Evaluation of Environmental Contamination by Toxic Elements in Agricultural Soils and Their Health Risks in the City of Arequipa, Peru
Abstract
:1. Introduction
2. Methodology
2.1. Description of the Study Area
2.2. Method of Analysis
2.3. Toxicity Evaluation
2.4. Human Health Risk Assessment
2.5. Environmental Pollution Assessment
2.6. Data Processing
3. Results
3.1. Enrichment Factor (EF)
3.2. Geo-Accumulation Index (Igeo)
3.3. Ecological Risk Index (RI)
3.4. Health Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, C.H.; David, D.J. The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Sci. 1976, 121, 86–93. [Google Scholar] [CrossRef]
- Delgado-Zegarra, J.; Alvarez-Risco, A.; Yáñez, J.A. Indiscriminate use of pesticides and lack of sanitary control in the domestic market in PeruUso indiscriminado de pesticidas e falta de controle sanitário do mercado interno no Peru. Rev. Panam. Salud. Publica 2018, 42, e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkshoorn, W.; van Broekhoven, W.; Lampe, J. Phytotoxicity of zinc, nickel, cadmium, lead, copper and chromium in three pasture plant species supplied with graduated amounts from the soil. Neth. J. Agric. Sci. 1979, 27, 241–253. [Google Scholar] [CrossRef]
- Olatunde, K.A.; Sosanya, P.A.; Bada, B.S.; Ojekunle, Z.O.; Abdussalaam, S.A. Distribution and ecological risk assessment of heavy metals in soils around a major cement factory, Ibese, Nigeria. Sci. Afr. 2020, 9, e00496. [Google Scholar] [CrossRef]
- Underwood, E.J. Trace Elements in Human and Animal Nutrition, 3rd ed.; Academic Press, Inc.: New York, NY, USA, 1971. [Google Scholar]
- Birke, M.; Rauch, U. Geochemical investigations in the Berlin metropolitan area. Z. Angew. Geol. 1997, 43, 58–65. [Google Scholar]
- Paterson, E.; Sanka, M.; Clark, L. Urban soils as pollutant sinks—A case study from Aberdeen, Scotland. Appl. Geochem. 1996, 11, 129–131. [Google Scholar] [CrossRef]
- Poggio, L.; Vrscaj, B.; Schulin, R.; Hepperle, E.; Ajmone Marsan, F. Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environ. Pollut. 2009, 157, 680–689. [Google Scholar] [CrossRef]
- Serdar, B. Effect of cement dust pollution on microbial properties and enzyme activities in cultivated and no-till soils. Afr. J. Microbiol. Res. 2010, 4, 2418–2425. [Google Scholar]
- Yáñez, J.A.; Remsberg, C.M.; Takemoto, J.K.; Vega-Villa, K.R.; Andrews, P.K.; Sayre, C.L.; Martinez, S.E.; Davies, N.M. Polyphenols and Flavonoids: An Overview. In Flavonoid Pharmacokinetics: Methods of Analysis, Preclinical and Clinical Pharmacokinetics, Safety, and Toxicology; Davies, N.M., Yáñez, J.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–69. [Google Scholar]
- Yáñez, J.A.; Miranda, N.D.; Remsberg, C.M.; Ohgami, Y.; Davies, N.M. Stereospecific high-performance liquid chromatographic analysis of eriodictyol in urine. J. Pharm. Biomed. Anal. 2007, 43, 255–262. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Yáñez, J.; Dunne, C.; Davies, N.; Barbosa-Cánovas, G. Study of strawberry flavored milk under pulsed electric field processing. Food Res. Int. 2010, 43, 2201–2207. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef]
- Pavlowsky, R.T.; Lecce, S.A.; Owen, M.R.; Martin, D.J. Legacy sediment, lead, and zinc storage in channel and floodplain deposits of the Big River, Old Lead Belt Mining District, Missouri, USA. Geomorphology 2017, 299, 54–75. [Google Scholar] [CrossRef]
- Xiao, R.; Guo, D.; Ali, A.; Mi, S.; Liu, T.; Ren, C.; Li, R.; Zhang, Z. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environ. Pollut. 2019, 248, 349–357. [Google Scholar] [CrossRef]
- Morkunas, I.; Woźniak, A.; Mai, V.C.; Rucińska-Sobkowiak, R.; Jeandet, P. The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules 2018, 23, 2320. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Escudero, F.; Santos-Buelga, C.; Pérez-Alonso, J.J.; Yáñez, J.A.; Dueñas, M. HPLC-DAD-ESI/MS identification of anthocyanins in Dioscorea trifida L. yam tubers (purple sachapapa). Eur. Food Res. Technol. 2010, 230, 745–752. [Google Scholar] [CrossRef]
