Sustainable Ring-Opening Reactions of Epoxidized Linseed Oil in Heterogeneous Catalysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Preparation and Characterization
2.3. Characterization of the Products
2.3.1. Nuclear Magnetic Resonance (NMR) Spectrometry
2.3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
2.4. Linseed Oil Epoxidation
2.5. Epoxy Ring-Opening Reaction
3. Results
3.1. Catalyst Characterization
3.2. Epoxide Opening with Unsaturated Carboxylic Acids
3.2.1. Methacrylic Acid
3.2.2. Undecylenic Acid
3.2.3. Crotonic Acid; Cinnamic Acid
3.3. Epoxide Opening with Monocarboxylic Acids Anhydrides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Schuman, T. Towards green, a review of recent developments in bio-renewable epoxy resins from vegetable oils. In Green Materials from Plant Oils; Liu, Z., Kraus, G., Eds.; The Royal Society of Chemistry, RSC Publishing: London, UK, 2015; Volume 9, pp. 202–241. [Google Scholar]
- Xia, Y.; Larock, R.C. Vegetable Oil-Based Polymeric Materials: Synthesis, Properties and Applications. Green Chem. 2010, 12, 1893–1909. [Google Scholar] [CrossRef]
- Zhang, C.; Garrison, T.F.; Madbouly, S.A.; Kessler, M.R. Recent Advances in Vegetable Oil-Based Polymers and Their Composites. Prog. Polym. Sci. 2017, 71, 91–143. [Google Scholar] [CrossRef]
- Ca, V.; Lligadas, G.; Ronda, J.C.; Galia, M. Renewable Polymeric Materials from Vegetable Oils: A Perspective. Mater. Today 2013, 16, 337–343. [Google Scholar] [CrossRef]
- Behr, A.; Westfechtel, A.; Pérez Gomes, J. Catalytic Processes for the Technical Use of Natural Fats and Oils. Chem. Eng. Technol. 2008, 31, 700–714. [Google Scholar] [CrossRef]
- Sharma, B.K.; Liu, Z.; Adhvaryu, A.; Erhan, S.Z. One-Pot Synthesis of Chemically Modified Vegetable Oils. J. Agric. Food Chem. 2008, 56, 3049–3056. [Google Scholar] [CrossRef]
- Karmakar, G.; Ghosh, P.; Sharma, B.K. Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Omonov, T.S.; Curtis, J.M. Plant oil-based epoxy intermediates for polymers. In Bio-Based Plant Oil Polymers and Composites; Madbouly, S., Zhang, C., Kessler, M.R., Eds.; William Andrew Publishing, Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 7, pp. 99–125. [Google Scholar]
- Kolot, V.; Grinberg, S. Vernonia Oil-Based Acrylate and Methacrylate Polymers and Interpenetrating Polymer Networks with Epoxy Resins. J. Appl. Polym. Sci. 2004, 91, 3835–3843. [Google Scholar] [CrossRef]
- Adhvaryu, A.; Erhan, S.Z. Epoxidized Soybean Oil as a Potential Source of High-Temperature Lubricants. Ind. Crops Prod. 2002, 15, 247–254. [Google Scholar] [CrossRef]
- Gaikwad, M.S.; Gite, V.V.; Mahulikar, P.P.; Hundiwale, D.G.; Yemul, O.S. Eco-Friendly Polyurethane Coatings from Cottonseed and Karanja Oil. Prog. Org. Coat. 2015, 86, 164–172. [Google Scholar] [CrossRef]
- Lu, Y.; Larock, R.C. Soybean-Oil-Based Waterborne Polyurethane Dispersions: Effects of Polyol Functionality and Hard Segment Content on Properties. Biomacromolecules 2008, 9, 3332–3340. [Google Scholar] [CrossRef]
