Modelling Sustainable Non-Renewable and Renewable Energy Based on the EKC Hypothesis for Africa’s Ten Most Popular Tourist Destinations
Abstract
:1. Introduction
2. Literature Review
2.1. Tourism and Macroeconomic Variables
2.2. Tourism, Energy Mix and Environmental Kuznet Curve (EKC)
3. Methodology
3.1. Data
3.2. Tourism-Induced EKC Model
3.3. Econometric Models
3.3.1. Cross-Sectional Dependence Test (CSD)
3.3.2. Slope Homogeneity (SH) Test
3.3.3. Stationarity Test
3.3.4. Co-Integration Test
4. Findings and Results Analysis
5. Discussion
6. Conclusions, Limitations, and Future Research
7. Policy Implication
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
GDP | Gross Domestic Products |
CO2 | Carbon dioxide emissions |
EKC | Environmental Kuznets Curve |
AMG | Augmented Mean Group |
MG | Mean Group |
CCEMG | Common Correlated Effects Mean Group |
SH | Slope Heterogeneity |
CSD | Cross-sectional Dependence |
Appendix A. Summary Statistics of Variables
Variables | Mean | SD | Min | Max |
---|---|---|---|---|
LCO2 | −0.199 | 1.378 | −2.971 | 2.149 |
LGDP | 7.684 | 0.775 | 6.179 | 9.273 |
LGDP2 | 59.64 | 11.92 | 38.18 | 85.98 |
LTA | 14.64 | 1.176 | 12.07 | 16.53 |
LREN | 3.413 | 1.005 | 1.629 | 4.558 |
LFOS | 3.768 | 0.861 | 1.712 | 4.590 |
References
- Lee, C.C.; Chang, C.P. Tourism development and economic growth: A closer look at panels. Tour. Manag. 2008, 29, 180–192. [Google Scholar] [CrossRef]
- Brida, J.G.; Pulina, M. A Literature Review on the Tourism-Led-Growth Hypothesis. Working Paper. 2010. Available online: https://iris.uniss.it/retrieve/handle/11388/263911/195146/Brida_J_Literature_review_on_the.pdf (accessed on 2 October 2022).
- Chou, M.C. Does tourism development promote economic growth in transition countries? A panel data analysis. Econ. Model. 2013, 33, 226–232. [Google Scholar] [CrossRef] [Green Version]
- León-Gómez, A.; Ruiz-Palomo, D.; Fernández-Gámez, M.A.; García-Revilla, M.R. Sustainable tourism development and economic growth: Bibliometric review and analysis. Sustainability 2021, 13, 2270. [Google Scholar] [CrossRef]
- WTTC. Travel & Tourism Economic Impact. 2021. Available online: https://wttc.org/Research/Economic-Impact (accessed on 10 December 2022).
- Chisadza, C.; Clance, M.; Gupta, R.; Wanke, P. Uncertainty and tourism in Africa. Tour. Econ. 2022, 28, 964–978. [Google Scholar] [CrossRef]
- Kimeria, C. Africa’s Tourism Industry Is Now the Second Fastest Growing in the World. 2019. Available online: https://qz.com/africa/1717902/africas-tourism-industry-is-second-fastest-growing-in-world (accessed on 5 December 2022).
- UNWTO. International Tourism Growth Continues to Outpace the Global Economy. 2020. Available online: https://www.unwto.org/international-tourism-growth-continues-to-outpace-the-economy (accessed on 5 December 2022).