- Vega-Villa, K.R.; Remsberg, C.M.; Ohgami, Y.; Yanez, J.A.; Takemoto, J.K.; Andrews, P.K.; Davies, N.M. Stereospecific high-performance liquid chromatography of taxifolin, applications in pharmacokinetics, and determination in tu fu ling (Rhizoma smilacis glabrae) and apple (Malus x domestica). Biomed. Chromatogr. 2009, 23, 638–646. [Google Scholar] [CrossRef]
- Gupta, S.K.; Vollmer, M.K.; Krebs, R. The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Sci. Total Environ. 1996, 178, 11–20. [Google Scholar] [CrossRef]
- Romic, M.; Romic, D. Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol. 2003, 43, 795–805. [Google Scholar] [CrossRef]
- Feng, H.; Jiang, H.; Gao, W.; Weinstein, M.P.; Zhang, Q.; Zhang, W.; Yu, L.; Yuan, D.; Tao, J. Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. J. Environ. Manag. 2011, 92, 1185–1197. [Google Scholar] [CrossRef]
- GIPME. Guidance on Assessment of Sediment Quality; International Maritime Organization: London, UK, 1999. [Google Scholar]
- Frankowski, M.; Zioła-Frankowska, A.; Kowalski, A.; Siepak, J. Fractionation of heavy metals in bottom sediments using Tessier procedure. Environ. Earth Sci. 2010, 60, 1165–1178. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- MINAM. Guía para el Muestreo de Suelos. Decreto Supremo 002-2013-MINAM—Estándares de Calidad Ambiental (ECA) para Suelo. Available online: https://www.minam.gob.pe/calidadambiental/wp-content/uploads/sites/22/2013/10/GUIA-PARA-EL-MUESTREO-DE-SUELOS-final.pdf (accessed on 9 September 2022).
- IRIS. Arsenic, inorganic CASRN 7440-38-2—IRIS—US EPA, ORD. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?&substance_nmbr=278 (accessed on 9 September 2022).
- IRIS. Chromium (VI) CASRN 18540-29-9—IRIS—US EPA, ORD. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?&substance_nmbr=144 (accessed on 9 September 2022).
- De Miguel, E.; Iribarren, I.; Chacón, E.; Ordoñez, A.; Charlesworth, S. Riskbased evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef] [PubMed]
- IRIS. Cadmium CASRN 7440-43-9—IRIS—US EPA, ORD. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?&substance_nmbr=141 (accessed on 9 September 2022).
- U.S. Department of Energy Office of Environmental Management. Remedial Investigation Report for Waste Area Grouping 6 at Paducah Gaseous Diffusion Plant Paducah, Kentucky; Department of Energy Office of Environmental Management: Washington, DC, USA, 1999.
- Wu, H.; Yang, F.; Li, H.; Li, Q.; Zhang, F.; Ba, Y.; Cui, L.; Sun, L.; Lv, T.; Wang, N.; et al. Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China. Int. J. Environ. Health Res. 2020, 30, 174–186. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund (RAGS): Part A. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 9 September 2022).
- USEPA. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e (accessed on 9 September 2022).
- MEPPRC. Technical Guidelines for Risk Assessment of Contaminated Sites. In Ministry of Environmental Protection of the People’s Republic of China, Beijing. Available online: https://english.mee.gov.cn/Resources/standards/Soil/Method_Standard4/201605/W020160506416578822108.pdf (accessed on 9 September 2022).
- USEPA. Risk Assessment: Guidance for Superfund Volume I: Human Heatlh Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. Available online: http://www.epa.gov/oswer/riskassessment/ (accessed on 9 September 2022).
- EPA. Recommended Use of Body Weight 3/4 as the Default Method in Derivation of the Oral Reference Dose. Available online: https://www.epa.gov/risk/recommended-use-body-weight-34-default-method-derivation-oral-reference-dose (accessed on 9 September 2022).
