A Detailed Numerical Study of a Nanofluid-Based Photovoltaic/THERMAL Hybrid System under Non-Uniform Solar Flux Distribution
Abstract
:1. Introduction
2. Model and Methodology
2.1. Physical Model of CPVT System
2.2. Coupled Optical-Thermal Simulation Method
2.2.1. Optical Model
2.2.2. Thermal and Electrical Model
- The solar intensity can be considered as steady and the constant state study is conducted;
- 3-D fluid flow and heat transfer;
- The NF flow is laminar, uniform, incompressible, and single phase;
- The thermal properties of NFs and used materials are temperature independent;
- The effects of thermal contact resistance and gravitational force are ignored;
- The top surface of the primary glass of components is exposed to free convection, while the bottom surface and side walls of the silicon layer are adiabatic.
3. Results and Discussion
3.1. Optical Analysis
3.2. Thermal Analysis
4. Conclusions
- (1)
- The distribution of concentrated solar energy flux is dramatically affected by the relative position between the CPC concentrator and receiver. A relatively uniform concentrated solar radiation distribution is obtained in case 3;
- (2)
- The non-uniform concentrated solar energy flux can result in non-uniform temperature profiles of the PV module, which may lead to local overheating. The temperature distribution of the PV module corresponding to case 3 is similar to that of the uniform energy flux;
- (3)
- The PVT hybrid system has high conversion efficiency, with a total conversion efficiency of more than 50%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AC | solar receiving area of the PVT system (m2) |
CR | concentration ratio |
Cp | specific heat capacity (J/(kg∙K)) |
Isun | direct solar intensity (W/m2) |
m | mass flow rate of the fluid filter (kg/s) |
T | temperature (K) |
w | average power generation efficiency of thermal power plants |
Greek symbols | |
ηel | overall electric efficiency of the D-CPVT system (-) |
ηth | thermal efficiency of the D-CPVT system (-) |
ηexe | overall exergy efficiency of the D-CPVT system (-) |
λ | wavelength (nm) |
α | absorption |
Eth is the absorbed thermal energy (W/m2) | |
Subscripts | |
th | thermal |
el | electric |
t | energy |
tot | exergy |
ref | reference |
Abbreviations | |
NF | nanofluid |
CPC | compound parabolic concentrator |
CPV | concentrating photovoltaic |
CPVT | concentrating photovoltaic/thermal |
PVT | photovoltaic/thermal |
References
- Wang, G.; Chao, Y.; Chen, Z. Promoting developments of hydrogen powered vehicle and solar PV hydrogen production in China: A study based on evolutionary game theory method. Energy 2021, 237, 121649. [Google Scholar] [CrossRef]
- Wang, G.; Dong, B.; Chen, Z. Design and behaviour estimate of a novel concentrated solar-driven power and desalination system using S-CO2 Brayton cycle and MSF technology. Renew. Energy 2021, 176, 555–564. [Google Scholar] [CrossRef]
- Açıkkalp, E.; Caliskan, H.; Hong, H.; Piao, H.; Seung, D. Extended exergy analysis of a photovoltaic-thermal (PVT) module based desiccant air cooling system for buildings. Appl. Energy 2022, 323, 119581. [Google Scholar] [CrossRef]
- Bisengimana, E.; Zhou, J.; Binama, M.; Yuan, Y. Numerical investigation on the factors influencing the temperature distribution of photovoltaic/thermal (PVT) evaporator/condenser for heat pump systems. Renew. Energy 2022, 194, 885–901. [Google Scholar] [CrossRef]
- Huang, G.; Wang, K.; Markides, C.N. Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems. Light Sci. Appl. 2021, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wang, K.; Curt, S.R.; Franchetti, B.; Pesmazoglou, I.; Markides, C.N. On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors. Renew. Energy 2021, 174, 590–605. [Google Scholar] [CrossRef]
- Wang, G.; Wang, B.; Yuan, X.; Lin, J.; Chen, Z. Novel design and analysis of a solar PVT system using LFR concentrator and nano-fluids optical filter. Case Stud. Therm. Eng. 2021, 27, 101328. [Google Scholar] [CrossRef]
- Bellmann, P.; Wolfertstetter, F.; Conceição, R.; Silva, H.G. Comparative modeling of optical soiling losses for CSP and PV energy systems. Sol. Energy 2020, 197, 229–237. [Google Scholar] [CrossRef]
- Liu, H.; Zhai, R.; Fu, J.; Wang, Y.; Yang, Y. Optimization study of thermal-storage PV-CSP integrated system based on GA-PSO algorithm. Sol. Energy 2019, 184, 391–409. [Google Scholar] [CrossRef]
- Wang, G.; Yao, Y.; Lin, J.; Chen, Z.; Hu, P. Design and thermodynamic analysis of a novel solar CPV and thermal combined system utilizing spectral beam splitter. Renew. Energy 2020, 155, 1091–1102. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Z.; Chen, Z. Design and performance evaluation of a novel CPV-T system using nano-fluid spectrum filter and with high solar concentrating uniformity. Energy 2023, 267, 126616. [Google Scholar] [CrossRef]
- Atashafrooz, M.; Sajjadi, H.; Delouei, A.A. Simulation of combined convective-radiative heat transfer of hybrid nanofluid flow inside an open trapezoidal enclosure considering the magnetic force impacts. J. Magn. Magn. Mater. 2023, 567, 170354. [Google Scholar] [CrossRef]
