Toward Deep Decontamination of Intermediate-Level-Activity Spent Ion-Exchange Resins Containing Poorly Soluble Inorganic Deposits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Reagents
2.1.2. Spent Ion-Exchange Resin (SIER)
2.1.3. Ferrocyanide Sorbents
2.1.4. Synthesis of Resorcinol-Formaldehyde Resin (RFR) and Iron Oxides
2.2. SIER Decontamination Using Alkaline Deactivation Solution (DS)
2.2.1. SIER Decontamination Using Alkaline DS under Static Conditions
2.2.2. RFR-M-Assisted SIER Decontamination Using Alkaline DS under Static Conditions
2.2.3. SIER Decontamination Using Alkaline DS under Dynamic Conditions
2.3. SIER Decontamination Using Alkaline DS (Scheme 1)
2.3.1. RFR-Assisted SIER Decontamination
2.3.2. RFR-M Regeneration
2.4. SIER Decontamination Using Acidic DS (Scheme 2)
2.5. 57Co Leaching from Model Iron Oxide Using Acidic DS
2.6. Decontamination of Liquid Radioactive Wastes (LRWs) Generated during SIER Decontamination
2.7. Methods of Analysis
3. Results and Discussion
3.1. SIER Characterization
3.2. RFR-Assisted SIER Decontamination from 137Cs Radionuclides Using Alkaline Solutions
3.3. SIER Decontamination from Radionuclides Entrapped in Metal Oxide Deposits
3.4. Decontamination of Liquid Radioactive Wastes (LRWs) Generated during SIER Decontamination
3.5. The Optimized Scheme of SIER Decontamination
3.6. Solid Radioactive Wastes Generated after SIER Decontamination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Atomic Energy Agency (IAEA). New Development and Improvements in Processing of Problematic Radioactive Waste; International Atomic Energy Agency (IAEA): Vienna, Austria, 2007. [Google Scholar]
- International Atomic Energy Agency (IAEA). Management of Spent Ion-Exchange Resins from Nuclear Power Plants; International Atomic Energy Agency (IAEA): Vienna, Austria, 1981. [Google Scholar]
- Wang, J.; Wan, Z. Treatment and Disposal of Spent Radioactive Ion-Exchange Resins Produced in the Nuclear Industry. Prog. Nucl. Energy 2015, 78, 47–55. [Google Scholar] [CrossRef]
- Osmanlioglu, A.E. Progress in Cementation of Reactor Resins. Prog. Nucl. Energy 2007, 49, 20–26. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; Zaki, A.A. Comparative Analysis of Nuclear Waste Solidification Performance Models: Spent Ion Exchanger-Cement Based Wasteforms. Process Saf. Environ. Prot. 2020, 136, 115–125. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; Ojovan, M.I. Toward Sustainable Cementitious Radioactive Waste Forms: Immobilization of Problematic Operational Wastes. Sustainability 2021, 13, 11992. [Google Scholar] [CrossRef]
- Wan, Z.; Xu, L.; Wang, J. Treatment of Spent Radioactive Anionic Exchange Resins Using Fenton-like Oxidation Process. Chem. Eng. J. 2016, 284, 733–740. [Google Scholar] [CrossRef]
- Gunale, T.L.; Mahajani, V.V.; Wattal, P.K.; Srinivas, C. Studies in Liquid Phase Mineralization of Cation Exchange Resin by a Hybrid Process of Fenton Dissolution Followed by Wet Oxidation. Chem. Eng. J. 2009, 148, 371–377. [Google Scholar] [CrossRef]
- Leybros, A.; Roubaud, A.; Guichardon, P.; Boutin, O. Supercritical Water Oxidation of Ion Exchange Resins: Degradation Mechanisms. Process Saf. Environ. Prot. 2010, 88, 213–222. [Google Scholar] [CrossRef]
- Nezu, A.; Morishima, T.; Watanabe, T. Thermal Plasma Treatment of Waste Ion-Exchange Resins Doped with Metals. Thin Solid Film. 2003, 435, 335–339. [Google Scholar] [CrossRef]
- Kamaruzaman, N.S.; Kessel, D.S.; Kim, C.-L. Management of Spent Ion-Exchange Resins From Nuclear Power Plant by Blending Method. J. Nucl. Fuel Cycle Waste Technol. 2018, 16, 65–82. [Google Scholar] [CrossRef]
- United States National Reguratory Commission. Final Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins from Commercial Nuclear Power Plants; Office of the Federal Register, National Archives and Records Administration: College Park, MD, USA, 2013; Volume 78.
