Particle Swarm Optimization with Targeted Position-Mutated Elitism (PSO-TPME) for Partially Shaded PV Systems
Abstract
:1. Introduction
2. PSO
2.1. PSO-TPME
Algorithm 1 PSO-TPME (Maximization). |
Swarm Initialization Initialize personal best and global best for to do for to N do if then else if then else if then else if then end if if then if then end if end if end for end for |
2.2. PSO Reinitialization
3. PV Model
3.1. PV under Partial Shading Conditions
3.2. Tracking Performance Criteria
4. Results
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, Y.; Xu, Z.; Wang, X.; Škare, M. Green energy adoption and its determinants: A bibliometric analysis. Renew. Sustain. Energy Rev. 2022, 153, 111780. [Google Scholar] [CrossRef]
- Stucki, T. Which firms benefit from investments in green energy technologies?–The effect of energy costs. Res. Policy 2019, 48, 546–555. [Google Scholar] [CrossRef]
- Islam, H.; Mekhilef, S.; Shah, N.B.M.; Soon, T.K.; Seyedmahmousian, M.; Horan, B.; Stojcevski, A. Performance evaluation of maximum power point tracking approaches and photovoltaic systems. Energies 2018, 11, 365. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Liang, W.; Wang, G.; Zhang, Y.; Cao, S. A novel water-free cleaning robot for dust removal from distributed photovoltaic (PV) in water-scarce areas. Sol. Energy 2022, 241, 553–563. [Google Scholar] [CrossRef]
- Zhong, C.; Zhou, Y.; Chen, J.; Liu, Z. DC-side synchronous active power control of two-stage photovoltaic generation for frequency support in Islanded microgrids. Energy Rep. 2022, 8, 8361–8371. [Google Scholar] [CrossRef]
- Bounechba, H.; Bouzid, A.; Nabti, K.; Benalla, H. Comparison of perturb & observe and fuzzy logic in maximum power point tracker for PV systems. Energy Procedia 2014, 50, 677–684. [Google Scholar]
- López-Erauskin, R.; González, A.; Petrone, G.; Spagnuolo, G.; Gyselinck, J. Multi-variable perturb and observe algorithm for grid-tied PV systems with joint central and distributed MPPT configuration. IEEE Trans. Sustain. Energy 2020, 12, 360–367. [Google Scholar] [CrossRef]
- Abdelwahab, S.A.M.; Hamada, A.M.; Abdellatif, W.S. Comparative analysis of the modified perturb & observe with different MPPT techniques for PV grid connected systems. Int. J. Renew. Energy Res. 2020, 10, 55–164. [Google Scholar]
- Xiao, W.; Dunford, W.G. A modified adaptive hill climbing MPPT method for photovoltaic power systems. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), Aachen, Germany, 20–25 June 2004; IEEE: New York, NY, USA, 2004; Volume 3, pp. 1957–1963. [Google Scholar]
- Liu, F.; Kang, Y.; Zhang, Y.; Duan, S. Comparison of P&O and hill climbing MPPT methods for grid-connected PV converter. In Proceedings of the 2008 3rd IEEE Conference on Industrial Electronics and Applications, Singapore, 3–5 June 2008; IEEE: New York, NY, USA, 2008; pp. 804–807. [Google Scholar]
- Rawat, R.; Chandel, S. Hill climbing techniques for tracking maximum power point in solar photovoltaic systems—A review. Int. J. Sustain. Dev. Green Econ. (IJSDGE) 2013, 2, 90–95. [Google Scholar]
- Li, R.; Yu, N.; Wang, X.; Liu, Y.; Cai, Z.; Wang, E. Model-based synthetic geoelectric sampling for magnetotelluric inversion with deep neural networks. IEEE Trans. Geosci. Remote Sens. 2020, 60, 1–14. [Google Scholar] [CrossRef]
- Li, R.; Wu, X.; Tian, H.; Yu, N.; Wang, C. Hybrid Memetic Pretrained Factor Analysis-Based Deep Belief Networks for Transient Electromagnetic Inversion. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
- Farh, H.M.; Eltamaly, A.M.; Al-Saud, M.S. Interleaved boost converter for global maximum power extraction from the photovoltaic system under partial shading. Int. Renew. Power Gener. 2019, 13, 1232–1238. [Google Scholar] [CrossRef]
