Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate
Abstract
:1. Introduction
2. Methods
2.1. Governing Equations
2.2. Incorporating a Heat Pump
2.3. Parameter Outline for Newcastle Science Central Deep Geothermal Borehole
2.4. Boundary and Initial Conditions
2.5. Benchmarking
3. Numerical Results
3.1. Homogeneous Model
3.1.1. Heat Load and Temporal Analysis
3.1.2. Impact of Depth
3.1.3. Impact of Flow Configuration
3.1.4. Impact of Heat Transfer Fluid Flow Rate
3.2. Vertically Homogeneous vs. Heterogeneous Model
3.2.1. Impact of Depth
3.2.2. Impact of Flow Configuration
3.2.3. Impact of Heat Transfer Fluid Flow Rate
3.3. Incorporating a Heat Pump
4. Discussion
5. Conclusions
- A 50-kW direct DBHE load can be supported by the NSCDGB over a period of 25 years without the fluid inlet temperature going below 3.54 C. Based on the assumptions made in this work, when used in combination with a heat pump, a building load of 65 kW can be supported for 25 years.
- The effects of heterogeneity appear to be relatively modest and generally within 1 C for the cases considered when using a DBHE load of 50 kW.
- Depth has a significant effect on the supported load in the long term. More than 100 kW can be extracted for 25 years when considering a DBHE model depth of 1651 m.
- The CXA configuration has a slightly better performance in an extraction-only system in the long term.
- The mass flow rate needs to meet a minimum threshold but a higher mass flow rate will improve the operational period of the system. This should be considered along with the cost required to maintain the chosen mass flow rate. In this study, for the first time, an optimum mass flow rate of around 5 kg/s was determined based on the long-term COP and CSP for the specific coaxial DBHE at the NSCDGB.
- With this modelling study, a predictive hypothesis for the thermal behaviour of a DBHE under heat extraction was generated. This hypothesis has the possibility of being tested subsequently against empirical data generated by a real planned TRT.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- North, P.; Jentsch, A. A circular economy approach to building heating: The role of exergy in policymaking. Energy Rep. 2021, 7, 334–342. [Google Scholar] [CrossRef]
- Carmichael, R. Behaviour change, public engagement and Net Zero, a report for the Committee on Climate Change. 2019. Available online: https://www.theccc.org.uk/wp-content/uploads/2019/10/Behaviour-change-public-engagement-and-Net-Zero-Imperial-College-London.pdf (accessed on 20 January 2023).
- Goldstein, B.; Gounaridis, D.; Newell, J.P. The carbon footprint of household energy use in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 19122–19130. [Google Scholar] [CrossRef] [PubMed]
- Michaelowa, A. The Glasgow Climate Pact: A Robust Basis for the International Climate Regime in the 2020s. Intereconomics 2021, 56, 302–303. [Google Scholar] [CrossRef] [PubMed]
- Sarbu, I.; Sebarchievici, C. General review of ground-source heat pump systems for heating and cooling of buildings. Energy Build. 2014, 70, 441–454. [Google Scholar] [CrossRef]
- Gluyas, J.; Adams, C.; Busby, J.; Craig, J.; Hirst, C.; Manning, D.; McCay, A.; Narayan, N.; Robinson, H.; Watson, S.; et al. Keeping warm: A review of deep geothermal potential of the UK. Proc. Inst. Mech. Eng. Part A J. Power Energy 2018, 232, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Underwood, C. Ground source heat pumps: Observations from United Kingdom ground thermal response tests. Build. Serv. Eng. Res. Technol. 2013, 34, 123–144. [Google Scholar] [CrossRef]
- Cai, W.; Wang, F.; Liu, J.; Wang, Z.; Ma, Z. Experimental and numerical investigation of heat transfer performance and sustainability of deep borehole heat exchangers coupled with ground source heat pump systems. Appl. Therm. Eng. 2019, 149, 975–986. [Google Scholar] [CrossRef]