- Pujiati, A.; Handayani, B.D.; Yanto, H.; Ridzuan, A.R.; Borhan, H.; Shaari, M.S. The detrimental effects of dirty energy, foreign investment and corruption, on environmental quality: New evidence from Indonesia. Front. Environ. Sci. 2023, 10, 1074172. [Google Scholar] [CrossRef]
- Shaari, M.S.; Lee, W.C.; Ridzuan, A.R.; Lau, E.; Masnan, F. The impacts of energy consumption by sector and foreign direct investment on CO2 emissions in Malaysia. Sustainability 2022, 14, 16028. [Google Scholar] [CrossRef]
- Ridzuan, A.R.; Kumaran, V.V.; Fianto, B.A.; Shaari, M.S.; Esquivias, M.A.; Albani, A. Reinvestigating the presence of environmental kuznets curve in Malaysia: The role of foreign direct investment. Int. J. Energy Econ. Policy 2022, 12, 217–225. [Google Scholar] [CrossRef]
- Shaari, M.S.; Zainol Abidin, M.; Ridzuan, A.R.; Meo, M.S. The impacts of rural population growth, energy use and economic growth on CO2 Emissions. Int. J. Energy Econ. Policy 2021, 11, 553–561. [Google Scholar] [CrossRef]
- Ridzuan, A.R.; Md Razak, M.I.; Albani, A.; Murshidi, M.H.; Abdul Latiff, A.R. The impact of energy consumption based on fossil fuel and hydroelectricity towards pollution in Malaysia, Indonesia and Thailand. Int. J. Energy Econ. Policy 2020, 10, 215–227. [Google Scholar] [CrossRef]
- Vija Kumaran, V.; Ridzuan, A.R.; Khan, F.U.; Abdullah, H.; Mohamad, Z.Z. An empirical analysis of factors affecting on renewable energy consumption in selected ASEAN countries: Does quality of governance matters? Int. J. Energy Econ. Policy 2020, 10, 1–9. [Google Scholar]
- Md Razak, M.I.; Ridzuan, A.R.; Mohd Masdek, N.R.; Mohd Rasid, M.R.; Talib, A.H. Determinants of environmental quality in selected Asia Pacific countries based on panel estimation. Adv. Sci. Lett. 2017, 23, 9215–9219. [Google Scholar] [CrossRef]
- Ehigiamusoe, K.U. A disaggregated approach to analysing the effect of electricity on carbon emissions: Evidence from African countries. Energy Rep. 2020, 6, 1286–1296. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- WTTC. WTTC launches groundbreaking Net Zero Roadmap for Travel & Tourism. 2021. Available online: https://wttc.org/news-article/wttc-launches-groundbreaking-net-zero-roadmap-for-travel-tourism (accessed on 5 December 2022).
- UNWTO. Climate Change and Tourism—Responding to Global Challenges; World Tourism Organization: Madrid, Spain, 2008. [Google Scholar]
- Sifolo, P.P.S. A tourism theoretical gap: The case of the Northern Cape Province in South Africa. Afr. J. Hosp. Tour. Leis. 2015, 4, 1–14. [Google Scholar]
- Rusu, S. Tourism multiplier effect. J. Econ. Bus. Res. 2011, 1, 70–76. [Google Scholar]
- African Union. African Union Climate Change and Resilient Development Strategy and Action Plan (2022–2032). 2022. Available online: https://repository.uneca.org/handle/10855/47738#:∼:text=This%20African%20Union%20Climate%20Change,long%20term%2C%20climate%20resilient%20development (accessed on 6 December 2022).
- Styles, D.; Schönberger, H.; Galvez Martos, J.L. Best Environmental Management Practice in the Tourism Sector; Publications Office of the European Union. 2013. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC82602/tourismbemp.pdf (accessed on 20 November 2022).