- Acevedo-Figueroa, D.; Jiménez, B.D.; Rodríguez-Sierra, C.J. Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ. Pollut. 2006, 141, 336–342. [Google Scholar] [CrossRef]
- Pacle Decena, S.C.; Sanita Arguelles, M.; Liporada Robel, L. Assessing Heavy Metal Contamination in Surface Sediments in an Urban River in the Philippines. Pol. J. Environ. Stud. 2018, 27, 1983–1995. [Google Scholar] [CrossRef]
- Li, X.; Shen, H.; Zhao, Y.; Cao, W.; Hu, C.; Sun, C. Distribution and Potential Ecological Risk of Heavy Metals in Water, Sediments, and Aquatic Macrophytes: A Case Study of the Junction of Four Rivers in Linyi City, China. Int. J. Environ. Res. Public Health 2019, 16, 2861. [Google Scholar] [CrossRef] [Green Version]
- Shariati, S.; Pourbabaee, A.A.; Alikhani, H.A.; Rezaei, K.A. Assessment of phthalic acid esters pollution in Anzali wetland, north of Iran. Int. J. Environ. Sci. Technol. 2019, 16, 7025–7036. [Google Scholar] [CrossRef]
- Saeedi, M.; Jamshidi-Zanjani, A. Development of a new aggregative index to assess potential effect of metals pollution in aquatic sediments. Ecol. Indic. 2015, 58, 235–243. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. GSA Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Hans Wedepohl, K. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Gujre, N.; Mitra, S.; Soni, A.; Agnihotri, R.; Rangan, L.; Rene, E.R.; Sharma, M.P. Speciation, contamination, ecological and human health risks assessment of heavy metals in soils dumped with municipal solid wastes. Chemosphere 2021, 262, 128013. [Google Scholar] [CrossRef]
- Milićević, T.; Aničić Urošević, M.; Relić, D.; Jovanović, G.; Nikolić, D.; Vergel, K.; Popović, A. Environmental pollution influence to soil–plant–air system in organic vineyard: Bioavailability, environmental, and health risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 3361–3374. [Google Scholar] [CrossRef]
- Milićević, T.; Relić, D.; Urošević, M.A.; Vuković, G.; Škrivanj, S.; Samson, R.; Popović, A. Integrated approach to environmental pollution investigation—Spatial and temporal patterns of potentially toxic elements and magnetic particles in vineyard through the entire grapevine season. Ecotoxicol. Environ. Saf. 2018, 163, 245–254. [Google Scholar] [CrossRef]
- Milićević, T.; Urošević, M.A.; Relić, D.; Vuković, G.; Škrivanj, S.; Popović, A. Bioavailability of potentially toxic elements in soil–grapevine (leaf, skin, pulp and seed) system and environmental and health risk assessment. Sci. Total Environ. 2018, 626, 528–545. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, G.; Zhou, C.; Zhang, H.; Sun, R. Distribution of environmentally sensitive elements in residential soils near a coal-fired power plant: Potential risks to ecology and children’s health. Chemosphere 2013, 93, 2473–2479. [Google Scholar] [CrossRef]