- Korchagin, Y.P.; Aref’Ev, E.K.; Korchagin, E.Y. Improvement of Technology for Treatment of Spent Radioactive Ion-Exchange Resins at Nuclear Power Stations. Therm. Eng. 2010, 57, 593–597. [Google Scholar] [CrossRef]
- Yeon, J.W.; Choi, I.K.; Park, K.K.; Kwon, H.M.; Song, K. Chemical Analysis of Fuel Crud Obtained from Korean Nuclear Power Plants. J. Nucl. Mater. 2010, 404, 160–164. [Google Scholar] [CrossRef]
- Vaidotas, A. Waste Inventory for Near Surface Repository (NSR)—13482. In Proceedings of the WM2013—Waste Management Conference: International Collaboration and Continuous Improvemen, Phoenix, AZ, USA, 24–28 February 2013. [Google Scholar]
- Chaturvedi, S.; Dave, P.N. Removal of Iron for Safe Drinking Water. Desalination 2012, 303, 1–11. [Google Scholar] [CrossRef]
- Becker, F.L.; Rodríguez, D.; Schwab, M. Magnetic Removal of Cobalt from Waste Water by Ferrite Co-Precipitation. Procedia Mater. Sci. 2012, 1, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Hingston, F.J.; Raupach, M. The Reaction between Monosilicic Acid and Aluminium Hydroxide: I. Kinetics of Adsorption of Silicic Acid by Aluminium Hydroxide. Aust. J. Soil Res. 1967, 5, 295–309. [Google Scholar] [CrossRef]
- Ritcey, G.M. Silica Fouling in Ion Exchange, Carbon-in-Pulp and Solvent Extraction Circuits. Can. Metall. Q. 1986, 25, 31–43. [Google Scholar] [CrossRef]
- Peter, B.; Resintech, M. Behavior of Silica in Ion Exchange and Other Systems. In Proceedings of the International Water Conference, 60th Annual Meeting, Spokane, WA, USA, 4–8 August 1999; pp. 1–10. [Google Scholar]
- Kikuchi, M.; Sugimoto, Y.; Yusa, H.; Ebara, K.; Takeshima, M. Development of a Laundry Waste Treatment System. Nucl. Eng. Des. 1977, 44, 413–420. [Google Scholar] [CrossRef]
- Fujii, S.; Murakami, R. Smart Particles as Foam and Liquid Marble Stabilizers. KONA Powder Part. J. 2008, 26, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Palamarchuk, M.; Egorin, A.; Tokar, E.; Tutov, M.; Marinin, D.; Avramenko, V. Decontamination of Spent Ion-Exchangers Contaminated with Cesium Radionuclides Using Resorcinol-Formaldehyde Resins. J. Hazard. Mater. 2017, 321, 326–334. [Google Scholar] [CrossRef]
- Palamarchuk, M.S.; Tokar, E.A.; Tutov, M.V.; Yegorin, A.M. Deactivation of Spent Ion-Exchange Resins Contaminated by Cesium and Cobalt Radionuclides. Ecol. Ind. Russ. 2019, 23, 20–24. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Removal of Cesium Ions from Aqueous Solutions Using Various Separation Technologies. Rev. Environ. Sci. Biotechnol. 2019, 18, 231–269. [Google Scholar] [CrossRef]
- Hassan, N.M.; Adu-Wusu, K.; Marra, J.C. Resorcinol—Formaldehyde Adsorption of Cesium from Hanford Waste Solutions: Part I. Batch Equilibrium Study. J. Radioanal. Nucl. Chem. 2004, 262, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Dumont, N.; Favre-Réguillon, A.; Dunjic, B.; Lemaire, M. Extraction of Cesium from an Alkaline Leaching Solution of Spent Catalysts Using an Ion-Exchange Column. Sep. Sci. Technol. 1996, 31, 1001–1010. [Google Scholar] [CrossRef]
- Burgeson, I.E.; Deschane, J.R.; Cook, B.J.; Blanchard, D.L.; Weier, D.L. Evaluation of Elution Parameters for Cesium Ion Exchange Resins. Sep. Sci. Technol. 2006, 41, 2373–2390. [Google Scholar] [CrossRef]