- Åkesson, D.; Skrifvars, M.; Walkenström, P. Preparation of Thermoset Composites from Natural Fibres and Acrylate Modified Soybean Oil Resins. J. Appl. Polym. Sci. 2009, 114, 2502–2508. [Google Scholar] [CrossRef]
- Oprea, S. Synthesis and Properties of the Porous Collagen/Polyurethane Composite. J. Compos. Mater. 2010, 44, 2179–2189. [Google Scholar] [CrossRef]
- Samper, M.D.; Fombuena, V.; Boronat, T.; García-Sanoguera, D.; Balart, R. Thermal and Mechanical Characterization of Epoxy Resins (ELO and ESO) Cured with Anhydrides. J. Am. Oil Chem. Soc. 2012, 89, 1521–1528. [Google Scholar] [CrossRef]
- Samper, M.D.; Ferri, J.M.; Carbonell-Verdu, A.; Balart, R.; Fenollar, O. Properties of Biobased Epoxy Resins from Epoxidized Linseed Oil (ELO) Crosslinked with a Mixture of Cyclic Anhydride and Maleinized Linseed Oil. Express Polym. Lett. 2019, 13, 407–418. [Google Scholar] [CrossRef]
- Boutevin, B.; Parisi, J.P.; Robin, J.J.; Roume, C. Synthesis and Properties of Multiacrylic Resins from Epoxy Resins. J. Appl. Polym. Sci. 1993, 50, 2065–2073. [Google Scholar] [CrossRef]
- Fogassy, G.; Pinel, C.; Gelbard, G. Solvent-Free Ring Opening Reaction of Epoxides Using Quaternary Ammonium Salts as Catalyst. Catal. Commun. 2009, 10, 557–560. [Google Scholar] [CrossRef]
- Wanderley, K.A.; Leite, A.M.; Cardoso, G.; Medeiros, A.M.; Matos, C.L.; Dutra, R.C.; Suarez, P.A.Z. Graphene Oxide and a GO/ZnO Nanocomposite as Catalysts for Epoxy Ring-Opening of Epoxidized Soybean Fatty Acids Methyl Esters. Braz. J. Chem. Eng. 2019, 36, 1165–1173. [Google Scholar] [CrossRef] [Green Version]
- Schuster, H.; Rios, L.A.; Weckes, P.P.; Hoelderich, W.F. Heterogeneous Catalysts for the Production of New Lubricants with Unique Properties. Appl. Catal. A Gen. 2008, 348, 266–270. [Google Scholar] [CrossRef]
- Fogassy, G.; Ke, P.; Figueras, F.; Cassagnau, P.; Rouzeau, S.; Courault, V.; Gelbard, G.; Pinel, C. Catalyzed Ring Opening of Epoxides: Application to Bioplasticizers Synthesis. Appl. Catal. A Gen. 2011, 393, 1–8. [Google Scholar] [CrossRef]
- Debecker, D.P.; Gaigneaux, E.M.; Busca, G. Exploring, Tuning, and Exploiting the Basicity of Hydrotalcites for Applications in Heterogeneous Catalysis. Chem. A Eur. J. 2009, 15, 3920–3935. [Google Scholar] [CrossRef]
- Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-Type Anionic Clays: Preparation, Properties and Applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Sels, B.F.; De Vos, D.E.; Jacobs, P.A. Hydrotalcite-like Anionic Clays in Catalytic Organic Reactions. Catal. Rev. Sci. Eng. 2001, 43, 443–488. [Google Scholar] [CrossRef]
- Handa, H.; Baba, T.; Yamada, H.; Takahashi, T.; Ono, Y. Double-Bond Isomerization of Olefinic Amines over Potassium Amide Loaded on Alumina. Catal. Lett. 1997, 44, 119–121. [Google Scholar] [CrossRef]