- Holmberg, H.; Acuña, J.; Næss, E.; Sønju, O.K. Thermal evaluation of coaxial deep borehole heat exchangers. Renew. Energy 2016, 97, 65–76. [Google Scholar] [CrossRef]
- Morchio, S.; Fossa, M. Thermal modeling of deep borehole heat exchangers for geothermal applications in densely populated urban areas. Therm. Sci. Eng. Prog. 2019, 13, 100363. [Google Scholar] [CrossRef]
- Pan, A.; Lu, L.; Cui, P.; Jia, L. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes. Int. J. Heat Mass Transfer 2019, 141, 1056–1065. [Google Scholar] [CrossRef]
- Wood, C.J.; Liu, H.; Riffat, S.B. Comparative performance of ‘U-tube’and ‘coaxial’loop designs for use with a ground source heat pump. Appl. Therm. Eng. 2012, 37, 190–195. [Google Scholar] [CrossRef]
- Fang, L.; Diao, N.; Shao, Z.; Zhu, K.; Fang, Z. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers. Energy Build. 2018, 167, 79–88. [Google Scholar] [CrossRef]
- Watson, S.M.; Falcone, G.; Westaway, R. Repurposing hydrocarbon wells for geothermal use in the UK: The onshore fields with the greatest potential. Energies 2020, 13, 3541. [Google Scholar] [CrossRef]
- Caulk, R.A.; Tomac, I. Reuse of abandoned oil and gas wells for geothermal energy production. Renew. Energy 2017, 112, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Gizzi, M.; Taddia, G.; Lo Russo, S. Reuse of Decommissioned Hydrocarbon Wells in Italian Oilfields by Means of a Closed-Loop Geothermal System. Appl. Sci. 2021, 11, 2411. [Google Scholar] [CrossRef]
- Mehmood, A.; Yao, J.; Fan, D.; Bongole, K.; Liu, J.; Zhang, X. Potential for heat production by retrofitting abandoned gas wells into geothermal wells. PLoS ONE 2019, 14, e0220128. [Google Scholar] [CrossRef] [Green Version]
- Westaway, R. Repurposing of disused shale gas wells for subsurface heat storage: Preliminary analysis concerning UK issues. Q. J. Eng. Geol. Hydrogeol. 2016, 49, 213–227. [Google Scholar] [CrossRef]
- Pilko, R.M.; Hart-Wagoner, N.R.; Horn, A.J.V.; Scherer, J.A. Repurposing Oil & Gas Wells and Drilling Operations for Geothermal Energy Production. In Proceedings of the Offshore Technology Conference, Virtual, Houston, TX, USA, 16–19 August 2021. [Google Scholar]
- Kujawa, T.; Nowak, W.; Stachel, A.A. Utilization of existing deep geological wells for acquisitions of geothermal energy. Thermal Sciences 2004. In Proceedings of the ASME-ZSIS International Thermal Science Seminar II; Begel House Inc.: Danbury, CT, USA, 2004. [Google Scholar]
- Brown, C.S.; Cassidy, N.J.; Egan, S.S.; Griffiths, D. Numerical modelling of deep coaxial borehole heat exchangers in the Cheshire Basin, UK. Comput. Geosci. 2021, 152, 104752. [Google Scholar] [CrossRef]
- Kolo, I.; Brown, C.S.; Falcone, G.; Banks, D. Closed-Loop Deep Borehole Heat Exchanger: Newcastle Science Central Deep Geothermal Borehole; European Geothermal Congress: Berlin, Germany, 2022. [Google Scholar]
- Brown, C.S.; Kolo, I.; Falcone, G.; Banks, D. Repurposing a deep geothermal exploration well for borehole thermal energy storage: Implications from statistical modelling and sensitivity analysis. Appl. Therm. Eng. 2023, 220, 119701. [Google Scholar] [CrossRef]
- Bu, X.; Ma, W.; Li, H. Geothermal energy production utilizing abandoned oil and gas wells. Renew. Energy 2012, 41, 80–85. [Google Scholar] [CrossRef]
- Dijkshoorn, L.; Speer, S.; Pechnig, R. Measurements and design calculations for a deep coaxial borehole heat exchanger in Aachen, Germany. Int. J. Geophys. 2013, 2013, 916541. [Google Scholar] [CrossRef] [Green Version]
- Falcone, G.; Liu, X.; Okech, R.R.; Seyidov, F.; Teodoriu, C. Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions. Energy 2018, 160, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yuan, B.; Ji, G.; Wu, X. A comprehensive review of geothermal energy extraction and utilization in oilfields. J. Pet. Sci. Eng. 2018, 168, 465–477. [Google Scholar] [CrossRef]