- Fiskum, S.K.; Colburn, H.A.; Rovira, A.M.; Allred, J.R.; Smoot, M.R.; Peterson, R.A.; Landon, M.R.; Colosi, K.A. Cesium Removal from AP-105 Hanford Tank Waste Using Spherical Resorcinol Formaldehyde Resin. Sep. Sci. Technol. 2019, 54, 1932–1941. [Google Scholar] [CrossRef]
- Tokar, E.A.; Matskevich, A.I.; Palamarchuk, M.S.; Parotkina, Y.A.; Egorin, A.M. Decontamination of Spent Ion Exchange Resins Contaminated with Iron-Oxide Deposits Using Mineral Acid Solutions. Nucl. Eng. Technol. 2021, 53, 2918–2925. [Google Scholar] [CrossRef]
- Palamarchuk, M.S.; Shelestyuk, E.A.; Tokar’, E.A.; Egorin, A.M. Sorption of Complex Co(II)-EDTA by Anion Exchange Resin AB-17-8 from Model Deactivating Solutions Containing Fe(III)-EDTA. Ecol. Ind. Russ. 2020, 24, 20–23. [Google Scholar] [CrossRef]
- Smith, R.M.; Martell, A.E. Critical Stability Constants, Enthalpies and Entropies for the Formation of Metal Complexes of Aminopolycarboxylic Acids and Carboxylic Acids. Sci. Total Environ. 1987, 64, 125–147. [Google Scholar] [CrossRef]
- Karhu, J.; Harju, L.; Ivaska, A. Determination of the Solubility Products of Nitrilotriacetic Acid, Ethylenediaminetetraacetic Acid and Diethylenetriaminepentaacetic Acid. Anal. Chim. Acta 1999, 380, 105–111. [Google Scholar] [CrossRef]
- Anderegg, G. Komplexone, X. Die Protonierungskonstanten Einiger Komplexone in Verschiedenen Wässerigen Salzmedien (NaClO4, (CH3)4NCl, KNO3). Helv. Chim. Acta 1967, 50, 2333–2340. [Google Scholar] [CrossRef]
- Du, J.; Zhang, B.; Li, J.; Lai, B. Decontamination of Heavy Metal Complexes by Advanced Oxidation Processes: A Review. Chin. Chem. Lett. 2020, 31, 2575–2582. [Google Scholar] [CrossRef]
- Walling, S.A.; Um, W.; Corkhill, C.L.; Hyatt, N.C. Fenton and Fenton-like Wet Oxidation for Degradation and Destruction of Organic Radioactive Wastes. NPJ Mater. Degrad. 2021, 5, 1–20. [Google Scholar] [CrossRef]
- Rekab, K.; Lepeytre, C.; Goettmann, F.; Dunand, M.; Guillard, C.; Herrmann, J.M. Degradation of a Cobalt(II)–EDTA Complex by Photocatalysis and H2O2/UV-C. Application to Nuclear Wastes Containing60Co. J. Radioanal. Nucl. Chem. 2015, 303, 131–137. [Google Scholar] [CrossRef]
- Palamarchuk, M.; Voit, A.; Papynov, E.; Marinin, D.; Bratskaya, S.; Avramenko, V. Quantum Chemistry and Experimental Studies of Hydrothermal Destruction of Co-EDTA Complexes. J. Hazard. Mater. 2019, 363, 233–241. [Google Scholar] [CrossRef]
- Avramenko, V.; Mayorov, V.; Marinin, D.; Mironenko, A.; Palamarchuk, M.; Sergienko, V. Macroporous Catalysts for Hydrothermal Oxidation of Metallorganic Complexes at Liquid Radioactive Waste Treatment. In Proceedings of the ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management, Tsukuba, Japan, 3–7 October 2010; Volume 1, pp. 183–187. [Google Scholar]
- Avramenko, V.A.; Voit, A.V.; Dmitrieva, E.E.; Dobrzhanskii, V.G.; Maiorov, V.S.; Sergienko, V.I.; Shmatko, S.I. Hydrothermal Oxidation of Co-EDTA Complexes. Dokl. Chem. 2008, 418, 19–21. [Google Scholar] [CrossRef]
- Avramenko, V.A.; Bratskaya, S.Y.; Voit, A.V.; Dobrzhanskiy, V.G.; Egorin, A.M.; Zadorozhniy, P.A.; Mayorov, V.Y.; Sergienko, V.I. Implementation of the Continuous-Flow Hydrothermal Technology of the Treatment of Concentrated Liquid Radioactive Wastesat Nuclear Power Plants. Theor. Found. Chem. Eng. 2010, 44, 592–599. [Google Scholar] [CrossRef]