- Akbostanci, E.; Türüt-Asik, S.; Tunç, G. The relationship between income and environmental in Turkey: Is there an environmental Kuznets curve? Energy Policy 2009, 37, 861–867. [Google Scholar] [CrossRef]
- De Vita, G.; Katircioglu, S.; Altinay, L.; Fethi, S.; Mercan, M. Revisiting the environmental Kuznets curve hypothesis in a tourism development context. Environ. Sci. Pollut. Res. 2015, 22, 16652–16663. [Google Scholar] [CrossRef]
- Nosheen, M.; Iqbal, J.; Khan, H.U. Analysing the linkage among CO2 emissions, economic growth, tourism, and energy consumption in the Asian economies. Environ. Sci. Pollut. Res. 2021, 28, 16707–16719. [Google Scholar] [CrossRef]
- Rahman, A.R.A.; Shaari, M.S.; Masnan, F.; Esquivias, M.A. The Impacts of Energy Use, Tourism and Foreign Workers on CO2 Emissions in Malaysia. Sustainability 2022, 14, 2461. [Google Scholar] [CrossRef]
- Mushtaq, M.; Ahmed, S. Environmental Kuznets Curve: Moderating role of financial development. Econ. J. Emerg. Mark. 2021, 13, 27–40. [Google Scholar] [CrossRef]
- Isik, C.; Ongan, S.; Ozdemir, D. The economic growth/development and environmental degradation: Evidence from the US state-level EKC hypothesis. Environ. Sci. Pollut. Res. 2019, 26, 30772–30781. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Alola, A.A.; Bekun, F.V. An assessment of environmental sustainability corridor: The role of economic expansion and research and development in EU countries. Sci. Total Environ. 2020, 713, 136726. [Google Scholar] [CrossRef]
- Shakouri, B.; Khoshnevis Yazdi, S.; Ghorchebigi, E. Does tourism development promote CO2 emissions? Anatolia 2017, 28, 444–452. [Google Scholar] [CrossRef]
- Shi, H.; Li, X.; Zhang, H.; Liu, X.; Li, T.; Zhong, Z. Global difference in the relationships between tourism, economic growth, CO2 emissions, and primary energy consumption. Curr. Issues Tour. 2020, 23, 1122–1137. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. CO2 emissions, energy consumption and economic growth in Turkey. Renew. Sustain. Energy Rev. 2010, 14, 3220–3225. [Google Scholar] [CrossRef]
- Gao, J.; Xu, W.; Zhang, L. Tourism, economic growth, and tourism-induced EKC hypothesis: Evidence from the Mediterranean region. Empir. Econ. 2021, 60, 1507–1529. [Google Scholar] [CrossRef]
- Sherafatian-Jahromi, R.; Othman, M.S.; Law, S.H.; Ismail, N.W. Tourism and CO2 emissions nexus in Southeast Asia: New evidence from panel estimation. Environ. Dev. Sustain. 2017, 19, 1407–1423. [Google Scholar] [CrossRef]
- Ravinthirakumaran, K.; Ravinthirakumaran, N. Examining the relationship between tourism and CO2 emissions: Evidence from APEC region. Anatolia 2022, 1–15. [Google Scholar] [CrossRef]
- Ang, J.B. Economic development, pollutant emissions and energy consumption in Malaysia. J. Policy Model. 2008, 30, 271–278. [Google Scholar] [CrossRef]
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Dogan, E.; Turkekul, B. CO2 emissions, real output, energy consumption, trade, urbanisation and financial development: Testing the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203–1213. [Google Scholar] [CrossRef]
- Voumik, L.C.; Islam, M.; Rahaman, A.; Rahman, M. Emissions of carbon dioxide from electricity production in ASEAN countries: GMM and quantile regression analysis. SN Bus. Econ. 2022, 2, 1–20. [Google Scholar] [CrossRef]
- Majumdar, S.; Paris, C.M. Environmental Impact of Urbanization, Bank Credits, and Energy Use in the UAE—A Tourism-Induced EKC Model. Sustainability 2022, 14, 7834. [Google Scholar] [CrossRef]
- Ciarlantini, S.; Madaleno, M.; Robaina, M.; Monteiro, A.; Eusébio, C.; Carneiro, M.J.; Gama, C. Air pollution and tourism growth relationship: Exploring regional dynamics in five European countries through an EKC model. Environ. Sci. Pollut. Res. 2022, 1–19. [Google Scholar] [CrossRef]