- Ionescu, R.; Pavel, O.D.; Bîrjega, R.; Zǎvoianu, R.; Angelescu, E. Epoxidation of Cyclohexene with H2O2 and Acetonitrile Catalyzed by Mg-Al Hydrotalcite and Cobalt Modified Hydrotalcites. Catal. Lett. 2010, 134, 309–317. [Google Scholar] [CrossRef]
- Choudary, B.M.; Lakshmi Kantam, M.; Venkat Reddy, C.R.; Koteswara Rao, K.; Figueras, F. The First Example of Michael Addition Catalysed by Modified Mg–Al Hydrotalcite. J. Mol. Catal. A Chem. 1999, 146, 279–284. [Google Scholar] [CrossRef]
- Angelescu, E.; Pavel, O.D.; Bîrjega, R.; Zăvoianu, R.; Costentin, G.; Che, M. Solid Base Catalysts Obtained from Hydrotalcite Precursors, for Knoevenagel Synthesis of Cinamic Acid and Coumarin Derivatives. Appl. Catal. A Gen. 2006, 308, 13–18. [Google Scholar] [CrossRef]
- Kumbhar, P.S.; Sanchez-Valente, J.; Millet, J.M.M.; Figueras, F. Mg-Fe Hydrotalcite as a Catalyst for the Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate. J. Catal. 2000, 191, 467–473. [Google Scholar] [CrossRef]
- Roelofs, J.C.A.A.; van Dillen, A.J.; de Jong, K.P. Condensation of Citral and Ketones Using Activated Hydrotalcite Catalysts. Catal. Lett. 2001, 74, 91–94. [Google Scholar] [CrossRef]
- Corma, A.; Fornés, V.; Martín-Aranda, R.M.; Rey, F. Determination of Base Properties of Hydrotalcites: Condensation of Benzaldehyde with Ethyl Acetoacetate. J. Catal. 1992, 134, 58–65. [Google Scholar] [CrossRef]
- Teodorescu, F.; Deaconu, M.; Bartha, E.; Zăvoianu, R.; Pavel, O.D. Addition of Alcohols to Acrylic Compounds Catalyzed by Mg-Al LDH. Catal. Lett. 2014, 144, 117–122. [Google Scholar] [CrossRef]
- Bǎlǎnucǎ, B.; Stan, R.; Hanganu, A.; Iovu, H. Novel Linseed Oil-Based Monomers: Synthesis and Characterization. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2014, 76, 129–140. [Google Scholar]
- Rangarajan, B.; Havey, A.; Grulke, E.A.; Culnan, P.D. Kinetic Parameters of a Two-Phase Model for in Situ Epoxidation of Soybean Oil. J. Am. Oil Chem. Soc. 1995, 72, 1161–1169. [Google Scholar] [CrossRef]
- Chira, N.A.; Todasca, M.C.; Nicolescu, A.; Rosu, A.; Nicolae, M.; Rosca, S.I. Evaluation of the Computational Methods for Determining Vegetable Oils Composition Using 1H-NMR Spectroscopy. Rev. Chim. 2011, 62, 42–46. [Google Scholar]
- Slabu, A.; Banu, N.D.; Balanuca, B.; Teodorescu, F.; Stan, R. Plant-Based Resins Obtained from Epoxidized Linseed Oil Using a MgAl Hydrotalcite Catalyst. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2022, 84, 45–54. [Google Scholar]
- Balanuca, B.; Stan, R.; Hanganu, A.; Lungu, A.; Iovu, H. Design of New Camelina Oil-Based Hydrophilic Monomers for Novel Polymeric Materials. J. Am. Oil Chem. Soc. 2015, 92, 881–891. [Google Scholar] [CrossRef]
- Van der Steen, M.; Stevens, C.V. Undecylenic Acid: A Valuable and Physiologically Active Renewable Building Block from Castor Oil. ChemSusChem 2009, 2, 692–713. [Google Scholar] [CrossRef] [PubMed]
- Bigot, S.; Daghrir, M.; Mhanna, A.; Boni, G.; Pourchet, S.; Lecamp, L.; Plasseraud, L. Undecylenic Acid: A Tunable Bio-Based Synthon for Materials Applications. Eur. Polym. J. 2016, 74, 26–37. [Google Scholar] [CrossRef]
