Determining the Influence of a Magnetic Field on the Vibration and Fuel Consumption of a Heavy Diesel Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diesel Engine
2.2. The Magnetizer Machine
2.3. The Vibration-Measuring Device
2.4. The Accelerometers
2.5. Specific Fuel Consumption
3. Results and Discussion
3.1. Fuel Specifications
3.2. Time-Domain Signals
3.3. Evaluation of RMS of Vibration Acceleration Signals
3.4. Effects of Variable Levels on Vibration
3.5. The Interaction Effects of Field Intensity and Engine Speed
3.6. Specific Fuel Consumption
4. Conclusions
5. Patents
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aRMS | Root mean square of acceleration |
ak | Acceleration amplitude at time of k within the time domain signal |
FC | Fuel consumption |
P | Power |
SFC | Special fuel consumption |
N | The entire range of samples |
ρ | Volumetric mass |
References
- Darvishi, S.; Hassan-Beygi, S.R.; Ghobadian, B.; Massah, J. Magnetizing the perkins A63544 engine fuel and its vibratory assessment. J. Engine Res. 2015, 38, 17–26. [Google Scholar]
- Demirbas, A.H.; Demirbas, I. Importance of rural bioenergy for developing countries. Energy Convers. Manag. 2007, 48, 2386–2398. [Google Scholar] [CrossRef]
- Darvishi, Y.; Hassan-Beygi, S.R.; Zarafshan, P.; Hooshyari, K.; Malaga-Toboła, U.; Gancarz, M. Numerical Modeling and Evaluation of PEM Used for Fuel Cell Vehicles. Materials 2021, 14, 7907. [Google Scholar] [CrossRef] [PubMed]
- Karami, H.; Rasekh, M.; Darvishi, Y. Effect of temperature and air velocity on drying kinetics and organo essential oil extraction efficiency in a hybrid dryer. Innov. Food Technol. 2017, 5, 65–75. [Google Scholar]
- Karami, H.; Rasekh, M.; Darvishi, Y.; Khaledi, R. Effect of drying temperature and air velocity on the essential oil content of Mentha aquatica L. J. Essent. Oil Bear. Plants 2017, 20, 1131–1136. [Google Scholar] [CrossRef]
- Kurji, H.J.; Imran, M.S. Magnetic field effect on compression ignition engine performance. ARPN J. Eng. Appl. Sci. 2018, 13, 3943–3949. [Google Scholar]
- Sahoo, R.R.; Jain, A. Experimental analysis of nanofuel additives with magnetic fuel conditioning for diesel engine performance and emissions. Fuel 2019, 236, 365–372. [Google Scholar] [CrossRef]
- Sidheshware, R.K.; Ganesan, S.; Bhojwani, V.K. Enhancement of internal combustion engine efficiency by magnetizing fuel in flow line for better charge combustion. Heat Transf. Res. 2020, 51, 419–431. [Google Scholar] [CrossRef]
- Faris, A.S.; Al-Naseri, S.K.; Jamal, N.; Isse, R.; Abed, M.; Fouad, Z.; Kazim, A.; Reheem, N.; Chaloob, A.; Mohammad, H. Effects of magnetic field on fuel consumption and exhaust emissions in two-stroke engine. Energy Procedia 2012, 18, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Thiyagarajan, S.; Sonthalia, A.; Edwin Geo, V.; Ashok, B.; Nanthagopal, K.; Karthickeyan, V.; Dhinesh, B. Effect of electromagnet-based fuel-reforming system on high-viscous and low-viscous biofuel fueled in heavy-duty CI engine. J. Therm. Anal. Calorim. 2019, 138, 633–644. [Google Scholar] [CrossRef]
- Govindasamy, P.; Dhandapani, S. Effects of EGR & magnetic fuel treatment system on engine emission characteristics in a bio fuel engine. In Proceedings of the International Conference on Mechanical Engineering, Dhaka, Bangladesh, 26–28 December 2009; pp. 26–28. [Google Scholar]
- Tao, R.; Xu, X. Viscosity reduction in liquid suspensions by electric or magnetic fields. Int. J. Mod. Phys. B 2005, 19, 1283–1289. [Google Scholar] [CrossRef]
- Marsili, A.; Ragni, L.; Santoro, G.; Servadio, P.; Vassalini, G. PM—Power and machinery: Innovative systems to reduce vibrations on agricultural tractors: Comparative analysis of acceleration transmitted through the driving seat. Biosyst. Eng. 2002, 81, 35–47. [Google Scholar] [CrossRef]
