Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Storm Water Management Model
Options or Parameters | Value 1 |
---|---|
Infiltration model | Horton [16,17,18] |
Routing model | Dynwave [6,19,20,21,22,23,24,25,26,27] |
Reporting time step (minute) | 1 |
Routing time step (second) | 10 |
Catchment slope (%) | 0.5 |
Imperviousness (%) | 65.0 |
Percent of the impervious area with no depression storage (%) | 35.0 |
Depression storage in impervious areas (mm) | 2.1 |
Depression storage in pervious areas (mm) | 3.6 |
Conduit roughness (s/m1/3) | 0.013 |
Surface roughness for overland flow in impervious area (s/m1/3) | 0.013 |
Surface roughness for overland flow in pervious area (s/m1/3) | 0.150 |
Minimum infiltration rate on Horton curve (mm/h) | 3.56 |
Maximum infiltration rate on Horton curve (mm/h) | 25.40 |
Decay rate constant of Horton curve (1/h) | 7 |
Drying time (day) | 7 |
3.2. Runoff Module of Distributed Time Variant Gain Model
3.3. Coupling Model
3.4. Performance Criteria
4. Results and Discussion
4.1. Simulation of Storm Water Management Model
4.2. Performance of Distributed Time Variant Gain Model
4.3. Catchment Runoff and Outflow Simulations
4.4. Performance of Coupling Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y. Study on Ideal Way of Water Environment Improvement by China’s Sponge City Construction. Doctoral Thesis, Nihon University, Tokyo, Japan, 2017. [Google Scholar]
- Thu Thuy, N.; Huu Hao, N.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a specific urban water management—Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef]
- Fang, C.; Cui, X.; Li, G.; Bao, C.; Wang, Z.; Ma, H.; Sun, S.; Liu, H.; Luo, K.; Ren, Y. Modeling regional sustainable development scenarios using the Urbanization and Eco-environment Coupler: Case study of Beijing Tianjin-Hebei urban agglomeration, China. Sci. Total Environ. 2019, 689, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Mao, H.; Li, J.; Sun, S. Spatial simulation of the ecological processes of stormwater for sponge cities. J. Environ. Manag. 2019, 232, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Yin, D.; Fang, X.; Li, J. Factors Affecting Runoff Retention Performance of Extensive Green Roofs. Water 2018, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Zakizadeh, F.; Moghaddam Nia, A.; Salajegheh, A.; Sanudo-Fontaneda, L.A.; Alamdari, N. Efficient Urban Runoff Quantity and Quality Modelling Using SWMM Model and Field Data in an Urban Watershed of Tehran Metropolis. Sustainability 2022, 14, 1086. [Google Scholar] [CrossRef]
- Rossman, L.A. SWMM-CAT User’s Guide. 2014. Available online: http://nepis.epa.gov/Adobe/PDF/P100KY8L.PDF (accessed on 16 January 2023).
- Palla, A.; Gnecco, I. Hydrologic modeling of Low Impact Development systems at the urban catchment scale. J. Hydrol. 2015, 528, 361–368. [Google Scholar] [CrossRef]
- Song, Z.H.; Xia, J.; Wang, G.S.; She, D.X.; Hu, C.; Hong, S. Regionalization of hydrological model parameters using gradient boosting machine. Hydrol. Earth Syst. Sci. 2022, 26, 505–524. [Google Scholar] [CrossRef]
- Hu, C.; Xia, J.; She, D.; Song, Z.; Zhang, Y.; Hong, S. A new urban hydrological model considering various land covers for flood simulation. J. Hydrol. 2021, 603, 126833. [Google Scholar] [CrossRef]
- Liu, Z. Coupled Study of Distributed Time Variant Gain Model and Storm Water Management Model. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2022. [Google Scholar]
- Yang, Y.; Li, J.; Huang, Q.; Xia, J.; Li, J.; Liu, D.; Tan, Q. Performance assessment of sponge city infrastructure on stormwater outflows using isochrone and SWMM models. J. Hydrol. 2021, 597, 126151. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Q.; Yang, Y.Y.; Liu, D.F.; Wei, X.T. Bi-objective algorithm based on NSGA-II framework to optimize reservoirs operation. J. Hydrol. 2020, 585, 124830. [Google Scholar] [CrossRef]
- Riaño-Briceño, G.; Barreiro-Gomez, J.; Ramirez-Jaime, A.; Quijano, N.; Ocampo-Martinez, C. MatSWMM—An open-source toolbox for designing real-time control of urban drainage systems. Environ. Model. Softw. 2016, 83, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Li, D.; Wang, X.; Guo, K.; Tong, y.; Ma, Y. Simulation of the effect of pre-conditioning of LID measures on runoff regulation at the building plot scale. Adv. Water Sci. 2019, 30, 45–55. [Google Scholar] [CrossRef]