- Usman, M.; Kousar, R.; Makhdum, M.S.A. The role of financial development, tourism, and energy utilisation in environmental deficit: Evidence from 20 highest emitting economies. Environ. Sci. Pollut. Res. 2020, 27, 42980–42995. [Google Scholar] [CrossRef]
- Ișik, C.; Ahmad, M.; Pata, U.K.; Ongan, S.; Radulescu, M.; Adedoyin, F.F.; Bayraktaroğlu, E.; Aydın, S.; Ongan, A. An Evaluation of the Tourism-Induced Environmental Kuznets Curve (T-EKC) Hypothesis: Evidence from G7 Countries. Sustainability 2020, 12, 9150. [Google Scholar] [CrossRef]
- Aziz, N.; Mihardjo, L.W.W.; Sharif, A.; Jermsittiparsert, K. The role of tourism and renewable energy in testing the environmental Kuznets curve in the BRICS countries: Fresh evidence from methods of moments quantile regression. Environ. Sci. Pollut. Res. 2020, 27, 39427–39441. [Google Scholar] [CrossRef]
- Alsayed, A.R.M.; Malik, A. Detecting the environmental Kuznets curve in African countries. Stud. Econ. Econom. 2020, 44, 35–44. [Google Scholar] [CrossRef]
- Papavasileiou, E.F.; Tzouvanas, P. Tourism carbon Kuznets-curve hypothesis: A systematic literature review and a paradigm shift to a corporation-performance perspective. J. Travel Res. 2021, 60, 896–911. [Google Scholar] [CrossRef]
- Özkan, P.; Süer, S.; Keser, İ.K.; Kocakoç, İ.D. The effect of service quality and customer satisfaction on customer loyalty: The mediation of perceived value of services, corporate image, and corporate reputation. Int. J. Bank Mark. 2020, 38, 384–405. [Google Scholar] [CrossRef]
- Mitić, P.; Kresoja, M.; Minović, J. A literature survey of the environmental Kuznets curve. Econ. Anal. 2019, 52, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Bese, E.; Friday, H.S. Analysis of coal consumption and growth nexus by environmental Kuznets Curve. Int. J. Energy Econ. Policy 2021, 11, 80–86. [Google Scholar] [CrossRef]
- Xu, T. Investigating environmental Kuznets curve in China–aggregation bias and policy implications. Energy Policy 2018, 114, 315–322. [Google Scholar] [CrossRef]
- Nuroglu, E.; Kunst, R.M. Kuznets and Environmental Kuznets Curves for Developing Countries. In Industrial Policy and Sustainable Growth. Sustainable Development, 2nd ed.; Yülek, M., Ed.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Sinha, A.; Bhatt, M.Y. Investigating the environmental Kuznets curve for India. J. Environ. 2016, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, R.; Managi, S. Linking wealth and productivity of natural capital for 140 countries between 1990 and 2014. Soc. Indic. Res. 2019, 141, 443–462. [Google Scholar] [CrossRef]
- Kurniawan, R.; Sugiawan, Y.; Managi, S. Economic growth–environment nexus: An analysis based on natural capital component of inclusive wealth. Ecol. Indic. 2021, 120, 106982. [Google Scholar] [CrossRef]
- Bo, S. A literature survey on environmental Kuznets curve. Energy Procedia 2011, 5, 1322–1325. [Google Scholar] [CrossRef] [Green Version]
- Zaim, O. Measuring environmental performance of state manufacturing through changes in pollution intensities: A DEA framework. Ecol. Econ. 2004, 48, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Voumik, L.C.; Rahman, M.; Akter, S. Investigating the EKC hypothesis with renewable energy, nuclear energy, and R&D for EU: Fresh panel evidence. Heliyon 2022, 8, e12447. [Google Scholar] [CrossRef]
- Plassmann, F.; Khanna, N. Household income and pollution: Implications for the debate about the environmental Kuznets curve hypothesis. J. Environ. Dev. 2006, 15, 22–41. [Google Scholar] [CrossRef]
- Spangenberg, J.H. The environmental Kuznets curve: A methodological artefact? Popul. Environ. 2001, 23, 175–191. [Google Scholar] [CrossRef]
- World Development Indicators. Databank. 2022. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 25 August 2022).
