Matthew Olayemi. 2023. "Building Information Modeling Execution Drivers for Sustainable Building Developments" Sustainability 15, no. 4: 3445. https://doi.org/10.3390/su15043445
APA StyleFamakin, I. O., Othman, I., Kineber, A. F., Oke, A. E., Olanrewaju, O. I., Hamed, M. M., & Olayemi, T. M. (2023). Building Information Modeling Execution Drivers for Sustainable Building Developments. Sustainability, 15(4), 3445. https://doi.org/10.3390/su15043445