District | Abbreviation | Coordinates UTM WGS84 (19K) | |
---|---|---|---|
East | North | ||
Sachaca | SA | 225819 | 8183073 |
Socabaya | SO | 230704 | 8175775 |
Hunter | HU | 225219 | 8178877 |
Quequeña | QU | 238594 | 8167183 |
Yarabamba | YA | 235836 | 8169865 |
Characato | CH | 237006 | 8177599 |
Tiabaya | TB | 226557 | 8178991 |
Ecotoxic Element | Oral Reference Dose (RfD Oral) | Oral Pending Factor (Oral SF) | Adverse Effects | References |
---|---|---|---|---|
As | RfD = 0.0003 mg/kg × day | SF = 1.5 (mg/kg × day)−1 | Hyperpigmentation and keratosis/skin cancer | IRIS, 2015 [27] |
Cr | RfD = 0.003 mg/kg × day | No oral SF | Not reported | IRIS, 1998 [28] |
Pb | RfD = 0.0036 mg/kg × day | No oral SF | Neurodevelopment in children and systolic blood pressure in adults | De Miguel et al., 2007 [29] |
Cd | RfD = 0.0001 mg/kg × day | No oral SF | Significant proteinuria | IRIS, 1989 [30] |
Hg | RfD = 0.0003 mg/kg × day | No oral SF | Immunologic glomerulonephritis | RAIS, 1998 [31] |
Parameter | Definition | Children | Adult | Reference |
---|---|---|---|---|
C (mg/kg) | Concentration of contaminant in fresh weight | Laboratory results for each metal | ||
EF (day/year | Frequency of exposure | 365 | 365 | USEPA, 1989 [33] |
SA (cm) | Skin exposure area | 2800 | 57,000 | USEPA, 2001 [34] |
AF (mg/cm2/day) | Soil–skin adhesion factor | 0.2 | 0.07 | MEPPRC, 2014 [35] |
CF (kg/mg) | Conversion factor | 10-6 | 10-6 | |
ABS | Dermal absorption factor | For As 0.03 and other elements 0.00 | De Miguel et al., 2007 [29] | |
ED (year) | Duration of exposure | 6 | 30 | USEPA, 2002 [36] |
BW (gg) | Body weight of the exposed individual | 12 | 70 | USEPA, 1993 [37] |
AT (day) | Average exposure time | Non-carcinogenic effect AT = ED × 365 | USEPA, 1989 [33] | |
Carcinogenic effect AT = 70 × 365 |
Sampling Points | Concentration (mg/kg) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Sb | As | Ba | B | Cd | Co | Cu | Cr | P | Fe | Mn | Hg | Mo | Ni | Pb | Zn | |
SA | 3100 | 0.31 | 7.60 | 74.0 | 0.00 | 0.17 | 3.30 | 23.0 | 23.0 | 630 | 7100 | 180 | 0.00 | 0.45 | 4.80 | 13.0 | 33.0 |
SO | 4400 | 0.18 | 8.80 | 122 | 12.0 | 0.13 | 5.00 | 35.0 | 6.60 | 540 | 9300 | 150 | 0.00 | 0.34 | 6.10 | 6.50 | 29.0 |
HU | 3900 | 0.40 | 5.40 | 79.0 | 6.80 | 0.28 | 3.70 | 35.0 | 14.0 | 980 | 8100 | 150 | 0.00 | 0.35 | 5.70 | 12.0 | 40.0 |
QU | 3700 | 0.33 | 7.70 | 91.0 | 13.0 | 0.25 | 4.10 | 38.0 | 5.10 | 640 | 7600 | 190 | 0.00 | 0.70 | 4.20 | 9.20 | 30.0 |
YA | 2800 | 0.16 | 3.40 | 67.0 | 3.70 | 0.10 | 3.60 | 25.0 | 3.90 | 330 | 8300 | 140 | 0.00 | 0.48 | 3.00 | 5.70 | 15.0 |
