Expansion of Geological CO2 Storage Capacity in a Closed Aquifer by Simultaneous Brine Production with CO2 Injection
Abstract
:1. Introduction
2. Background
2.1. Storage Capacity
- Field specific storage capacity;
- Optimization tool for the development design and operation plan;
- Sensitivity analysis on the uncertainties;
- Fate of CO2 plume over time.
2.2. Injection Strategy and Pressure Management
- Passive extraction;
- Simultaneous brine production;
- Pre-injection brine production.
3. Evaluation Method
3.1. Geological Description of the Target Aquifer
3.2. Storage Resources of This Research
3.2.1. Pressure Threshold
3.2.2. Sequestration Mechanism
- Structural and stratigraphic trap;
- Residual saturation trap;
- Dissolution trap;
- Geochemical trap.
3.2.3. Timescale
3.3. Model Description
3.4. CO2 Injection Scenarios
4. Results and Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNFCCC. Paris Agreement. In Proceedings of the Conference of the Parties COP 21, Paris, France, 30 November–12 December 2015. [Google Scholar]
- Cui, G.; Hu, Z.; Ning, F.; Jiang, S.; Wang, R. A Review of Salt Precipitation during CO2 Injection into Saline Aquifers and Its Potential Impact on Carbon Sequestration Projects in China. Fuel 2023, 334, 126615. [Google Scholar] [CrossRef]
- Espinoza, D.N.; Santamarina, J.C. CO2 breakthrough—Caprock Sealing Efficiency and Integrity for Carbon Geological Storage. Int. J. Greenh. Gas Control 2017, 66, 218–229. [Google Scholar] [CrossRef]
- Goertz-Allmann, B.P.; Kühn, D.; Oye, V.; Bohloli, B.; Aker, E. Combining Microseismic and Geomechanical Observations to Interpret Storage Integrity at the In Salah CCS Site. Geophys. J. Int. 2014, 198, 447–461. [Google Scholar] [CrossRef]
- Ellsworth, W.L.; Giardini, D.; Townend, J.; Ge, S.; Shimamoto, T. Triggering of the Pohang, Korea, Earthquake (M w 5.5) by Enhanced Geothermal System Stimulation. Seismol. Res. Lett. 2019, 90, 1844–1858. [Google Scholar] [CrossRef]
- Frailey, S.; Koperna, G.; Tucker, O. The CO2 Storage Resources Management System (SRMS): Toward a Common Approach to Classifying, Categorizing, and Quantifying Storage Resources. In Proceedings of the 14th Greenhouse Gas Control Technologies Conference, Melbourne, Australia, 21–26 October 2018. [Google Scholar]
- Kumar, A.; Ozah, R.; Noh, M.; Pope, G.A.; Bryant, S.; Sepehrnoori, K.; Lake, L.W. Reservoir Simulation of CO2 Storage in Deep Saline Aquifers. SPE J. 2005, 10, 336–348. [Google Scholar] [CrossRef]
- Bouquet, S.; Gendrin, A.; Labregere, D.; Le Nir, I.; Dance, T.; Xu, J.; Cinar, Y. CO2CRC Otway Project, Australia: Parameters Influencing Dynamic Modeling of CO2 Injection into a Depleted Gas Reservoir. In Proceedings of the SPE Offshore Europe Oil and Gas Conference and Exhibition, Aberdeen, UK, 8–11 September 2009. [Google Scholar]
- Bergmo, P.E.S.; Grimstad, A.-A.; Lindeberg, E. Simultaneous CO2 Injection and Water Production to Optimise Aquifer Storage Capacity. Int. J. Greenh. Gas Control 2011, 5, 555–564. [Google Scholar] [CrossRef]
- Buscheck, C.A.; Sun, Y.; Chen, M.; Hao, Y.; Wolery, T.J.; Bourcier, W.L.; Court, B.; Celia, M.A.; Friedmann, S.J.; Aines, R.D. Active CO2 Reservoir Management for Carbon Storage: Analysis of Operational Strategies to Relieve Pressure Buildup and Improve Injectivity. Int. J. Greenh. Gas Control 2012, 6, 230–245. [Google Scholar] [CrossRef]
- Court, B.; Bandilla, K.W.; Celia, M.A.; Buscheck, T.A.; Nordbotten, J.M.; Dobossy, M.; Janzen, A. Initial Evaluation of Advantageous Synergies Associated with Simultaneous Brine Production and CO2 Geological Sequestration. Int. J. Greenh. Gas Control 2012, 8, 90–100. [Google Scholar] [CrossRef]
- Dempsey, D.; Kelkar, S.; Pawar, R. Passive Injection: A Strategy for Mitigating Reservoir Pressurization, Induced Seismicity and Brine Migration in Geologic CO2 Storage. Int. J. Greenh. Gas Control 2014, 28, 96–113. [Google Scholar] [CrossRef]