- Deng, J.; Wei, Q.; He, S.; Liang, M.; Zhang, H. Simulation analysis on the heat performance of deep borehole heat exchangers in medium-depth geothermal heat pump systems. Energies 2020, 13, 754. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Shao, H.; Naumov, D.; Kong, Y.; Tu, K.; Kolditz, O. Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating. Geotherm. Energy 2019, 7, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Guan, Y.; Liu, J.; Jiang, C.; Yang, R.; Hou, X. Heat transfer performance of a deep ground heat exchanger for building heating in long-term service. Renew. Energy 2020, 166, 20–34. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Cai, W.; Wang, Z.; Wei, Q.; Deng, J. Numerical study on the effects of design parameters on the heat transfer performance of coaxial deep borehole heat exchanger. Int. J. Energy Res. 2019, 43, 6337–6352. [Google Scholar] [CrossRef]
- Pan, S.; Kong, Y.; Chen, C.; Pang, Z.; Wang, J. Optimization of the utilization of deep borehole heat exchangers. Geotherm. Energy 2020, 8, 1–20. [Google Scholar] [CrossRef]
- Younger, P.L.; Manning, D.A.; Millward, D.; Busby, J.P.; Jones, C.R.; Gluyas, J.G. Geothermal exploration in the Fell Sandstone Formation (Mississippian) beneath the city centre of Newcastle upon Tyne, UK: The Newcastle Science Central deep geothermal borehole. Q. J. Eng. Geol. Hydrogeol. 2016, 49, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Newcastle Helix. 2022. Available online: https://newcastlehelix.com/ (accessed on 11 July 2022).
- Brown, C.S.; Cassidy, N.J.; Egan, S.S.; Griffiths, D. A sensitivity analysis of a single extraction well from deep geothermal aquifers in the Cheshire Basin, UK. Q. J. Eng. Geol. Hydrogeol. 2022, 55, 3. [Google Scholar] [CrossRef]
- Brown, C.S.; Cassidy, N.J.; Egan, S.S.; Griffiths, D. Thermal and economic analysis of heat exchangers as part of a geothermal district heating scheme in the cheshire basin, UK. Energies 2022, 15, 1983. [Google Scholar] [CrossRef]
- Grants on the Web. EPSRC EP/T022825/1. 2022. Available online: https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/T022825/1 (accessed on 11 July 2022).
- Howell, L.; Brown, C.S.; Egan, S.S. Deep geothermal energy in northern England: Insights from 3D finite difference temperature modelling. Comput. Geosci. 2021, 147, 104661. [Google Scholar] [CrossRef]
- Brown, C.S. Regional geothermal resource assessment of hot dry rocks in Northern England using 3D geological and thermal models. Geothermics 2022, 105, 102503. [Google Scholar] [CrossRef]
- Jiao, K.; Sun, C.; Yang, R.; Yu, B.; Bai, B. Long-term heat transfer analysis of deep coaxial borehole heat exchangers via an improved analytical model. Appl. Therm. Eng. 2021, 197, 117370. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Xie, Y.; Zhang, Y.; Gao, X.; Ma, J. Long-term thermal performance analysis of deep coaxial borehole heat exchanger based on field test. J. Clean. Prod. 2021, 278, 123396. [Google Scholar] [CrossRef]
- Cai, W.; Wang, F.; Chen, S.; Chen, C.; Liu, J.; Deng, J.; Kolditz, O.; Shao, H. Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study. Appl. Energy 2021, 289, 116590. [Google Scholar] [CrossRef]
- Hu, X.; Banks, J.; Wu, L.; Liu, W.V. Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta. Renew. Energy 2020, 148, 1110–1123. [Google Scholar] [CrossRef]
- Al-Khoury, R.; Kölbel, T.; Schramedei, R. Efficient numerical modeling of borehole heat exchangers. Comput. Geosci. 2010, 36, 1301–1315. [Google Scholar] [CrossRef]
- Diersch, H.J.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P. Finite element modeling of borehole heat exchanger systems: Part 1. Fundamentals. Comput. Geosci. 2011, 37, 1122–1135. [Google Scholar] [CrossRef]
- Kolditz, O.; Bauer, S.; Bilke, L.; Böttcher, N.; Delfs, J.O.; Fischer, T.; Görke, U.J.; Kalbacher, T.; Kosakowski, G.; McDermott, C.; et al. OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 2012, 67, 589–599. [Google Scholar] [CrossRef]