CH | 5300 | 0.15 | 7.30 | 93.0 | 6.80 | 0.12 | 5.40 | 30.0 | 9.20 | 600 | 11,000 | 140 | 0.00 | 0.64 | 6.80 | 5.60 | 32.0 |
TB | 2400 | 1.70 | 5.00 | 95.0 | 5.00 | 0.20 | 3.20 | 24.0 | 8.70 | 870 | 6300 | 200 | 0.10 | 0.60 | 4.90 | 11.0 | 29.0 |
Min | 2400 | 0.15 | 3.40 | 67.0 | 0.000 | 0.10 | 3.20 | 23.0 | 3.90 | 330 | 6300 | 140 | 0.00 | 0.34 | 3.00 | 5.60 | 15.0 |
Max | 5300 | 1.70 | 8.80 | 120 | 13.0 | 0.28 | 5.40 | 38.0 | 23.0 | 980 | 11,000 | 200 | 0.10 | 0.70 | 6.80 | 13.0 | 40.0 |
Mean | 3700 | 0.46 | 6.50 | 89.0 | 6.70 | 0.18 | 4.00 | 30.0 | 10.0 | 660 | 8300 | 170 | 0.01 | 0.50 | 5.10 | 9.00 | 30.0 |
SD | 1000 | 0.55 | 1.90 | 18.0 | 4.50 | 0.10 | 0.83 | 5.90 | 6.50 | 210 | 1600 | 24.0 | 0.04 | 0.14 | 1.30 | 3.10 | 7.60 |
Al | Sb | As | Ba | B | Cd | Co | Cu | Cr | P | Fe | Mn | Hg | Mo | Ni | Pb | Zn | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Pearson correlation | 1 | ||||||||||||||||
Sb | Pearson correlation Sig. (bilateral) | −0.600 0.154 | 1 | |||||||||||||||
As | Pearson correlation Sig. (bilateral) | 0.601 0.154 | −0.331 0.469 | 1 | ||||||||||||||
Ba | Pearson correlation Sig. (bilateral) | 0.449 0.312 | 0.110 0.814 | 0.656 0.110 | 1 | |||||||||||||
B | Pearson correlation Sig. (bilateral) | 0.476 0.280 | −0.167 0.721 | 0.470 0.287 | 0.694 0.084 | 1 | ||||||||||||
Cd | Pearson correlation Sig. (bilateral) | −0.114 0.808 | 0.306 0.505 | 0.053 0.910 | −0.067 0.887 | 0.257 0.578 | 1 | |||||||||||
Co | Pearson correlation Sig. (bilateral) | 0.926 ** 0.003 | −0.517 0.235 | 0.601 0.153 | 0.617 0.140 | 0.569 0.182 | −0.352 0.438 | 1 | ||||||||||
Cu | Pearson correlation Sig. (bilateral) | 0.607 0.149 | −0.365 0.421 | 0.481 0.274 | 0.466 0.292 | 0.884 ** 0.008 | 0.492 0.262 | 0.518 0.233 | 1 | |||||||||
Cr | Pearson correlation Sig. (bilateral) | −0.083 0.860 | −0.003 0.995 | 0.211 0.651 | −0.333 0.465 | −0.639 0.122 | 0.240 0.604 | −0.337 0.460 | −0.334 0.464 | 1 | ||||||||
P | Pearson correlation Sig. (bilateral) | −0.062 0.895 | 0.567 0.184 | −0.020 0.967 | 0.064 0.891 | 0.014 0.976 | 0.824 * 0.023 | −0.290 0.528 | 0.214 0.644 | 0.383 0.397 | 1 | |||||||
Fe | Pearson correlation Sig. (bilateral) | 0.898 ** 0.006 | −0.624 0.134 | 0.304 0.507 | 0.290 0.527 | 0.281 0.541 | −0.467 0.290 | 0.906 ** 0.005 | 0.328 0.473 | −0.249 0.590 | −0.342 0.453 | 1 | ||||||
Mn | Pearson correlation Sig. (bilateral) | −0.584 0.168 | 0.671 0.099 | 0.063 0.893 | −0.002 0.997 | 0.030 0.949 | 0.562 0.189 | −0.551 0.200 | −0.085 0.857 | 0.141 0.763 | 0.420 0.348 | −0.802 * 0.030 | 1 | |||||