- Farzaneh, J.; Keypour, R.; Karsaz, A. A novel fast maximum power point tracking for a PV system using hybrid PSO-ANFIS algorithm under partial shading conditions. Int. J. Ind. Electron. Control Optim. 2019, 2, 47–58. [Google Scholar]
- Eltamaly, A.M.; Al-Saud, M.; Abokhalil, A.G.; Farh, H.M. Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading. Renew. Sustain. Energy Rev. 2020, 124, 109719. [Google Scholar] [CrossRef]
- Jiang, L.L.; Maskell, D.L.; Patra, J.C. A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build. 2013, 58, 227–236. [Google Scholar] [CrossRef]
- Krishnan G, S.; Kinattingal, S.; Simon, S.P.; Nayak, P.S.R. MPPT in PV systems using ant colony optimisation with dwindling population. IET Renew. Power Gener. 2020, 14, 1105–1112. [Google Scholar] [CrossRef]
- Phanden, R.K.; Sharma, L.; Chhabra, J.; Demir, H.İ. A novel modified ant colony optimization based maximum power point tracking controller for photovoltaic systems. Mater. Today Proc. 2021, 38, 89–93. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Z.; Wei, L. An immune firefly algorithm for tracking the maximum power point of PV array under partial shading conditions. Energies 2019, 12, 3083. [Google Scholar] [CrossRef] [Green Version]
- Abo-Khalil, A.G.; Alharbi, W.; Al-Qawasmi, A.R.; Alobaid, M.; Alarifi, I.M. Maximum power point tracking of PV systems under partial shading conditions based on opposition-based learning firefly algorithm. Sustainability 2021, 13, 2656. [Google Scholar] [CrossRef]
- Farayola, A.M.; Sun, Y.; Ali, A. Global maximum power point tracking and cell parameter extraction in Photovoltaic systems using improved firefly algorithm. Energy Rep. 2022, 8, 162–186. [Google Scholar] [CrossRef]
- Benyoucef, A.s.; Chouder, A.; Kara, K.; Silvestre, S.; Ait sahed, O. Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl. Soft Comput. 2015, 32, 38–48. [Google Scholar] [CrossRef] [Green Version]
- González-Castaño, C.; Restrepo, C.; Kouro, S.; Rodriguez, J. MPPT algorithm based on artificial bee colony for PV system. IEEE Access 2021, 9, 43121–43133. [Google Scholar] [CrossRef]
- Gong, L.; Hou, G.; Huang, C. A two-stage MPPT controller for PV system based on the improved artificial bee colony and simultaneous heat transfer search algorithm. ISA Trans. 2023, 132, 428–443. [Google Scholar] [CrossRef]
- Daraban, S.; Petreus, D.; Morel, C. A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading. Energy 2014, 74, 374–388. [Google Scholar] [CrossRef]
- Hadji, S.; Gaubert, J.P.; Krim, F. Real-time genetic algorithms-based MPPT: Study and comparison (theoretical an experimental) with conventional methods. Energies 2018, 11, 459. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.; Bass, O.; Masoum, M.A. An improved genetic algorithm based fractional open circuit voltage MPPT for solar PV systems. Energy Rep. 2023, 9, 1535–1548. [Google Scholar] [CrossRef]
- Mohanty, S.; Subudhi, B.; Ray, P.K. A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans. Sustain. Energy 2015, 7, 181–188. [Google Scholar] [CrossRef]
- Guo, K.; Cui, L.; Mao, M.; Zhou, L.; Zhang, Q. An improved gray wolf optimizer MPPT algorithm for PV system with BFBIC converter under partial shading. IEEE Access 2020, 8, 103476–103490. [Google Scholar] [CrossRef]
- Motahhir, S.; Chtita, S.; Chouder, A.; El Hammoumi, A. Enhanced energy output from a PV system under partial shaded conditions through Grey wolf optimizer. Clean. Eng. Technol. 2022, 9, 100533. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Farh, H.M.; Al-Saud, M.S. Grade point average assessment for metaheuristic GMPP techniques of partial shaded PV systems. IET Renew. Power Gener. 2019, 13, 1215–1231. [Google Scholar] [CrossRef]