- Avramenko, V.A.; Bratskaya, S.Y.; Karpov, P.A.; Mayorov, V.Y.; Mironenko, A.Y.; Palamarchuk, M.S.; Sergienko, V.I. Macroporous Catalysts for Liquid-Phase Oxidation on the Basis of Manganese Oxides Containing Gold Nanoparticles. Dokl. Phys. Chem. 2010, 435, 193–197. [Google Scholar] [CrossRef]
- Palamarchuk, M.; Egorin, A.; Golikov, A.; Trukhin, I.; Bratskaya, S. Hydrothermal Oxidation of Pre-Dissolved Resorcinol-Formaldehyde Resins as a New Approach to Safe Processing of Spent Cesium-Selective Organic Ion-Exchangers. J. Hazard. Mater. 2021, 416, 125880. [Google Scholar] [CrossRef]
- Crossland, I. Disposal of Radioactive Waste. In Nuclear Fuel Cycle Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2012; pp. 531–557. ISBN 9780857090737. [Google Scholar]
- International Atomic Energy Agency (IAEA). Classification of Radioactive Waste; No. GSG-1; International Atomic Energy Agency (IAEA): Vienna, Austria, 2009; p. 48. [Google Scholar]
Decontamination Method * | DS:SIER Ratio | ||||
---|---|---|---|---|---|
10 | 20 | 30 | 40 | 50 | |
Static conditions (2.2.1) | 61 | 75 | 80 | 82 | 82 |
Dynamic conditions (2.2.3) | 89 | 95.5 | 96.3 | - | - |
Static conditions + 0.5 g RFR-M (2.2.2) | 99.8 | - | - | - | - |
SIER:DS:RFR-M * | 1:50:0.2 | 2:50:0.2 | 5:50:0.5 | 5:50:0.2 |
---|---|---|---|---|
1st cycle | 0.4 | 0.98 | 1.2 | 3.9 |
2nd cycle | 0.04 | 0.08 | 0.2 | 1.2 |
Solution | pH0 | 57Co in Solution, % | pHeqv |
---|---|---|---|
Na2EDTA 0.05 M | 4.4 | 19.7 | 5.9 |
Zn-EDTA 0.05 M | 1.8 | 80.2 | 2.4 |
Zn-EDTA 0.01 M | 2.2 | 20.8 | 3.9 |
Aliquot No. | Radionuclide Content, % | pH | |
---|---|---|---|
137Cs | 60Co | ||
1 | 41.9 | 2.1 | 8.9 |
2 | 18.7 | 40.5 | 2.76 |
3 | 17.3 | 31.7 | 1.87 |
4 | 13 | 12.4 | 1.38 |
5 | 6.1 | 10.3 | 1.36 |
6 | 3.0 | 3.0 | 1.34 |
137Cs | 60Co | 94Nb | ∑ | |
---|---|---|---|---|
Initial SIER | 2.7 × 104 | 3.1 × 103 | 7.6 × 102 | 3.1 × 104 |
SIER after wet magnetic separation | 2.1 × 104 | 1.7 × 103 | 1.7 × 102 | 2.3 × 104 |
SIER after RFR-assisted decontamination using alkaline DS | 127 | 1.5 × 103 | 95 | 1.7 × 103 |
SIER after decontamination using alkaline and acidic DS | 6.9 | 4.1 | 5.9 | 1.7 × 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palamarchuk, M.; Chervonetskiy, M.; Polkanova, N.; Bratskaya, S. Toward Deep Decontamination of Intermediate-Level-Activity Spent Ion-Exchange Resins Containing Poorly Soluble Inorganic Deposits. Sustainability 2023, 15, 3990. https://doi.org/10.3390/su15053990
Palamarchuk M, Chervonetskiy M, Polkanova N, Bratskaya S. Toward Deep Decontamination of Intermediate-Level-Activity Spent Ion-Exchange Resins Containing Poorly Soluble Inorganic Deposits. Sustainability. 2023; 15(5):3990. https://doi.org/10.3390/su15053990
Chicago/Turabian StylePalamarchuk, Marina, Maxim Chervonetskiy, Natalya Polkanova, and Svetlana Bratskaya. 2023. "Toward Deep Decontamination of Intermediate-Level-Activity Spent Ion-Exchange Resins Containing Poorly Soluble Inorganic Deposits" Sustainability 15, no. 5: 3990. https://doi.org/10.3390/su15053990
APA StylePalamarchuk, M., Chervonetskiy, M., Polkanova, N., & Bratskaya, S. (2023). Toward Deep Decontamination of Intermediate-Level-Activity Spent Ion-Exchange Resins Containing Poorly Soluble Inorganic Deposits. Sustainability, 15(5), 3990. https://doi.org/10.3390/su15053990