- Fethi, S.; Senyucel, E. The role of tourism development on CO2 emission reduction in an extended version of the environmental Kuznets curve: Evidence from top 50 tourist destination countries. Environ. Dev. Sustain. 2021, 23, 1499–1524. [Google Scholar] [CrossRef]
- Katircioglu, S.T. Revisiting the tourism-led growth hypothesis for Turkey using the bounds test and Johansen approach for cointegration. Tour. Manag. 2009, 30, 17–20. [Google Scholar] [CrossRef]
- Mehmood, U. Examining the role of financial inclusion towards CO2 emissions: Presenting the role of renewable energy and globalisation in the context of EKC. Environ. Sci. Pollut. Res. 2022, 29, 15946–15954. [Google Scholar] [CrossRef]
- Rahman, M.H.; Voumik, L.C.; Islam, M.J.; Halim, M.A.; Esquivias, M.A. Economic Growth, Energy Mix, and Tourism-Induced EKC Hypothesis: Evidence from Top Ten Tourist Destinations. Sustainability 2022, 14, 16328. [Google Scholar] [CrossRef]
- Salim, R.A.; Hassan, K.; Shafiei, S. Renewable and non-renewable energy consumption and economic activities: Further evidence from OECD countries. Energy Econ. 2014, 44, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Hussain, J.; Bano, S.; Chenggang, Y. The repercussions of foreign direct investment, renewable energy and health expenditure on environmental decay? An econometric analysis of B&RI countries. J. Environ. Plan. Manag. 2020, 63, 1965–1986. [Google Scholar] [CrossRef]
- Pesaran, M.H. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 2006, 74, 967–1012. [Google Scholar] [CrossRef] [Green Version]
- Kapetanios, G.; Pesaran, M.H.; Yamagata, T. Panels with non-stationary multifactor error structures. J. Econom. 2011, 160, 326–348. [Google Scholar] [CrossRef] [Green Version]
- Eberhardt, M.; Bond, S. Cross-Section Dependence in Nonstationary Panel Models: A Novel Estimator; MPRA Paper 17692; University Library of Munich: Munich, Germany, 2009. [Google Scholar]
- Eberhardt, M.; Teal, F. Econometrics for grumblers: A new look at the literature on cross-country growth empirics. J. Econ. Surv. 2011, 25, 109–155. [Google Scholar] [CrossRef] [Green Version]
- Westerlund, J.; Edgerton, D.L. A panel bootstrap cointegration test. Econ. Lett. 2007, 97, 185–190. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econom. 2008, 142, 50–93. [Google Scholar] [CrossRef] [Green Version]
- Westerlund, J. Testing for error correction in panel data. Oxf. Bull. Econ. Stat. 2007, 69, 709–748. [Google Scholar] [CrossRef] [Green Version]
- Voumik, L.C.; Hossain, M.S.; Islam, M.A.; Rahaman, A. Power Generation Sources and Carbon Dioxide Emissions in BRICS Countries: Static and Dynamic Panel Regression. Strateg. Plan. Energy Environ. 2022, 401–424. [Google Scholar] [CrossRef]
- Voumik, L.C.; Nafi, S.M.; Kuri, B.C.; Raihan, A. How tourism affects women’s employment in Asian countries: An application of Generalized Method of Moments and Quantile Regression. J. Soc. Sci. Manag. Stud. 2022, 1, 57–72. [Google Scholar] [CrossRef]