- Bai, T.; Mayer, A.L.; Shuster, W.D.; Tian, G. The Hydrologic Role of Urban Green Space in Mitigating Flooding (Luohe, China). Sustainability 2018, 10, 3584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Jiang, J.; Gu, X.; Zhao, Y.; Ni, F. Sustainable Urban Street Comprising Permeable Pavement and Bioretention Facilities: A Practice. Sustainability 2020, 12, 8288. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Zhou, J.; Yan, L.; Liu, Z.; Pang, Y.; Zhang, H.; Huang, T. Simulation and Evaluation of Rainwater Runoff Control, Collection, and Utilization for Sponge City Reconstruction in an Urban Residential Community. Sustainability 2022, 14, 12372. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Li, Y.; Ding, W. Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks. Sustainability 2017, 9, 397. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, M.L.R.; Zischg, J.; Rau, S.; Sitzmann, M.; Rauch, W.; Kleidorfer, M. Modeling the Effects of Introducing Low Impact Development in a Tropical City: A Case Study from Joinville, Brazil. Sustainability 2018, 10, 728. [Google Scholar] [CrossRef] [Green Version]
- Mora-Melia, D.; Lopez-Aburto, C.S.; Ballesteros-Perez, P.; Munoz-Velasco, P. Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile. Sustainability 2018, 10, 1130. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kang, T.; Sun, D.; Park, J.-J. Enhancing an Analysis Method of Compound Flooding in Coastal Areas by Linking Flow Simulation Models of Coasts and Watershed. Sustainability 2020, 12, 6572. [Google Scholar] [CrossRef]
- Barbaro, G.; Miguez, M.G.; de Sousa, M.M.; Ribeiro da Cruz Franco, A.B.; Canedo de Magalhaes, P.M.; Foti, G.; Valadao, M.R.; Occhiuto, I. Innovations in Best Practices: Approaches to Managing Urban Areas and Reducing Flood Risk in Reggio Calabria (Italy). Sustainability 2021, 13, 3463. [Google Scholar] [CrossRef]
- de Farias Mesquita, J.B.; Lima Neto, I.E. Coupling Hydrological and Hydrodynamic Models for Assessing the Impact of Water Pollution on Lake Evaporation. Sustainability 2022, 14, 13465. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, M.; Min, J.-H.; Kim, J.; Lee, J.; Jang, H.; Na, E.H. Evaluation of SWMM-LID Modeling Applicability Considering Regional Characteristics for Optimal Management of Non-Point Pollutant Sources. Sustainability 2022, 14, 14662. [Google Scholar] [CrossRef]
- Liu, B.; Xu, C.; Yang, J.; Lin, S.; Wang, X. Effect of Land Use and Drainage System Changes on Urban Flood Spatial Distribution in Handan City: A Case Study. Sustainability 2022, 14, 14610. [Google Scholar] [CrossRef]
- Quichimbo-Miguitama, F.; Matamoros, D.; Jimenez, L.; Quichimbo-Miguitama, P. Influence of Low-Impact Development in Flood Control: A Case Study of the Febres Cordero Stormwater System of Guayaquil (Ecuador). Sustainability 2022, 14, 7109. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Huang, Q.; Xia, J.; Li, J. Surrogate-based multiobjective optimization to rapidly size low impact development practices for outflow capture. J. Hydrol. 2023, 616, 128848. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model Reference Manual (Volume I—Hydrology). 2016. Available online: http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100NYRA.txt (accessed on 16 January 2023).
- Rossman, L.A. Storm Water Management Model User’s Manual, Version 5.1 ed. 2015. Available online: https://www.epa.gov/water-research/storm-water-management-model-swmm-version-51-users-manual (accessed on 16 January 2023).
- Li, X.; Wei, Y.; Li, F. Optimality of antecedent precipitation index and its application. J. Hydrol. 2021, 595, 126027. [Google Scholar] [CrossRef]
- Rasheed, Z.; Aravamudan, A.; Gorji Sefidmazgi, A.; Anagnostopoulos, G.C.; Nikolopoulos, E.I. Advancing flood warning procedures in ungauged basins with machine learning. J. Hydrol. 2022, 609, 127736. [Google Scholar] [CrossRef]
- Fedora, M.A.; Beschta, R.L. Storm runoff simulation using an antecedent precipitation index (API) model. J. Hydrol. 1989, 112, 121–133. [Google Scholar] [CrossRef]
- Xu, S.; Chen, Y.; Zhang, Y.; Chen, L.; Sun, H.; Liu, J. Developing a Framework for Urban Flood Modeling in Data-poor Regions. J. Hydrol. 2022, 617, 128985. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Xu, B.; Li, C.; Liu, Y.; Yu, F. A WRF/WRF-Hydro coupling system with an improved structure for rainfall-runoff simulation with mixed runoff generation mechanism. J. Hydrol. 2022, 612, 128049. [Google Scholar] [CrossRef]