- Doll, K.M.; Walter, E.L.; Murray, R.E.; Hwang, H.S. Organogel Polymers from 10-Undecenoic Acid and Poly(Vinyl Acetate). J. Polym. Environ. 2018, 26, 3670–3676. [Google Scholar] [CrossRef]
- Huerta-Ángeles, G.; Brandejsová, M.; Kopecká, K.; Ondreáš, F.; Medek, T.; Židek, O.; Kulhánek, J.; Vagnerová, H.; Velebný, V. Synthesis and Physicochemical Characterization of Undecylenic Acid Grafted to Hyaluronan for Encapsulation of Antioxidants and Chemical Crosslinking. Polymers 2020, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Fouilloux, H.; Thomas, C.M. Production and Polymerization of Biobased Acrylates and Analogs. Macromol. Rapid Commun. 2021, 42, 2000530. [Google Scholar] [CrossRef]
- Lendlein, A.; Jiang, H.; Junger, O.; Langer, R. Light-Induced Shape-Memory Polymers. Nature 2005, 434, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Angelescu, E.; Pavel, O.D.; Che, M.; Bîrjega, R.; Constentin, G. Cyanoethylation of Ethanol on Mg-Al Hydrotalcites Promoted by Y3+ and La3+. Catal. Commun. 2004, 5, 647–651. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides. J. Am. Chem. Soc. 1999, 121, 4526–4527. [Google Scholar] [CrossRef]
- Karami, Z.; Jouyandeh, M.; Ali, J.A.; Ganjali, M.R.; Aghazadeh, M.; Paran, S.M.R.; Naderi, G.; Puglia, D.; Saeb, M.R. Epoxy/Layered Double Hydroxide (LDH) Nanocomposites: Synthesis, Characterization, and Excellent Cure Feature of Nitrate Anion Intercalated Zn-Al LDH. Prog. Org. Coat. 2019, 136, 105218. [Google Scholar] [CrossRef]
R | Temperature (°C) | Molar Ratio 1 | Catalyst (LDH) | Conversion (%) |
---|---|---|---|---|
100 | 1:1.2 | MgAl | 100 | |
100 | 1:0.9 | MgAl | 75 | |
100 | 1:0.6 | MgAl | 50 | |
100 | 1:1.2 | MgAl | 40 | |
100 | 1:1.2 | MgAlLa | 60 | |
140 | 1:1.2 | MgAlLa | 100 | |
100 | 1:1.2 | MgAl | 20 | |
100 | 1:1.2 | MgAlLa | 70 | |
140 | 1:1.2 | MgAlLa | 100 | |
100 | 1:1.2 | MgAl | 30 | |
100 | 1:1.2 | MgAlLa | 50 | |
140 | 1:1.2 | MgAlLa | 100 | |
140 | 1:1.2 | MgAl | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slabu, A.I.; Banu, I.; Pavel, O.D.; Teodorescu, F.; Stan, R. Sustainable Ring-Opening Reactions of Epoxidized Linseed Oil in Heterogeneous Catalysis. Sustainability 2023, 15, 4197. https://doi.org/10.3390/su15054197
Slabu AI, Banu I, Pavel OD, Teodorescu F, Stan R. Sustainable Ring-Opening Reactions of Epoxidized Linseed Oil in Heterogeneous Catalysis. Sustainability. 2023; 15(5):4197. https://doi.org/10.3390/su15054197
Chicago/Turabian StyleSlabu, Andrei Iulian, Ionut Banu, Octavian Dumitru Pavel, Florina Teodorescu, and Raluca Stan. 2023. "Sustainable Ring-Opening Reactions of Epoxidized Linseed Oil in Heterogeneous Catalysis" Sustainability 15, no. 5: 4197. https://doi.org/10.3390/su15054197
APA StyleSlabu, A. I., Banu, I., Pavel, O. D., Teodorescu, F., & Stan, R. (2023). Sustainable Ring-Opening Reactions of Epoxidized Linseed Oil in Heterogeneous Catalysis. Sustainability, 15(5), 4197. https://doi.org/10.3390/su15054197