- Lian, K.; Jhang, J.; Tian, I. A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization. IEEE J. Photovolta. 2014, 4, 626–633. [Google Scholar] [CrossRef]
- Sundareswaran, K.; Palani, S.; Vignesh kumar, V. Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions. Renew. Energy 2015, 75, 308–317. [Google Scholar] [CrossRef]
- Mathi, D.K.; Chinthamalla, R. A hybrid global maximum power point tracking method based on butterfly particle swarm optimization and perturb and observe algorithms for a photovoltaic system under partially shaded conditions. Int. Trans. Electr. Energy Syst. 2020, 30, e12543. [Google Scholar] [CrossRef]
- Babu, T.S.; Rajasekar, N.; Sangeetha, K. Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition. Appl. Soft Comput. 2015, 34, 613–624. [Google Scholar] [CrossRef]
- Gavhane, P.S.; Krishnamurthy, S.; Dixit, R.; Ram, J.P.; Rajasekar, N. EL-PSO based MPPT for solar PV under partial shaded condition. Energy Procedia 2017, 117, 1047–1053. [Google Scholar] [CrossRef]
- Sen, T.; Pragallapati, N.; Agarwal, V.; Kumar, R. Global maximum power point tracking of PV arrays under partial shading conditions using a modified particle velocity-based PSO technique. IET Renew. Power Gener. 2018, 12, 555–564. [Google Scholar] [CrossRef]
- Panda, K.P.; Anand, A.; Bana, P.R.; Panda, G. Novel PWM control with modified PSO-MPPT algorithm for reduced switch MLI based standalone PV system. Int. J. Emerg. Electr. Power Syst. 2018, 19, 116469225. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.K.; Kinattingal, S.; Simon, S.P.; Ark Kumar, K. Enhanced energy harvesting from shaded PV systems using an improved particle swarm optimisation. IET Renew. Power Gener. 2020, 14, 1471–1480. [Google Scholar] [CrossRef]
- Motamarri, R.; Nagu, B. GMPPT by using PSO based on Lévy flight for photovoltaic system under partial shading conditions. IET Renew. Power Gener. 2020, 14, 1143–1155. [Google Scholar] [CrossRef]
- Makhloufi, S.; Mekhilef, S. Logarithmic PSO-Based Global/Local Maximum Power Point Tracker for Partially Shaded Photovoltaic Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 375–386. [Google Scholar] [CrossRef]
- Madhavan, K.; Ansari, I.A. Maximum Power Point Tracking of Partially Shaded PV System with Improved PSO Strategy. In Soft Computing: Theories and Applications; Springer Nature: Singapore, 2022; pp. 893–903. [Google Scholar]
- Dileep, G.; Singh, S. An improved particle swarm optimization based maximum power point tracking algorithm for PV system operating under partial shading conditions. Sol. Energy 2017, 158, 1006–1015. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Farh, H.M. Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC. Sol. Energy 2019, 177, 306–316. [Google Scholar] [CrossRef]
- Li, H.; Yang, D.; Su, W.; Lü, J.; Yu, X. An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading. IEEE Trans. Ind. Electron. 2018, 66, 265–275. [Google Scholar] [CrossRef]
- Shaqarin, T. A Modified Reinitialization Mechanism for Particle Swarm Optimization Based Control, Case Study: PV System. In Proceedings of the 1st International Conference on Automation, Robotics & Communications for Industry 4.0 (ARCI), Chamonix-Mont-Blanc, France, 3–5 February 2021; IFSA: Barcelona, Spain, 2021; p. 86. [Google Scholar]
- Shaqarin, T.; Noack, B.R. A fast-converging particle swarm optimization through targeted, position-mutated, elitism (PSO-TPME). Int. J. Comput. Intell. Syst. 2023, 16, 6. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: New York, NY, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- De Soto, W.; Klein, S.A.; Beckman, W.A. Improvement and validation of a model for photovoltaic array performance. Sol. Energy 2006, 80, 78–88. [Google Scholar] [CrossRef]