- Khan, N.S.; Shah, Q.; Sohail, A.; Kumam, P.; Thounthong, P.; Muhammad, T. Mechanical aspects of Maxwell nanofluid in dynamic system with irreversible analysis. ZAMM-J. Appl. Math. Mech. Z. Angew. Math. Mech. 2021, 101, e202000212. [Google Scholar] [CrossRef]
- Khan, N.S.; Humphries, U.W.; Kumam, W.; Kumam, P.; Muhammad, T. Assessment of irreversibility optimization in Casson nanofluid flow with leading edge accretion or ablation. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 2022, 102, e202000207. [Google Scholar] [CrossRef]
- Ahmadian, H.; Hassan-Beygi, S.R.; Ghobadian, B. Power tiller vibration acceleration envelope curves on transportation mode. J. Vibroeng. 2013, 15, 1431–1441. [Google Scholar]
- Rocha, N.; González, C.; Marques, L.C.d.C.; Vaitsman, D.S. A preliminary study on the magnetic treatment of fluids. Pet. Sci. Technol. 2000, 18, 33–50. [Google Scholar] [CrossRef]
- Taghizadeh-Alisaraei, A.; Ghobadian, B.; Tavakoli-Hashjin, T.; Mohtasebi, S.S. Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel 2012, 102, 414–422. [Google Scholar] [CrossRef]
- Okoronkwo, C.; Nwachukwu, C.; Ngozi–Olehi, L.; Igbokwe, J. The effect of electromagnetic flux density on the ionization and the combustion of fuel (an economy design project). Am. J. Sci. Ind. Res. 2010, 1, 527–531. [Google Scholar] [CrossRef]
- Saksono, N. Magnetizing kerosene for increasing combustion efficiency. J. Teknol. Ed. 2005, 2, 155–162. [Google Scholar]
- Dhandapani, S. Theoretical and Experimental Investigation of Catalytically Activated Lean Burnt Combustion. Ph.D. Thesis, Indian Institute of Technology, Chennai, India, 1991. [Google Scholar]
- Taghizadeh, A.A.; Tavakoli, H.T.; Ghobadian, B. An Analysis and Evaluation of Vibrations of Power Tiller in the Stationary Conditions. Iran. J. Biosyst. Eng. 2010, 41, 279677. [Google Scholar]
- Faraji, H.; Heidarbeigi, K.; Samadi, S. Effect of magnetized ethanol-gasoline blends on vibration and sound emissions of a single cylinder SI engine. Res. Sq. 2020. [CrossRef]
- Kita, R.J.; Kulish, P.A. Electromagnetic Device for the Magnetic Treatment of Fuel. U.S. Patents US5829420A, 3 November 1998. [Google Scholar]
- Langer, T.H.; Ebbesen, M.K.; Kordestani, A. Experimental analysis of occupational whole-body vibration exposure of agricultural tractor with large square baler. Int. J. Ind. Ergon. 2015, 47, 79–83. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, H.; Chen, L.; Zheng, E.; Zhu, Y.; Xue, J. Vibration characteristics analysis and suspension parameter optimization of tractor/implement system with front axle suspension under ploughing operation condition. J. Terramech. 2022, 102, 49–64. [Google Scholar] [CrossRef]
- Pera, I. Magnetizing Hydrocarbon Fuels and Other Fluids. U.S. Patent 4716024A, 29 December 1987. [Google Scholar]
- Munpollasri, S.; Poo-arporn, Y.; Donphai, W.; Sirijaraensre, J.; Sangthong, W.; Kiatphuengporn, S.; Jantaratana, P.; Witoon, T.; Chareonpanich, M. How magnetic field affects catalytic CO2 hydrogenation over Fe-Cu/MCM-41: In situ active metal phase—Reactivity observation during activation and reaction. Chem. Eng. J. 2022, 441, 135952. [Google Scholar] [CrossRef]
- Jiancun, G.; Xigang, Y.; Shoutao, H.; Le, W.; Zijin, H.; Xu, S.; Ruxia, L. Effects of Magnetic Fields on Combustion and Explosion. Chem. Technol. Fuels Oils 2022, 58, 379–390. [Google Scholar] [CrossRef]
- Liu, X.; Xie, N.; Xue, J.; Li, M.; Zheng, C.; Zhang, J.; Qin, Y.; Yin, Y.; Dekel, D.R.; Guiver, M.D. Magnetic-field-oriented mixed-valence-stabilized ferrocenium anion-exchange membranes for fuel cells. Nat. Energy 2022, 7, 329–339. [Google Scholar] [CrossRef]
- Niaki, S.R.A.; Zadeh, F.G.; Niaki, S.B.A.; Mouallem, J.; Mahdavi, S. Experimental investigation of effects of magnetic field on performance, combustion, and emission characteristics of a spark ignition engine. Environ. Prog. Sustain. Energy 2020, 39, e13317. [Google Scholar] [CrossRef]