- Luan, G.; Hou, J.; Yang, L.; Wang, T.; Pan, Z.; Li, D.; Gao, X.; Fan, C. A High-resolution Comprehensive Water Quality Model Based on GPU Acceleration Techniques. J. Hydrol. 2022, 617, 128814. [Google Scholar] [CrossRef]
- Ichiba, A.; Gires, A.; Tchiguirinskaia, I.; Schertzer, D.; Bompard, P.; Ten Veldhuis, M.C. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model. Hydrol. Earth Syst. Sci. 2018, 22, 331–350. [Google Scholar] [CrossRef] [Green Version]
- Avellaneda, P.M.; Jefferson, A.J.; Grieser, J.M.; Bush, S.A. Simulation of the cumulative hydrological response to green infrastructure. Water Resour. Res. 2017, 53, 3087–3101. [Google Scholar] [CrossRef]
- Brunetti, G.; Šimůnek, J.; Piro, P. A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement. J. Hydrol. 2016, 540, 1146–1161. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Mo, S.; Yang, Y.; Liu, D. Optimization of the proportion of LID facilities deployment in sponge cities based on NSGA-II algorithm. Water Wastewater Eng. 2021, 57, 475–481. [Google Scholar] [CrossRef]
- Diem, J.E.; Pangle, L.A.; Milligan, R.A.; Adams, E.A. How much water is stolen by sewers? Estimating watershed-level inflow and infiltration throughout a metropolitan area. J. Hydrol. 2022, 614, 128629. [Google Scholar] [CrossRef]
- Zhang, K.; Parolari, A.J. Impact of stormwater infiltration on rainfall-derived inflow and infiltration: A physically based surface–subsurface urban hydrologic model. J. Hydrol. 2022, 610, 127938. [Google Scholar] [CrossRef]
- Xie, M.; Cheng, Y.; Dong, Z. Study on Multi-Objective Optimization of Sponge Facilities Combination at Urban Block Level: A Residential Complex Case Study in Nanjing, China. Water 2022, 14, 3292. [Google Scholar] [CrossRef]
- Hassani, M.R.; Niksokhan, M.H.; Janbehsarayi, S.F.M.; Nikoo, M.R. Multi-objective robust decision-making for LIDs implementation under climatic change. J. Hydrol. 2023, 617, 128954. [Google Scholar] [CrossRef]
Storm Event Name | Return Period (Year) | Duration (min) | Time-to-Peak Coefficient | Depth (mm) | Mean Intensity (mm/min) | Usage |
---|---|---|---|---|---|---|
Chicago-1 1 | 1 | 120 | 0.35 | 20.67 | 0.17 | Calibrate DTVGM-SWMM |
Chicago-2 | 2 | 120 | 0.35 | 27.92 | 0.23 | Validate DTVGM-SWMM |
Event-20170820 2 | n/a | 96 | 0.57 | 13.40 | 0.14 | Calibrate SWMM and Validate DTVGM-SWMM |
Event-20170909 | n/a | 968 | 0.47 | 16.00 | 0.02 | Calibrate SWMM and Validate DTVGM-SWMM |
Event-20170916 | n/a | 771 | 0.36 | 11.40 | 0.01 | Calibrate SWMM |
Variable | Range of Variation | Calibrated Value | |||
---|---|---|---|---|---|
Average | Median | Minimum | Maximum | ||
g1 | [−1, 1] | −0.241 | −0.281 | −1.000 | −0.004 |
g2 | [0, 2] | 1.326 | 1.575 | 0.000 | 2.000 |
g3 | [0, 1] | 0.169 | 0.138 | 0.078 | 0.583 |
K | [0, 100] | 62.469 | 61.906 | 2.619 | 100.000 |
Storm | Chicago-1 | Chicago-2 | Event-20170820 | Event-20170909 |
---|---|---|---|---|
Precipitation (mm) | 20.67 | 27.92 | 13.40 | 16.00 |
SWMM model | ||||
Runoff depth (mm) | 2.41 | 4.07 | 1.06 | 2.75 |
Outflow depth (mm) | 2.45 | 4.12 | 1.08 | 2.65 |
Peak runoff rate (m3/s) | 10.90 | 23.54 | 1.99 | 8.72 |
Peak outflow rate (m3/s) | 3.62 | 7.76 | 0.98 | 3.72 |
DTVGM-SWMM model | ||||
Runoff depth (mm) | 2.53 | 4.67 | 1.27 | 2.54 |
Outflow depth (mm) | 2.47 | 4.53 | 1.22 | 2.45 |
Peak runoff rate (m3/s) | 7.23 | 24.65 | 3.07 | 5.92 |
Peak outflow rate (m3/s) | 3.50 | 10.63 | 1.12 | 2.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhang, W.; Liu, Z.; Liu, D.; Huang, Q.; Xia, J. Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City. Sustainability 2023, 15, 3804. https://doi.org/10.3390/su15043804
Yang Y, Zhang W, Liu Z, Liu D, Huang Q, Xia J. Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City. Sustainability. 2023; 15(4):3804. https://doi.org/10.3390/su15043804
Chicago/Turabian StyleYang, Yuanyuan, Wenhui Zhang, Zhe Liu, Dengfeng Liu, Qiang Huang, and Jun Xia. 2023. "Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City" Sustainability 15, no. 4: 3804. https://doi.org/10.3390/su15043804
APA StyleYang, Y., Zhang, W., Liu, Z., Liu, D., Huang, Q., & Xia, J. (2023). Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City. Sustainability, 15(4), 3804. https://doi.org/10.3390/su15043804