- Voumik, L.C.; Nafi, S.M.; Majumder, S.C.; Islam, M.A. The impact of tourism on the women employment in South American and Caribbean countries. Int. J. Contemp. Hosp. Manag. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Voumik, L.C.; Sultana, T. Impact of urbanization, industrialization, electrification and renewable energy on the environment in BRICS: Fresh evidence from novel CS-ARDL model. Heliyon 2022, 8, e11457. [Google Scholar] [CrossRef]
- Raihan, A.; Voumik, L.C. Carbon emission reduction potential of renewable energy, remittance, and technological innovation: Empirical evidence from China. J. Technol. Innov. Energy 2022, 1, 25–36. [Google Scholar] [CrossRef]
- Rahman, M.H.; Majumder, S.C.; Debbarman, S. Examine the role of agriculture to mitigate the Co2 emission in Bangladesh. Asian J. Agric. Rural. Dev. 2020, 10, 392–405. [Google Scholar] [CrossRef]
- Voumik, L.C.; Islam, M.J.; Raihan, A. Electricity production sources and CO2 emission in OECD countries: Static and dynamic panel analysis. Glob. Sustain. Res. 2022, 1, 12–21. [Google Scholar] [CrossRef]
- Rahman, M.H.; Majumder, S.C. Empirical analysis of the feasible solution to mitigate the CO2 emission: Evidence from Next-11 countries. Environ. Sci. Pollut. Res. 2022, 29, 73191–73209. [Google Scholar] [CrossRef]
- Rahman, M.H.; Ruma, A.; Nahrin, R.; Hossain, M.N.; Majumder, S.C. Examine the Empirical Relationship between Energy Consumption and Industrialization in Bangladesh: Granger Causality Analysis. Int. J. Energy Econ. Policy 2021, 11, 121–129. [Google Scholar] [CrossRef]
- Majumder, S.C.; Voumik, L.C.; Rahman, M.H.; Rahman, M.M.; Hossain, M.N. A Quantile Regression Analysis of the Impact of Electricity Production Sources on CO2 Emission in South Asian Countries. Strat. Plan. Energy Environ. 2023, 307–330. [Google Scholar] [CrossRef]
- Voumik, L.C.; Rahman, M.; Islam, M.; Chowdhury, M.A.; Zimon, G. The Impact of Female Education, Trade Openness, Per Capita GDP, and Urbanization on Women’s Employment in South Asia: Application of CS-ARDL Model. Systems 2023, 11, 97. [Google Scholar] [CrossRef]
- IEA. Global CO2 Emissions Rebounded to Their Highest Level in History in 2021—News. 2021. Available online: https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021 (accessed on 21 August 2022).
Variable Name | Log Form | Indicators’ Name |
---|---|---|
CO2 emission | LCO2 | CO2 emissions (metric tons per capita) |
GDP | LGDP | GDP (constant 2015 US$) |
GDP square | LGDP2 | Trade (% of GDP) |
Tourism | LTA | Total tourist arrivals |
Renewable energy | LREN | Renewable energy consumption (% of total final energy consumption) |
Fossil fuel | LFOS | Fossil fuel energy consumption (% of total) |
Variable | Test Statistics (p-Value) |
---|---|
LCO2 | 18.26 a (0.00) |
LGDP | 31.46 a (0.00) |
LGDP2 | 31.41 a (0.00) |
LTA | 26.06 a (0.00) |
LREN | 24.23 a (0.00) |
LFOS | 8.55 b (0.00) |
Slope Homogeneity Tests | Statistic | p-Value |
---|---|---|
test | 5.846 a | 0.000 |
test | 7.478 a | 0.000 |
Variable | CIPS Test | |
---|---|---|
At Level | 1st Differences | |
LCO2 | −1.957 | −3.211 a |
LGDP | −2.340 b | −4.351 a |
LGDP2 | −2.549 b | −3.689 a |
LTA | −1.058 | −4.258 a |
LREN | −1.171 | −6.190 a |
LFOS | −3.05 a | −7.365 a |
Variable | Westerlund Test for Cointegration | ||
---|---|---|---|
Value | Z-Value | p-Value | |
Gt | −2.89 | −0.576 | 0.090 |
Ga | −5.897 | 3.206 | 0.020 |
Pt | −5.109 | 1.784 | 0.420 |
