Comparison of Physicochemical Characteristics and Bioactivity of Olive Oil Mill Wastewaters from Traditional and Water-Saving ARA-Controlled Three-Phase Decanter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. OMW Sampling
2.3. Analytical Determinations
2.4. Chemical Oxygen Demand (COD)
2.5. Biological Oxygen Demand (BOD)
2.6. Total Sugar
2.7. Residual Fat in OMW
2.8. Phenolic Extraction Procedure
2.9. Total Phenols Content (TPC) and Total Flavonoids Content (TFC)
2.10. HPLC Phenolic Profile
2.11. Antioxidant Activity
2.12. Evaluation of α-Amylase and α-Glucosidase Inhibitory Activity
2.13. Pancreatic Lipase Inhibitory Activity
2.14. Statistical Analysis
3. Results and Discussion
3.1. Analytical Parameters
3.2. OMW Phytochemicals Content
3.3. Antioxidant Activity
3.4. Target Enzymes Linked to Metabolic Syndrome
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kapellakis, I.E.; Tsagarakis, K.P.; Avramaki, C. Olive mill wastewater management in river basins: A case study in Greece, Agric. Water Manag. 2006, 82, 354–370. [Google Scholar] [CrossRef]
- Rouvalis, A.; Iliopoulou-Georgudaki, J. Comparative assessment of olive oil mill effluents from three-phase and two-phase systems, treated for hydrogen production. Bull. Environ. Contam. Toxicol. 2010, 85, 432–436. [Google Scholar] [CrossRef]
- Apostolis, A.; Prokopios, M.; Alexios-Leandros, S.; Mikros, E.; Tsarbopoulos, A.; Gikas, E.; Spanos, I.; Manios, T. A new process for the management of olive oil mill waste water and recovery of natural antioxidants. J. Agric. Food Chem. 2007, 55, 2671–2676. [Google Scholar] [CrossRef]
- Capasso, R.; De Martino, A.; Arienzo, M. Recovery and characterization of the metal polymeric organic fraction (polymerin) from olive oil mill wastewaters. J. Agric. Food Chem. 2002, 50, 2846–2855. [Google Scholar] [CrossRef]
- Asfi, M.; Ouzounidou, G.; Moustakas, M. Evaluation of olive oil mill wastewater toxicity on spinach. Environ. Sci. Pollut. Res. 2012, 19, 2363–2371. [Google Scholar] [CrossRef]
- Chatjipavlidis, I.; Antonakou, M.; Demou, D.; Flouri, F.; Balis, C. Biofertilization of olive mills liquid wastes. The pilot plant in Messinia, Greece. Int. Biodeterior. Biodegrad. 1996, 38, 183–187. [Google Scholar] [CrossRef]
- Foti, P.; Romeo, F.V.; Russo, N.; Pino, A.; Vaccalluzzo, A.; Caggia, C.; Randazzo, C.L. Olive Mill Wastewater as Renewable Raw Materials to Generate High Added-Value Ingredients for Agro-Food Industries. Appl. Sci. 2021, 11, 7511. [Google Scholar] [CrossRef]
- Amirante, P.; Clodoveo, M.L.; Leone, A.; Tamborrino, A.; Patel, V.B. Chapter 10—Influence of Different Centrifugal Extraction Systems on Antioxidant Content and Stability of Virgin Olive Oil. In Olives and Olive Oil in Health and Disease Prevention, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2010; pp. 85–93. [Google Scholar]
- Amirante, R.; Baccioni, L.; Catalano, P.; Montel, G.L. Nuove tecnologie per l’estrazione dell’olio di oliva: Decanter con cono a pressione dinamica variabile e controllo della velocità differenziale tamburo-coclea [new technologies for the extraction of olive oil: Decanters with a dynamic variable pressure cone and control of the differential speed conveyor-bowl]. Riv. Ital. Delle Sostanze Grasse 1993, 76, 129–140. [Google Scholar]