- Shao, H.; Hein, P.; Sachse, A.; Kolditz, O. Geoenergy Modeling II: Shallow Geothermal Systems; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Diersch, H.J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Diersch, H.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P. Finite element formulation for borehole heat exchangers in modeling geothermal heating systems by FEFLOW. WASY Softw. FEFLOW White Pap. 2010, 5, 5–96. [Google Scholar]
- Hein, P.; Kolditz, O.; Görke, U.J.; Bucher, A.; Shao, H. A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems. Appl. Therm. Eng. 2016, 100, 421–433. [Google Scholar] [CrossRef]
- Banks, D. Thermal Properties of Well Construction Materials—Newcastle Science Central Borehole; Technical Report; University of Glasgow: Glasgow, UK, 2021. [Google Scholar]
- Westaway, R. Rock Thermal Properties for Newcastle Helix Site; Technical Report; University of Glasgow: Glasgow, UK, 2021. [Google Scholar]
- Rollin, K. Catalogue of geothermal data for the land area of the United Kingdom. Third revision: April 1987. In Investigation of the Geothermal Potential of the UK; British Geological Survey, Keyworth: Nottingham, UK, 1987. [Google Scholar]
- Armitage, P.; Worden, R.; Faulkner, D.; Butcher, A.; Espie, A. Permeability of the Mercia Mudstone: Suitability as caprock to carbon capture and storage sites. Geofluids 2016, 16, 26–42. [Google Scholar] [CrossRef]
- Jones, H.; Morris, B.; Cheney, C.; Brewerton, L.; Merrin, P.; Lewis, M.; MacDonald, A.; Coleby, L.; Talbot, J.; McKenzie, A.; et al. The physical properties of minor aquifers in England and Wales. Technical Report; British Geological Survey. 2000. Available online: https://nora.nerc.ac.uk/id/eprint/12663/ (accessed on 20 January 2023).
- Gebski, J.; Wheildon, J.; Thomas-Betts, A. Investigations of the UK heat flow field (1984–1987). In Investigation of the Geothermal Potential of the UK; British Geological Survey, Keyworth: Nottingham, UK, 1987. [Google Scholar]
- Kimbell, G.; Carruthers, R.M.; Walker, A.; Williamson, J.; Busby, D.J.; McDonald, A.; Marsh, S.; Stone, P. Regional Geophysics of Southern Scotland and Northern England; British Geological Survey: Nottingham, UK, 2006. [Google Scholar]
- Morris, D.A.; Johnson, A.I. Summary of Hydrologic and Physical Properties of Rock and Soil Materials, as Analyzed by the Hydrologic Laboratory of the US Geological Survey, 1948-60; Technical Report; US Government Printing Office: Washington, DC, USA, 1967. [Google Scholar]
- Eppelbaum, L.; Kutasov, I.; Pilchin, A. Applied Geothermics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kang, H.; Wu, Y.; Gao, F. Deformation characteristics and reinforcement technology for entry subjected to mining-induced stresses. J. Rock Mech. Geotech. Eng. 2011, 3, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Wang, F.; Jiang, J.; Wang, Z.; Liu, J.; Chen, C. Long-term performance evaluation and economic analysis for deep borehole heat exchanger heating system in Weihe basin. Front. Earth Sci. 2022, 10, 806416. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Q.; Li, H.; Mclellan, B.; Zhang, T.; Tan, Z. Investment decision on shallow geothermal heating & cooling based on compound options model: A case study of China. Appl. Energy 2019, 254, 113655. [Google Scholar]
- Beier, R.A. Thermal response tests on deep borehole heat exchangers with geothermal gradient. Appl. Therm. Eng. 2020, 178, 115447. [Google Scholar] [CrossRef]
- Banks, D. Examining Issues of Circulation Asymmetry in Closed Loop Borehole Heat Exchangers. Technical Report; University of Glasgow. 2022. Available online: https://www.researchgate.net/publication/359766270_Examining_issues_of_circulation_asymmetry_in_closed_loop_borehole_heat_exchangers (accessed on 20 January 2023).