Hg | Pearson correlation Sig. (bilateral) | −0.569 0.183 | 0.984 ** 0.000 | −0.339 0.457 | 0.163 0.727 | −0.170 0.716 | 0.144 0.759 | −0.433 0.332 | −0.427 0.339 | −0.089 0.849 | 0.446 0.316 | −0.533 0.217 | 0.590 0.163 | 1 | ||||
Mo | Pearson correlation Sig. (bilateral) | −0.009 0.984 | 0.258 0.576 | 0.005 0.991 | −0.057 0.903 | 0.162 0.728 | 0.052 0.913 | 0.112 0.810 | −0.018 0.970 | −0.319 0.485 | −0.057 0.903 | 0.004 0.993 | 0.472 0.285 | 0.285 0.536 | 1 | |||
Ni | Pearson correlation Sig. (bilateral) | 0.777 * 0.040 | −0.076 0.872 | 0.590 0.163 | 0.594 0.159 | 0.245 0.596 | 0.059 0.900 | 0.677 0.095 | 0.353 0.437 | 0.233 0.615 | 0.391 0.385 | 0.600 0.154 | −0.309 0.501 | −0.065 0.891 | −0.130 0.781 | 1 | ||
Pb | Pearson correlation Sig. (bilateral) | −0.434 0.330 | 0.412 0.358 | −0.016 0.973 | −0.310 0.499 | −0.356 0.433 | 0.749 0.053 | −0.683 0.091 | −0.105 0.823 | 0.738 0.058 | 0.742 0.056 | −0.709 0.075 | 0.606 0.149 | 0.262 0.570 | −0.172 0.713 | −0.041 0.930 | 1 | |
Zn | Pearson correlation Sig. (bilateral) | 0.392 0.384 | 0.074 0.874 | 0.432 0.333 | 0.176 0.705 | 0.091 0.846 | 0.689 0.087 | 0.100 0.831 | 0.411 0.359 | 0.595 0.159 | 0.814 * 0.026 | 0.035 0.940 | 0.136 0.771 | −0.043 0.928 | −0.183 0.694 | 0.694 0.084 | 0.632 0.128 | 1 |
Sampling Points | Enrichment Factor (EF) | ||||||
---|---|---|---|---|---|---|---|
As | Cr | Cd | Pb | Ni | Cu | Zn | |
SA | 3.85 | 1.67 | 3.75 | 4.21 | 0.47 | 3.45 | 3.23 |
SO | 3.42 | 0.37 | 2.18 | 1.62 | 0.45 | 3.87 | 2.16 |
HU | 2.37 | 0.88 | 5.35 | 3.52 | 0.48 | 4.48 | 3.42 |
QU | 3.66 | 0.35 | 5.14 | 2.84 | 0.38 | 5.15 | 2.68 |
YA | 1.49 | 0.24 | 1.69 | 1.60 | 0.24 | 3.09 | 1.26 |
CH | 2.31 | 0.42 | 1.65 | 1.16 | 0.41 | 2.79 | 1.95 |
TB | 2.86 | 0.71 | 4.95 | 4.01 | 0.53 | 4.01 | 3.18 |
Min | 1.49 | 0.24 | 1.65 | 1.16 | 0.24 | 2.79 | 1.26 |
Max | 3.85 | 1.67 | 5.35 | 4.21 | 0.53 | 5.15 | 3.42 |
Mean | 2.85 | 0.66 | 3.53 | 2.71 | 0.42 | 3.83 | 2.55 |
SD | 0.85 | 0.50 | 1.67 | 1.25 | 0.09 | 0.81 | 0.79 |
Sampling Points | Enrichment Factor (EF) | ||||||
---|---|---|---|---|---|---|---|
As | Cr | Cd | Pb | Ni | Cu | Zn | |
SA | 16.56 | 2.83 | 7.29 | 3.28 | 1.14 | 1.48 | 2.79 |
SO | 14.71 | 0.62 | 4.24 | 1.26 | 1.09 | 1.42 | 1.87 |
HU | 10.19 | 1.49 | 10.41 | 2.74 | 1.15 | 1.50 | 2.95 |
QU | 15.75 | 0.60 | 10.00 | 2.21 | 0.93 | 1.20 | 2.31 |
YA | 6.42 | 0.41 | 3.29 | 1.24 | 0.59 | 0.77 | 1.09 |
CH | 9.94 | 0.71 | 3.21 | 0.91 | 1.00 | 1.30 | 1.69 |
TB | 12.28 | 1.22 | 9.63 | 3.12 | 1.29 | 1.68 | 2.75 |
Min | 6.42 | 0.41 | 3.21 | 0.91 | 0.59 | 0.77 | 1.09 |
Max | 16.56 | 2.83 | 10.41 | 3.28 | 1.29 | 1.68 | 2.95 |
Mean | 12.26 | 1.13 | 6.87 | 2.11 | 1.03 | 1.34 | 2.21 |
SD | 3.66 | 0.84 | 3.25 | 0.98 | 0.22 | 0.29 | 0.69 |
Sampling Points | Igeo | ||||||
---|---|---|---|---|---|---|---|
As | Cr | Cd | Pb | Ni | Cu | Zn | |