- Dolara, A.; Leva, S.; Manzolini, G. Comparison of different physical models for PV power output prediction. Sol. Energy 2015, 119, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Karatepe, E.; Hiyama, T. Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renew. Power Gener. 2009, 3, 239–253. [Google Scholar]
- Pathy, S.; Subramani, C.; Sridhar, R.; Thamizh Thentral, T.; Padmanaban, S. Nature-inspired MPPT algorithms for partially shaded PV systems: A comparative study. Energies 2019, 12, 1451. [Google Scholar] [CrossRef] [Green Version]
- Tey, K.S.; Mekhilef, S.; Yang, H.T.; Chuang, M.K. A differential evolution based MPPT method for photovoltaic modules under partial shading conditions. Int. J. Photoenergy 2014, 2014, 945906. [Google Scholar] [CrossRef] [Green Version]
- Rezk, H.; Fathy, A.; Abdelaziz, A.Y. A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions. Renew. Sustain. Energy Rev. 2017, 74, 377–386. [Google Scholar] [CrossRef]
(A) | (A) | n | (A) | (V) | |||
---|---|---|---|---|---|---|---|
7.865 | 2.9259 ×10 | 0.9812 | 313.4 | 0.394 | 7.84 | 36.3 | 0.102 |
N | (s) | % | (W) | (W) | (W) | (W) | ||
---|---|---|---|---|---|---|---|---|
PSO | 10 | 0.468 | 91.676 | 4210.342 | 2750.107 | 4281.972 | 2750.463 | |
TPME1 | 10 | 2 | 0.244 | 94.5 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME1 | 10 | 3 | 0.308 | 92.638 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME1 | 10 | 4 | 0.262 | 93.45 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME2 | 10 | 2 | 0.360 | 93.672 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME2 | 10 | 3 | 0.311 | 93.931 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME2 | 10 | 4 | 0.318 | 94.090 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
PSO | 5 | 0.206 | 95.932 | 4210.342 | 2750.107 | 4281.972 | 2750.464 | |
TPME1 | 5 | 2 | 0.113 | 97.221 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME1 | 5 | 3 | 0.136 | 96.916 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME1 | 5 | 4 | 0.134 | 96.654 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME2 | 5 | 2 | 0.156 | 97.117 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME2 | 5 | 3 | 0.154 | 97.463 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME2 | 5 | 4 | 0.177 | 97.398 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
PSO | 3 | 0.098 | 98.242 | 4210.342 | 2750.107 | 4281.972 | 2750.464 | |
TPME1 | 3 | 2 | 0.095 | 90.029 | 4210.342 | 2709.7 | 4014.338 | 2134.983 |
TPME1 | 3 | 3 | 0.097 | 98.318 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME1 | 3 | 4 | 0.078 | 98.317 | 4210.342 | 2750.107 | 4281.972 | 2745.844 |
TPME2 | 3 | 2 | 0.105 | 97.747 | 4210.342 | 2750.107 | 4281.972 | 2745.844 |
TPME2 | 3 | 3 | 0.080 | 98.354 | 4210.342 | 2750.107 | 4281.972 | 2750.464 |
TPME2 | 3 | 4 | 0.114 | 98.138 | 4210.342 | 2750.107 | 4281.972 | 2745.844 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaqarin, T. Particle Swarm Optimization with Targeted Position-Mutated Elitism (PSO-TPME) for Partially Shaded PV Systems. Sustainability 2023, 15, 3993. https://doi.org/10.3390/su15053993
Shaqarin T. Particle Swarm Optimization with Targeted Position-Mutated Elitism (PSO-TPME) for Partially Shaded PV Systems. Sustainability. 2023; 15(5):3993. https://doi.org/10.3390/su15053993
Chicago/Turabian StyleShaqarin, Tamir. 2023. "Particle Swarm Optimization with Targeted Position-Mutated Elitism (PSO-TPME) for Partially Shaded PV Systems" Sustainability 15, no. 5: 3993. https://doi.org/10.3390/su15053993
APA StyleShaqarin, T. (2023). Particle Swarm Optimization with Targeted Position-Mutated Elitism (PSO-TPME) for Partially Shaded PV Systems. Sustainability, 15(5), 3993. https://doi.org/10.3390/su15053993