- Zirak, M.; Royapoor, M.; Gilbert, T. Cross-platform energy modeling for scalable urban energy simulation: A case-study. In Proceedings of the International Conference on Innovative Applied Energy (IAPE 2019), Oxford, UK, 14–15 March 2019; Newcastle University: Newcastle upon Tyne, UK, 2019. [Google Scholar]
Formation | End Depth [m] | Thickness [m] | Thermal Conductivity [W/m/C] | Density [kg/m3] | Specific Heat [J/kg/C] |
---|---|---|---|---|---|
Pennine Middle Coal Measures | 161 | 161 | 2.35 | 2451.09 | 857.40 |
Pennine Lower Coal Measures | 318 | 157 | 2.35 | 2451.09 | 857.40 |
Millstone Grit Group | 376 | 58 | 2.90 | 2460 | 930 |
Stainmore Formation | 669 | 293 | 2.61 | 2500 | 1000 |
Alston Formation | 860 | 191 | 2.63 | 2500 | 1000 |
Fault Zone | 928 | 68 | 2.75 | 2500 | 1000 |
Tyne Limestone | 1418.50 | 490.50 | 2.86 | 2460 | 930 |
Fell Sandstone | 1651 | 232.50 | 2.91 | 2460 | 930 |
Homogenised average (1651 m) | 1651 | 1651 | 2.69 | 2472 | 939 |
Homogenised average (922 m) | 922 | 922 | 2.55 | 2480 | 946 |
Homogenised average (500 m) | 500 | 500 | 2.48 | 2464 | 901 |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Model domain | 200 × 200 × 1807 | m3 | |
Borehole depth | 1651 | m | |
Borehole diameter | D | 0.216 | m |
Annular pipe outer diameter | 0.1779 | m | |
Central pipe outer diameter | 0.1005 | m | |
Annular pipe wall thickness | 0.0081 | m | |
Central pipe wall thickness | 0.00688 | m | |
Surface temperature | 9 | ∘C | |
Reference temperature | 9 | ∘C | |
Fluid flow rate | 0.00833 | m3/s | |
Fluid dynamic viscosity | 0.0008 | Pa·s | |
Geothermal gradient | 33.4 | ∘C/km | |
Fluid volumetric heat capacity | J/m3/∘C | ||
Grout volumetric heat capacity | J/m/C | ||
Fluid thermal conductivity | 0.59 | W/m/∘C | |
Grout thermal conductivity | 1.05 | W/m/C | |
Thermal conductivity of inner pipe (HDPE) | 0.45 | W/m/C | |
Thermal conductivity of outer pipe (steel) | 52.7 | W/m/C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolo, I.; Brown, C.S.; Falcone, G.; Banks, D. Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate. Sustainability 2023, 15, 4140. https://doi.org/10.3390/su15054140
Kolo I, Brown CS, Falcone G, Banks D. Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate. Sustainability. 2023; 15(5):4140. https://doi.org/10.3390/su15054140
Chicago/Turabian StyleKolo, Isa, Christopher S. Brown, Gioia Falcone, and David Banks. 2023. "Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate" Sustainability 15, no. 5: 4140. https://doi.org/10.3390/su15054140
APA StyleKolo, I., Brown, C. S., Falcone, G., & Banks, D. (2023). Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate. Sustainability, 15(5), 4140. https://doi.org/10.3390/su15054140