SA | −1.37 | −2.57 | −1.40 | −1.24 | −4.40 | −1.53 | −2.10 |
SO | −1.14 | −4.36 | −1.79 | −2.22 | −4.06 | −0.96 | −2.29 |
HU | −1.86 | −3.30 | −0.68 | −1.29 | −4.17 | −0.94 | −1.82 |
QU | −1.34 | −4.72 | −0.85 | −1.70 | −4.60 | −0.85 | −2.27 |
YA | −2.50 | −5.13 | −2.32 | −2.40 | −5.11 | −1.45 | −3.23 |
CH | −1.42 | −3.88 | −1.91 | −2.41 | −3.90 | −1.15 | −2.15 |
TB | −1.96 | −3.96 | −1.17 | −1.47 | −4.39 | −1.47 | −2.29 |
Min | −2.50 | −5.13 | −2.32 | −2.41 | −5.11 | −1.53 | −3.23 |
Max | −1.14 | −2.57 | −0.68 | −1.24 | −3.90 | −0.85 | −1.82 |
Mean | −1.66 | −3.99 | −1.45 | −1.82 | −4.38 | −1.19 | −2.31 |
SD | 0.48 | 0.86 | 0.59 | 0.52 | 0.40 | 0.29 | 0.44 |
Sampling Points | Igeo | |||||||
---|---|---|---|---|---|---|---|---|
As | Cr | Cd | Pb | Sb | Ni | Cu | Zn | |
SA | −1.34 | −1.21 | 0.15 | −1.00 | −0.58 | −2.53 | 0.13 | −1.23 |
SO | 1.56 | −3.00 | −0.24 | −1.98 | −1.37 | −2.19 | 0.69 | −1.42 |
HU | 0.84 | −1.93 | 0.87 | −1.05 | −0.22 | −2.30 | 0.71 | −0.95 |
QU | 1.36 | −3.36 | 0.71 | −1.47 | −0.49 | −2.72 | 0.81 | −1.40 |
YA | 0.20 | −3.77 | −0.77 | −2.17 | −1.54 | −3.24 | 0.20 | −2.36 |
CH | 1.28 | −2.52 | −0.35 | −2.18 | −1.63 | −2.03 | 0.50 | −1.28 |
TB | 0.74 | −2.60 | 0.39 | −1.24 | 1.85 | −2.52 | 0.18 | −1.42 |
Min | 0.20 | −3.77 | −0.77 | −2.18 | −1.63 | −3.24 | 0.13 | −2.36 |
Max | 1.56 | −1.21 | 0.87 | −1.00 | 1.85 | −2.03 | 0.81 | −0.95 |
Mean | 1.04 | −2.63 | 0.11 | −1.58 | −0.57 | −2.51 | 0.46 | −1.44 |
SD | 0.48 | 0.86 | 0.59 | 0.52 | 1.20 | 0.40 | 0.29 | 0.44 |
District | Element | Concentration (mg/kg) | HQ | |
---|---|---|---|---|
Children | Adults | |||
Sabandia (SA) | As | 7.50 | 0.03 | 0.01 |
Pb | 12.73 | 3.07 × 10−5 | 6.12 × 10−6 | |
Cr | 22.60 | 1.27 × 10−7 | 2.53 × 10−8 | |
Al | 3133.60 | 2.64 × 10−5 | 5.28 × 10−6 | |
Fe | 7058.70 | 8.51 × 10−5 | 1.70 × 10−5 | |
Mn | 177.50 | 3.26 × 10−5 | 6.501 × 10−6 | |
Cu | 23.00 | 4.85 × 10−6 | 9.68 × 10−7 | |
HI | 0.03 | 0.01 | ||
Hunter (HU) | As | 5.30 | 0.02 | 0.004 |
Pb | 12.23 | 2.95 × 10−5 | 5.88 × 10−6 | |
Cr | 13.00 | 7.32 × 10−8 | 1.50 × 10−8 | |
Al | 3937.20 | 3.32 × 10−5 | 6.63 × 10−6 | |
Fe | 8141.90 | 1.96 × 10−5 | 1.96 × 10−5 | |
Mn | 154.70 | 2.84 × 10−5 | 5.66 × 10−6 | |
Cu | 35.00 | 7.39 × 10−6 | 1.47 × 10−6 | |
HI | 0.02 | 0.003 | ||
Characato (CH) | As | 7.27 | 0.02 | 0.01 |
Pb | 5.00 | 1.21 × 10−5 | 2.41 × 10−6 | |
Cr | 9.00 | 5.07 × 10−8 | 1.01 × 10−8 | |
Al | 5292.76 | 4.47 × 10−5 | 8.91 × 10−6 | |
Fe | 11,312.30 | 0.0001 | 2.72 × 10−5 | |
Mn | 140.30 | 2.58 × 10−5 | 5.14 × 10−6 | |
Cu | 30.00 | 6.33 × 10−6 | 1.26 × 10−6 | |
HI | 0.02 | 0.01 | ||
Socabaya (SO) | As | 8.84 | 0.03 | 0.01 |
Pb | 6.45 | 1.56 × 10−5 | 3.10 × 10−6 | |