- Catalano, P.; Pipitone, F.; Calafatello, A.; Leone, A. Productive efficiency of decanters with short and variable dynamic pressure cones. Biosyst. Eng. 2003, 86, 459–464. [Google Scholar] [CrossRef]
- Amirante, P.; Clodoveo, M.L.; Dugo, G.; Leone, A.; Pollicino, D.; Tamborrino, A.; Lo Turco, V. Virgin olive oil from de-stoned paste: Introduction of a new decanter with short and variable dynamic pressure cone to increase oil yield. In Proceedings of the EFFoST 2005 INTRADFOOD 2005—Innovations in Traditional Foods, Valencia, Spain, 25–28 October 2005; Volume 2, pp. 1183–1186. [Google Scholar]
- Amirante, P.; Clodoveo, M.L.; Leone, A.; Tamborrino, A. Innovazioni impiantistiche per la produzione e valorizzazione dell’olio di oliva nel rispetto dell’ambiente. Ital. J. Agron. 2009, 1, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, B.; Tamborrino, A.; Santoro, F. Assessment of the energy and separation efficiency of the decanter centrifuge with regulation capability of oil water ring in the industrialprocess line using a continuous method. J. Agric. Eng. 2013, 44, e56. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, F.A.; Hamilton, J.K.; Rbers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Bonesi, M.; Falco, T.; Leporini, M.; Pagliuso, M.; Sicari, V.; Tundis, R. Carolea olive oil enriched with an infusion of Capsicuum annuum and C. chinense dried pepper powders to produce an added value flavoured olive oils. J. Food Process. Preserv. 2021, 45, e15776. [Google Scholar] [CrossRef]
- Mateos, R.; Espartero, L.; Trujillo, M.; Rios, J.J.; León-Camacho, M.; Alcudia, F. Determination of phenols, flavones and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 2001, 49, 141–144. [Google Scholar] [CrossRef]
- Formoso, P.; Tundis, R.; Pellegrino, M.; Leporini, M.; Sicari, V.; Romeo, R.; Gervasi, L.; Corrente, G.; Beneduci, A.; Loizzo, M.R. Preparation, characterization, and bioactivity of Zingiber officinale Roscoe (white ginger) powder-based Pickering emulsions. J. Sci. Food Agric. 2022, 102, 6566–6577. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 15, 1374. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Kiai, H.; Hafidi, A. Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 2012, 132, 406–412. [Google Scholar] [CrossRef]
- Aggoun, M.; Arhab, R.; Cornu, A.; Portelli, J.; Barkat, M.; Graulet, B. Olive mill wastewater microconstituents composition according to olive variety and extraction process. Food Chem. 2016, 209, 72–80. [Google Scholar] [CrossRef]
- Gueboudji, Z.; Addad, D.; Kadi, K.; Nagaz, K.; Secrafi, M.; Yahya, L.B.; Lachehib, B.; Abdelmalek, A. Biological activities, and phenolic compounds of olive oil mill wastewater from Abani, endemic Algerian variety. Sci. Rep. 2022, 11, 6042. [Google Scholar] [CrossRef]
- Benincasa, C.; Pellegrino, M.; Romano, E.; Claps, S.; Fallara, C.; Perri, E. Qualitative and quantitative analysis of phenolic compounds in spray-dried olive mill wastewater. Front. Nutr. 2022, 58, 782693. [Google Scholar] [CrossRef]