- Buscheck, T.A.; Bielicki, J.M.; White, J.A.; Sun, Y.; Hao, Y.; Bourcier, W.L.; Carroll, S.A.; Aines, R.D. Managing Geologic CO2 Storage with Pre-injection Brine Production in Tandem Reservoirs. Energy Procedia 2017, 114, 4757–4764. [Google Scholar] [CrossRef]
- Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burress, R.; Christensen, N.; Holloway, S.; Mathiassen, O. Estimation of CO2 Storage Capacity in Geological Media; Carbon Sequestration Leadership Forum (CSLF): Washington, DC, USA, 2007. [Google Scholar]
- National Energy Technology Laboratory. Carbon Sequestration Atlas of the United States and Canada; US Department of Energy: Washington, DC, USA, 2008. [Google Scholar]
- Gorecki, C.; Sorensen, J.; Bremer, J.; Ayash, S.; Knudsen, D.; Holubnyak, Y.; Smith, S.; Steadman, E.; Harju, J. Development of Storage Coefficients for CO2 Storage in Deep Saline Formations; IEA Greenhouse Gas R&D Programme (IEA GHG): Cheltenham, UK, 2009. [Google Scholar]
- Brennan, S.T.; Merrill, M.D.; Buursink, M.L.; Warwick, P.D.; Cahan, S.M.; Cook, T.A.; Corum, M.D.; Craddock, W.H.; DeVera, C.A. National Assessment of Geologic Carbon Dioxide Storage Resources: Methodology Implementation; Blondes, M.S., Ed.; US Department of the Interior, US Geological Survey: Washington, DC, USA, 2013. [Google Scholar]
- Michael, K.; Golab, A.; Shulakova, V.; Ennis-King, J.; Allinson, G.; Sharma, S.; Aiken, T. Geological Storage of CO2 in Saline Aquifers—A Review of the Experience from Existing Storage Operations. Int. J. Greenh. Gas Control 2010, 4, 659–667. [Google Scholar] [CrossRef]
- Hosa, A.; Esentia, M.; Stewart, J.; Haszeldine, S. Injection of CO2 into Saline Formations: Benchmarking Worldwide Projects. Chem. Eng. Res. and Design 2011, 89, 1855–1864. [Google Scholar] [CrossRef]
- Kelemen, P.; Benson, S.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Front. Clim. 2019, 1, 9. [Google Scholar] [CrossRef]
- Global CCS Institute. The Global Status of CCS: 2021; Global CCS Institute: Melbourne, Australia, 2021. [Google Scholar]
- Le Guenan, T.; Rohmer, J. Corrective Measures Based on Pressure Control Strategies for CO2 Geological Storage in Deep Aquifers. Int. J. Greenh. Gas Control 2011, 5, 571–578. [Google Scholar] [CrossRef]
- Cameron, D.A.; Durlofsky, L.J. Optimization of Well Placement, CO2 Injection Rates, and Brine Cycling for Geological Carbon Sequestration. Int. J. Greenh. Gas Control 2012, 10, 100–112. [Google Scholar] [CrossRef]
- Gorecki, C.D.; Ayash, S.C.; Liu, G.; Braunberger, J.R.; Dotzenrod, N.W. A Comparison of Volumetric and Dynamic CO2 Storage Resource and Efficiency in Deep Saline Formations. Int. J. Greenh. Gas Control 2015, 42, 213–225. [Google Scholar] [CrossRef]
- Trupp, M.; Ryan, S.; Mendoza, I.B.; Leon, D.; Scoby-Smith, L. Developing the World’s Largest CO2 Injection System—A History of the Gorgon Carbon Dioxide Injection System. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 16 March 2021. [Google Scholar]
- Song, J.; Zhang, D. Comprehensive Review of Caprock-sealing Mechanisms for Geologic Carbon Sequestration. Environ. Sci. Technol. 2013, 47, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yin, S.-X. Fracture Gradient Prediction: An Overview and an Improved Method. Pet. Sci. 2017, 14, 720–730. [Google Scholar] [CrossRef]
- Matthews, W.R.; Kelly, J. How To Predict Formation Pressure and Fracture Gradient. Oil Gas J. 1967, 60, 92–98. [Google Scholar]
- Masoudi, R.; Abd Jalil, M.A.; Tan, C.P.; Press, D.; Keller, J.; Anis, L.; Darman, N.; Othman, M. Simulation of Chemical Interaction of Injected CO2 and Carbonic Acid Based on Laboratory Tests in 3D Coupled Geomechanical Modelling. In Proceedings of the International Petroleum Technology Conference, Beijing, China, 26 March 2013. [Google Scholar]