Cr | 6.57 | 3.70 × 10−8 | 7.38 × 10−9 | |
Al | 4443.00 | 3.75 × 10−5 | 7.48 × 10−6 | |
Fe | 9282.60 | 0.0001 | 2.23 × 10−5 | |
Mn | 148.70 | 2.73 × 10−5 | 5.44 × 10−6 | |
Cu | 34.62 | 7.31 × 10−6 | 1.46 × 10−6 | |
HI | 0.03 | 0.01 | ||
Yarabamba (YA) | As | 3.44 | 0.01 | 0.002 |
Pb | 5.67 | 1.37 × 10−5 | 2.73 × 10−6 | |
Cr | 3.859 | 2.17 × 10−8 | 4.33 × 10−9 | |
Al | 2815.72 | 2.38 × 10−5 | 4.74 × 10−6 | |
Fe | 8277.80 | 9.98 × 10−5 | 1.99 × 10−5 | |
Mn | 144.49 | 2.65 × 10−5 | 5.29 × 10−6 | |
Cu | 24.67 | 5.21 × 10−6 | 1.04 × 10−6 | |
HI | 0.01 | 0.002 | ||
Quequeña (QU) | As | 7.72 | 0.03 | 0.01 |
Pb | 9.22 | 2.22 × 10−5 | 4.44 × 10−6 | |
Cr | 5.12 | 2.88 × 10−8 | 5.75 × 10−9 | |
Al | 5292.76 | 4.47 × 10−5 | 8.91 × 10−6 | |
Fe | 7571.10 | 9.13 × 10−5 | 1.82 × 10−5 | |
Mn | 194.90 | 3.58 × 10−5 | 7.14 × 10−6 | |
Cu | 37.54 | 7.92 × 10−6 | 1.58 × 10−6 | |
HI | 0.03 | 0.01 | ||
Tiabaya (TB) | As | 5.00 | 0.02 | 0.003 |
Pb | 10.80 | 2.61 × 10−5 | 5.20 × 10−6 | |
Cr | 8.66 | 4.87 × 10−8 | 9.72 × 10−9 | |
Al | 2395.00 | 2.02 × 10−5 | 4.03 × 10−6 | |
Fe | 6290.00 | 7.57 × 10−5 | 1.51 × 10−5 | |
Mn | 198.00 | 3.63 × 10−5 | 7.25 × 10−6 | |
Cu | 24.30 | 5.13 × 10−6 | 1.02 × 10−6 | |
HI | 0.02 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta Alata, M.; Alvarez-Risco, A.; Suni Torres, L.; Moran, K.; Pilares, D.; Carling, G.; Paredes, B.; Del-Aguila-Arcentales, S.; Yáñez, J.A. Evaluation of Environmental Contamination by Toxic Elements in Agricultural Soils and Their Health Risks in the City of Arequipa, Peru. Sustainability 2023, 15, 3829. https://doi.org/10.3390/su15043829
Huerta Alata M, Alvarez-Risco A, Suni Torres L, Moran K, Pilares D, Carling G, Paredes B, Del-Aguila-Arcentales S, Yáñez JA. Evaluation of Environmental Contamination by Toxic Elements in Agricultural Soils and Their Health Risks in the City of Arequipa, Peru. Sustainability. 2023; 15(4):3829. https://doi.org/10.3390/su15043829
Chicago/Turabian StyleHuerta Alata, Marcela, Aldo Alvarez-Risco, Lucia Suni Torres, Karina Moran, Denis Pilares, Gregory Carling, Betty Paredes, Shyla Del-Aguila-Arcentales, and Jaime A. Yáñez. 2023. "Evaluation of Environmental Contamination by Toxic Elements in Agricultural Soils and Their Health Risks in the City of Arequipa, Peru" Sustainability 15, no. 4: 3829. https://doi.org/10.3390/su15043829
APA StyleHuerta Alata, M., Alvarez-Risco, A., Suni Torres, L., Moran, K., Pilares, D., Carling, G., Paredes, B., Del-Aguila-Arcentales, S., & Yáñez, J. A. (2023). Evaluation of Environmental Contamination by Toxic Elements in Agricultural Soils and Their Health Risks in the City of Arequipa, Peru. Sustainability, 15(4), 3829. https://doi.org/10.3390/su15043829