- Tundis, R.; Conidi, C.; Loizzo, M.R.; Sicari, V.; Cassano, A. Olive mill wastewater polyphenol-enriched fractions by integrated membrane process: A promising source of antioxidant, hypolipidemic and hypoglycaemic compounds. Antioxidants 2020, 9, 602. [Google Scholar] [CrossRef]
- Tundis, R.; Conidi, C.; Loizzo, M.R.; Sicari, V.; Romeo, R.; Cassano, A. Concentration of Bioactive Phenolic Compounds in Olive Mill Wastewater by Direct Contact Membrane Distillation. Molecules 2021, 26, 1808. [Google Scholar] [CrossRef]
- Russo, E.; Spallarossa, A.; Comite, A.; Pagliero, M.; Guida, P.; Belotti, V.; Caviglia, D.; Schito, A.M. Valorization and Potential Antimicrobial Use of Olive Mill Wastewater (OMW) from Italian Olive Oil Production. Antioxidants 2022, 11, 903–918. [Google Scholar] [CrossRef]
- El Yamani, M.; El Hassan, S.; Boussakouran, A.; Benali, T.; Rharrabti, Y. Antibacterial and antioxidant potentials of phenolic extracts from olive mill wastewater and their use to enhance the stability of olive oil. Riv. Ital. Sostanze Grasse 2020, 97, 31–42. [Google Scholar]
- Fuccelli, R.; Fabiani, R.; Rosignoli, P. Hydroxytyrosol exerts anti-inflammatory and antioxidant activities in a mouse model of systemic inflammation. Molecules 2018, 23, 3212. [Google Scholar] [CrossRef] [Green Version]
- Grasso, S.; Siracusa, L.; Spatafora, C.; Renisa, M.; Tringali, C. Hydroxytyrosol lipophilic analogues: Enzymatic synthesis, radical scavenging activity and DNA oxidative damage protection. Bioorganic Chem. 2007, 35, 137–152. [Google Scholar] [CrossRef]
- Ivanov, M.; Vajic, U.J.; Mihailovic-Stanojevic, N.; Miloradovic, Z.; Jovovic, D.; Grujic-Milanovic, J.; Dekanski, D. Increase blood-flow to brain. Highly potent antioxidant Olea europaea L. Leaf extract affects carotid and renal haemodynamics in experimental hypertension: The role of oleuropein. EXCLI J. 2018, 17, 29–44. [Google Scholar] [CrossRef]
- Després, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef]
- Youn, J.Y.; Park, H.Y.; Cho, K.H. Anti-hyperglycemic activity of Commelina communis L.: Inhibition of α-glucosidase. Diabetes Res. Clin. Pract. 2004, 66, S149–S155. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef]
- Hadrich, F.; Bouallagui, Z.; Junkyu, H.; Isoda, H.; Sayadi, S. The α-Glucosidase and α-Amylase Enzyme Inhibitory of Hydroxytyrosol and Oleuropein. J. Oleo Sci. 2015, 64, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Lee-Huang, S.; Huang, P.L.; Zhang, D.; Lee, J.W.; Chang, Y.T.; Zhang, J.; Huan, P.L. Oleuropein and Related Compounds from Olive Plants Modulate Adipogenesis. Open Conf. Proc. J. 2013, 4, 113–124. [Google Scholar] [CrossRef] [Green Version]
Analytical Parameters | Units | Three Phase Decanter “ARA” | Three Phase Decanter | Sign. |
---|---|---|---|---|
pH | -- | 5.3 ± 0.3 a | 5.8 ± 0.9 a | ns |
Dry extract | % | 16.5 ± 0.9 a | 9.6 ± 0.8 b | ** |
TPC | g/L | 5.6 ± 0.6 a | 1.7 ± 0.2 b | ** |
TFC | g/L | 0.5 ± 0.04 a | 0.3 ± 0.03 b | ** |
COD | mg/L | 115,000 ± 23.9 a | 48,000 ± 8.9 b | ** |
BOD | mg/L | 14,725 ± 53.9 a | 5595 ± 12.5 b | ** |
Sugar | % | 3.7 ± 0.8 a | 2.1 ± 0.2 b | ** |