- Gai, X.; Dean, R.H.; Wheeler, M.F.; Liu, R. Coupled Geomechanical and Reservoir Modeling on Parallel Computers. In Proceedings of the SPE Reservoir Simulation Symposium, Houston, TX, USA, 3 February 2003. [Google Scholar]
- Bachu, S. Review of CO2 Storage Efficiency in Deep Saline Aquifers. Int. J. Greenh. Gas Control 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Schlumberger Information Solutions. Eclipse Technical Description; Schlumberger: Houston, TX, USA, 2018. [Google Scholar]
- Spycher, N.; Pruess, K. A Phase-partitioning Model for CO2-brine Mixtures at Elevated Temperature and Pressures. Transp. Porous Media 2009, 82, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.; Tracy, G. An Improved Method for Calculating Water Influx. Trans. AIME 1960, 219, 415–417. [Google Scholar] [CrossRef]
Phase | CO2 rich, H2O rich |
Fluid component | CO2, H2O, NaCl |
Mutual solubility | Phase-partitioning [33] |
Molecular diffusion factor | (Unit: m2/day) |
• Water phase | H2O: 0.0005/CO2: 0.001/NaCl: 0.005 |
• Gas phase | H2O: 0.001/CO2: 0.001 |
Model dimension (i, j, k) | (152, 153, 139) |
Porosity (max, mean, min) | (34%, 24%, 12%) |
Permeability (max, mean, min) | (7794 md, 506 md, 3 md) |
Vertical/horizontal ratio | 0.31 |
Initial pressure | 17.4 MPa @1746 m |
Initial temperature | 89 °C |
Gas residual saturation | 30% |
Salinity | 8% |
Analytic model | Carter–Tracy |
Radius numerical aquifer | 3800 m |
Influence function | 2 |
Permeability | 300 md |
Porosity | 29% |
Case | Injector | Producer | Description |
---|---|---|---|
CASE 1 | Lower | N/A | Injector below substructure |
CASE 2 | Upper | N/A | Injector right below cap rock of the main structure |
CASE 3 | Upper | Injector | Pre-injection brine production for 3 years |
CASE 4 | Upper | Lower | Producer in opposite to the migration direction |
CASE 5 | Upper | Lower | Producer in the migration pathway |
CASE 6 | Upper | Lower | Producer away from the migration pathway |
Case | Injection Time (year) | Injected Mass (Mt CO2) | CO2 Capacity (Mt CO2) |
---|---|---|---|
CASE 1 | 8.22 | 16.45 | 10.13 |
CASE 2 | 6.42 | 12.83 | 9.79 |
CASE 3 | 8.39 | 16.79 | 11.87 |
CASE 4 | 9.47 | 18.93 | 12.92 |
CASE 5 | 9.38 | 18.76 | 12.77 |
CASE 6 | 13.22 | 26.43 | 16.44 |
Region | Mobile (Mt CO2) | Residual (Mt CO2) | Dissolution (Mt CO2) | |
---|---|---|---|---|
CASE 1 | Main structure | 3.38 | 1.51 | 0.49 |
Substructure | 5.25 | 4.14 | 1.65 | |
Beyond spill | 0.01 | 0.02 | 0.01 | |
CASE 2 | Main structure | 7.37 | 2.24 | 0.60 |
Substructure | 0.18 | 1.12 | 0.55 | |
Beyond spill | 0.25 | 0.36 | 0.17 | |
CASE 3 | Main structure | 9.02 | 2.39 | 0.60 |
Substructure | 0.52 | 1.77 | 0.83 | |
Beyond spill | 0.65 | 0.70 | 0.32 | |
CASE 4 | Main structure | 9.57 | 2.37 | 0.57 |
Substructure | 0.98 | 2.27 | 1.03 | |
Beyond spill | 0.90 | 0.86 | 0.40 | |
CASE 5 | Main structure | 9.47 | 2.37 | 0.57 |
Substructure | 0.93 | 2.21 | 1.01 | |
Beyond spill | 0.92 | 0.88 | 0.41 | |
CASE 6 | Main structure | 10.98 | 2.42 | 0.54 |
Substructure | 3.04 | 3.65 | 1.52 | |
Beyond spill | 2.17 | 1.45 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S. Expansion of Geological CO2 Storage Capacity in a Closed Aquifer by Simultaneous Brine Production with CO2 Injection. Sustainability 2023, 15, 3499. https://doi.org/10.3390/su15043499
Jung S. Expansion of Geological CO2 Storage Capacity in a Closed Aquifer by Simultaneous Brine Production with CO2 Injection. Sustainability. 2023; 15(4):3499. https://doi.org/10.3390/su15043499
Chicago/Turabian StyleJung, Seungpil. 2023. "Expansion of Geological CO2 Storage Capacity in a Closed Aquifer by Simultaneous Brine Production with CO2 Injection" Sustainability 15, no. 4: 3499. https://doi.org/10.3390/su15043499
APA StyleJung, S. (2023). Expansion of Geological CO2 Storage Capacity in a Closed Aquifer by Simultaneous Brine Production with CO2 Injection. Sustainability, 15(4), 3499. https://doi.org/10.3390/su15043499