Pa | −4.192 | 2.364 | 0.220 |
Variables | AMG | MG | CCEMG |
---|---|---|---|
LGDP | 4.755 | 2.175 * | 6.749 |
(4.602) | (5.994) | (10.64) | |
LGDP2 | −0.269 | −0.124 ** | −0.416 |
(0.310) | (0.433) | (0.705) | |
LTA | 0.0816 ** | 0.0915 *** | 0.0636 |
(0.0401) | (0.0336) | (0.0407) | |
LREN | −0.786 * | −0.862 | −0.647 |
(0.404) | (0.525) | (0.401) | |
LFOS | 0.742 *** | 0.876 *** | 0.693 *** |
(0.182) | (0.215) | (0.156) | |
Constant | −26.01 | −13.99 | −62.61 |
(17.86) | (22.52) | (87.23) | |
Observations | 192 | 192 | 192 |
Number of IDs | 10 |
Constant | LGDP | LGDP2 | LTA | LREN | LFOS | |
---|---|---|---|---|---|---|
Egypt | −28.394 [22.597] | 6.996 *** [5.612] | −0.414 * [0.3497] | 0.0610 ** [0.0296] | −0.6262 [0.1354] | 0.0054* * [0.059] |
Ghana | 24.320 [52.203] | −7.705 [14.94] | 0.544 [0.946] | −0.0012 ** [0.0082] | −0.9084 [0.5064] | 0.0457 [0.0338] |
Kenya | −59.69 [97.716] | 16.427 ** [27.25] | −1.022 * [1.973] | −0.0854 *** [0.1047] | −1.368 [0.4734] | 0.0886 *** [0.0406] |
Mauritius | −92.69 [14.075] | 22.96 [3.204] | −1.171 [0.1754] | −0.0048 [0.028] | −0.3788 * [0.0571] | 0.0106 [0.0635] |
Morocco | −23.313 [20.20] | 5.415 [5.756] | −0.375 ** [0.3647] | 0.0091 *** [0.284] | 0.0209 *** [0.0581] | 0.0184 [0.066] |
Nigeria | 66.5693 [20.858] | −15.071 *** [5.617] | 1.253 [0.3731] | −0.00175 [0.0501] | −1.604 ** [0.7518] | 0.1048 ** [0.2171] |
South Africa | −211.961 [128.73] | 48.209 [29.511] | −2.731 [1.717] | −0.0142 [0.0324] | 0.0162 [0.1367] | 0.0322 [0.0882] |
Tanzania | −36.909 [24.088] | 10.606 ** [7.071] | −0.609 *** [0.5318] | 0.0324 ** [0.1501] | −1.956 ** [0.5139] | 0.1548 *** [0.0366] |
Tunisia | −2.270 [22.51] | 0.1269 [5.641] | 0.0415 [0.3543] | −0.0018 [0.0023] | −0.2498 *** [0.1206] | 0.0149 [0.0066] |
Uganda | −12.41 [20.82] | 2.133 *** [6.573] | 0.0317 *** [0.5100] | −0.73 ** [0.0712] | −1.070 [0.295] | 1.24 *** [0.265] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voumik, L.C.; Rahman, M.H.; Nafi, S.M.; Hossain, M.A.; Ridzuan, A.R.; Mohamed Yusoff, N.Y. Modelling Sustainable Non-Renewable and Renewable Energy Based on the EKC Hypothesis for Africa’s Ten Most Popular Tourist Destinations. Sustainability 2023, 15, 4029. https://doi.org/10.3390/su15054029
Voumik LC, Rahman MH, Nafi SM, Hossain MA, Ridzuan AR, Mohamed Yusoff NY. Modelling Sustainable Non-Renewable and Renewable Energy Based on the EKC Hypothesis for Africa’s Ten Most Popular Tourist Destinations. Sustainability. 2023; 15(5):4029. https://doi.org/10.3390/su15054029
Chicago/Turabian StyleVoumik, Liton Chandra, Md. Hasanur Rahman, Shohel Md. Nafi, Md. Akter Hossain, Abdul Rahim Ridzuan, and Nora Yusma Mohamed Yusoff. 2023. "Modelling Sustainable Non-Renewable and Renewable Energy Based on the EKC Hypothesis for Africa’s Ten Most Popular Tourist Destinations" Sustainability 15, no. 5: 4029. https://doi.org/10.3390/su15054029
APA StyleVoumik, L. C., Rahman, M. H., Nafi, S. M., Hossain, M. A., Ridzuan, A. R., & Mohamed Yusoff, N. Y. (2023). Modelling Sustainable Non-Renewable and Renewable Energy Based on the EKC Hypothesis for Africa’s Ten Most Popular Tourist Destinations. Sustainability, 15(5), 4029. https://doi.org/10.3390/su15054029