Fat | % | 1.0 ± 0.3 a | 0.6 ± 0.1 b | ** |
Ash | % | 1.8 ± 0.1 a | 0.7 ± 0.1 b | ** |
Na | mg/kg | 126 ± 8.9 a | 73.5 ± 6.5 b | ** |
Ca | mg/kg | 350 ± 12.7 a | 173 ± 5.8 b | ** |
Mg | mg/kg | 62.5 ± 8.9 a | 45 ± 7.5 b | ** |
K | mg/kg | 6652 ± 21.9 a | 2003 ± 23.3 b | ** |
Fe | mg/kg | 37.6 ± 5.9 a | 17.5 ± 3.8 b | ** |
Cu | mg/kg | 2.4 ± 0.8 a | 0.9 ± 0.6 b | ** |
Zn | mg/kg | 3.1 ± 0.4 a | 1.7 ± 0.3 b | ** |
Phenolic Compounds | Three Phase Decanter ARA | Three Phase Decanter | Sign. |
---|---|---|---|
Caffeic acid | 15.2 ± 1.2 a | 8.1 ± 0.2 b | ** |
p-Coumaric acid | 12.3 ± 0.9 a | 6.4 ± 0.1 b | ** |
Ferulic acid | 9.3 ± 0.7 a | 6.9 ± 0.2 b | ** |
Luteolin | 24.7 ± 2.6 a | 15.2 ± 1.2 b | ** |
4-Hydroxyphenylacetate | 112.8 ± 9.7 a | 72.6 ± 2.6 b | ** |
Hydroxytyrosol | 502.3 ± 9.7 a | 373.3 ± 6.8 b | ** |
Oleuropein | 198.2 ± 8.9 a | 106.8 ± 5.4 b | ** |
Tyrosol | 156.8 ± 3.6 a | 89.7 ± 6.1 b | ** |
Vanillic acid | 57.8 ± 2.9 a | 29.4 ± 3.2 b | ** |
Verbascoside | 42.1 ± 5.8 a | 26.7 ± 4.1 b | ** |
Apigenin | 31.6 ± 2.6 a | 18.4 ± 1.6 b | ** |
o-Cumaric acid | 11.34 ± 0.7 a | 5.3 ± 0.3 b | ** |
Floretic acid | 21.1 ± 1.02 a | 12.8 ± 0.8 b | ** |
Samples | DPPH Test § | ABTS Test § | β-Carotene Bleaching Test § | FRAP Test ^ |
---|---|---|---|---|
Three-phase decanter | 60.6 ± 3.1 *** | 68.4 ± 3.1 *** | 40.1 ± 2.2 *** | 55.8 ± 1.3 |
Three-phase decanter ARA | 55.9 ± 2.8 *** | 55.4 ± 3.1 *** | 69.9 ± 2.4 *** | 67.2 ± 1.8 |
Positive controls | ||||
Ascorbic acid | 5.2 ± 0.8 | 1.6 ± 0.4 | ||
BHT | 63.5 ± 2.3 | |||
Propyl gallate | 0.1 ± 0.0 |
Samples | α-Amylase § | α-Glucosidase § | Lipase § |
---|---|---|---|
Three-phase decanter | 230.2 ± 4.9 *** | 168.8 ± 3.9 *** | 281.1 ± 4.48 *** |
Three-phase decanter ARA | 181.5 ± 3.7 *** | 154.6 ± 3.5 *** | 219.9 ± 4.05 *** |
Positive controls | |||
Acarbose | 50.2 ± 0.9 | 35.6 ± 1.1 | |
Orlistat | 37.4 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sicari, V.; Custureri, I.M.G.; Tundis, R.; Loizzo, M.R. Comparison of Physicochemical Characteristics and Bioactivity of Olive Oil Mill Wastewaters from Traditional and Water-Saving ARA-Controlled Three-Phase Decanter. Sustainability 2023, 15, 3890. https://doi.org/10.3390/su15053890
Sicari V, Custureri IMG, Tundis R, Loizzo MR. Comparison of Physicochemical Characteristics and Bioactivity of Olive Oil Mill Wastewaters from Traditional and Water-Saving ARA-Controlled Three-Phase Decanter. Sustainability. 2023; 15(5):3890. https://doi.org/10.3390/su15053890
Chicago/Turabian StyleSicari, Vincenzo, Irene Maria Grazia Custureri, Rosa Tundis, and Monica Rosa Loizzo. 2023. "Comparison of Physicochemical Characteristics and Bioactivity of Olive Oil Mill Wastewaters from Traditional and Water-Saving ARA-Controlled Three-Phase Decanter" Sustainability 15, no. 5: 3890. https://doi.org/10.3390/su15053890
APA StyleSicari, V., Custureri, I. M. G., Tundis, R., & Loizzo, M. R. (2023). Comparison of Physicochemical Characteristics and Bioactivity of Olive Oil Mill Wastewaters from Traditional and Water-Saving ARA-Controlled Three-Phase Decanter. Sustainability, 15(5), 3890. https://doi.org/10.3390/su15053890