- Attar, A.; Arulprakasajothi, M.; Vasulkar, D.; Gorde, N.; Kharat, S.; Kulkarni, S. Investigation of impact of the magnetic field through halbach array on Hydrocarbon fuel. Int. J. Ambient. Energy 2022, 43, 2124–2129. [Google Scholar] [CrossRef]
- Sidheshware, R.K.; Ganesan, S.; Bhojwani, V. Experimental investigation on the viscosity and specific volume of gasoline fuel under the magnetisation process. Int. J. Ambient. Energy 2022, 43, 486–491. [Google Scholar] [CrossRef]
- Zhou, S.; Gao, J.; Luo, Z.; Hu, S.; Wang, L.; Wang, T. Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism. Energy 2022, 239, 122218. [Google Scholar] [CrossRef]
- Patel, P.M.; Rathod, G.P.; Patel, T.M. Effect of magnetic field on performance and emission of single cylinder four stroke diesel engine. IOSR J. Eng. 2014, 4, 28–34. [Google Scholar] [CrossRef]
Model Type | Perkins A63544 |
---|---|
Builder | Iran tractor co. |
Combustion type | Direct injection |
Cylinders | 6 |
Cylinder stroke | 128 mm |
Bore of cylinders | 98.5 mm |
Volume of cylinders | 5.8 liter |
Topmost power | 2300 rpm, 110 hp |
Topmost torque | 1300 rpm, 375 N m |
Characteristic | Range |
---|---|
Sensitivity | 100 mV/g |
Frequency response | 0.4 to 14000 Hz |
Dynamic range | ±50 g, at peak |
Supply voltage | 17–31 VDC |
Temperature range | −50–120 °C |
Natural resonant frequency | 26,000 Hz |
Permissible Range | Accuracy | 4000 G | 3000 G | 2000 G | 1000 G | 0 G | Fuel Specifications |
---|---|---|---|---|---|---|---|
820–850 | ±1 kg/m3 | 813.5 | 815 | 816 | 824 | 826.1 | Specific gravity (kg/m3) |
1.9–6 | ±0.1 cST | 2.43 | 2.44 | 2.45 | 2.51 | 2.54 | Kinematic viscosity at 40 °C (CST) |
Max 130 | ±1 °C | 60.1 | 62 | 62.1 | 64 | 65.4 | Flashpoint (°C) |
Applied Field Intensity (FI) | 4000 G | 3000 G | 2000 G | 1000 G | 0 G |
---|---|---|---|---|---|
Longitudinal (X) | 60.816 o | 68.816 n | 71.816 m | 78.816 l | 79.816 l |
Lateral (Y) | 97.797 f | 98.79 e | 104.729 c | 119.400 a | 120.853 a |
Vertical (Z) | 81.040 r | 84.016 i | 91.484 h | 95.167 g | 96.484 g,f |
FS | ES (rpm) | ||||
---|---|---|---|---|---|
1700 | 1800 | 1900 | 2000 | 2100 | |
0 G | 87.439 e,f | 91.929 e | 98.451 c | 108.598 b | 118.606 a |
1000 G | 85.111 f | 87.554 e,f | 95.505 d | 107.324 b | 114.969 a |
2000 G | 81.474 j,k | 83.561 j,k | 91.177 j | 102.875 g,h | 110.325 b |
3000 G | 79.259 j | 82.923 j,i | 90.768 h | 100.629 h | 108.795 g |
4000 G | 73.487 l | 77.867 k,l | 86.219 kl | 95.177 j | 100.356 h |
Magnetic Field (Gauss) | Specific Fuel Consumption (g/kW h) |
---|---|
0 G | 330.45 a |
1000 | 330.26 a |
2000 | 329.296 a |
3000 | 326.95 a,b |
4000 | 322.6 b |
Engine Speed (rpm) | Specific Fuel Consumption |
---|---|
1700 | 334.86 a |
1800 | 331 a |
1900 | 319 c |
2000 | 326 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darvishi, Y.; Hassan-Beygi, S.R.; Massah, J.; Gancarz, M.; Bieszczad, A.; Karami, H. Determining the Influence of a Magnetic Field on the Vibration and Fuel Consumption of a Heavy Diesel Engine. Sustainability 2023, 15, 4088. https://doi.org/10.3390/su15054088
Darvishi Y, Hassan-Beygi SR, Massah J, Gancarz M, Bieszczad A, Karami H. Determining the Influence of a Magnetic Field on the Vibration and Fuel Consumption of a Heavy Diesel Engine. Sustainability. 2023; 15(5):4088. https://doi.org/10.3390/su15054088
Chicago/Turabian StyleDarvishi, Yousef, Seyed Reza Hassan-Beygi, Jafar Massah, Marek Gancarz, Arkadiusz Bieszczad, and Hamed Karami. 2023. "Determining the Influence of a Magnetic Field on the Vibration and Fuel Consumption of a Heavy Diesel Engine" Sustainability 15, no. 5: 4088. https://doi.org/10.3390/su15054088
APA StyleDarvishi, Y., Hassan-Beygi, S. R., Massah, J., Gancarz, M., Bieszczad, A., & Karami, H. (2023). Determining the Influence of a Magnetic Field on the Vibration and Fuel Consumption of a Heavy Diesel Engine. Sustainability, 15(5), 4088. https://doi.org/10.3390/su15054088