- Atashafrooz, M.; Sajjadi, H.; Delouei, A.A. Interacting influences of Lorentz force and bleeding on the hydrothermal behaviors of nanofluid flow in a trapezoidal recess with the second law of thermodynamics analysis. Int. Commun. Heath Mass Transf. 2020, 110, 104411. [Google Scholar] [CrossRef]
- Otanicar, T.; Dale, J.; Orosz, M.; Brekke, N.; DeJarnette, D.; Tunkara, E.; Roberts, K.; Harikumar, P. Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures. Appl. Energy 2018, 228, 1531–1539. [Google Scholar] [CrossRef]
- An, W.; Wu, J.; Zhu, T.; Zhu, Q. Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter. Appl. Energy. 2016, 184, 197–206. [Google Scholar] [CrossRef]
- Han, X.; Chen, X.; Wang, Q.; Alelyani, S.M.; Qu, J. Investigation of CoSO4-based Ag nanofluids as spectral beam splitters for hybrid PV/T applications. Sol. Energy 2019, 177, 387–394. [Google Scholar] [CrossRef]
- Hashemian, M.; Jafarmadar, S.; Khalilarya, S.; Faraji, M. Energy harvesting feasibility from photovoltaic/thermal (PV/T) hybrid system with Ag/Cr2O3-glycerol nanofluid optical filter. Renew. Energy 2022, 198, 426–439. [Google Scholar] [CrossRef]
- Brekke, N.; Dale, J.; DeJarnette, D.; Hari, P.; Orosz, M.; Roberts, K.; Tunkara, E.; Otanicar, T. Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption. Renew. Energy 2018, 123, 683–693. [Google Scholar] [CrossRef]
- Yazdanifard, F.; Ameri, M.; Taylor, R. Parametric investigation of a nanofluid-NEPCM based spectral splitting photovoltaic/thermal system. Energy Convers. Manag. 2021, 240, 114232. [Google Scholar] [CrossRef]
- Ju, X.; Liu, H.; Pei, M.; Li, W.; Lin, J.; Liu, D.; Ju, X.; Xu, C. Multi-parameter study and genetic algorithm integrated optimization for a nanofluid-based photovoltaic/thermal system. Energy 2023, 267, 126528. [Google Scholar] [CrossRef]
- Fuqiang, W.; Zhexiang, T.; Xiangtao, G.; Jianyu, T.; Huaizhi, H.; Bingxi, L. Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube. Energy 2016, 114, 275–292. [Google Scholar] [CrossRef]
- Kazemian, A.; Salari, A.; Hakkaki-Fard, A.; Ma, T. Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material. Appl. Energy 2019, 238, 734–746. [Google Scholar] [CrossRef]
- Ebrahim Ghasemi, S.; Akbar Ranjbar, A. Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector. Appl. Therm. Eng. 2017, 118, 807–816. [Google Scholar] [CrossRef]
- Cheng, Z.-D.; He, Y.-L.; Wang, K.; Du, B.-C.; Cui, F. A detailed parameter study on the comprehensive characteristics and performance of a parabolic trough solar collector system. Appl. Therm. Eng. 2014, 63, 278–289. [Google Scholar] [CrossRef]
- Wang, F.; Shuai, Y.; Tan, H.; Yu, C. Thermal performance analysis of porous media receiver with concentrated solar irradiation. Int. J. Heat Mass Transf. 2013, 62, 247–254. [Google Scholar] [CrossRef]
- Wu, Z.; Li, S.; Yuan, G.; Lei, D.; Wang, Z. Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver. Appl. Energy 2014, 113, 902–911. [Google Scholar] [CrossRef]
- Craig, K.J.; Moghimi, M.A.; Rungasamy, A.E.; Marsberg, J.; Meyer, J.P. Finite-volume ray tracing using Computational Fluid Dynamics in linear focus CSP applications. Appl. Energy 2016, 183, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.; El-Samie, M.M.A.; Xu, C.; Yu, H.; Pan, X.; Yang, Y. A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter. Appl. Energy 2020, 264, 114701. [Google Scholar] [CrossRef]
- Abd El-Samie, M.M.; Ju, X.; Xu, C.; Du, X.; Zhu, Q. Numerical study of a photovoltaic/thermal hybrid system with nanofluid based spectral beam filters. Energy Convers. Manag. 2018, 174, 686–704. [Google Scholar] [CrossRef]
- Hu, X.; Xu, T.; Zhou, L.; Wang, Q.; Arıcı, M.; Li, D. Comparison of transmittance and reflection methods for solving optical constants of optical glass. Optik. 2019, 183, 924–932. [Google Scholar] [CrossRef]
- Yuwawech, K.; Wootthikanokkhan, J.; Tanpichai, S. Enhancement of thermal, mechanical and barrier properties of EVA solar cell encapsulating films by reinforcing with esterified cellulose nanofibres. Polym. Test. 2015, 48, 12–22. [Google Scholar] [CrossRef]
- Green M, A. Self-Consistent Optical Parameters of Intrinsic Silicon at 300K including temperature coefficients. Sol. Energy Mater. Sol. Cells 2008, 92, 1305–1310. [Google Scholar] [CrossRef]
- Lin, J.; Liu, S.; Ju, X.; Xu, C.; Ju, X.; Liu, H. Investigation of two-stage concentrating splitting photovoltaic/thermal system with a flexible heat-electricity ratio based on nanofluid. Energy Convers. Manag. 2022, 258, 115531. [Google Scholar] [CrossRef]
- Barthwal, M.; Rakshit, D. Holistic opto-thermo-electrical analysis of a novel spectral beam splitting-based concentrating photovoltaic thermal system. J. Clean. Prod. 2022, 379, 134545. [Google Scholar] [CrossRef]
- Lin, J.; Liu, H.; Ju, X.; Liu, S.; Xu, C.; Ju, X. Investigation of bubbles on the performance of an optical water filter for a photovoltaic/thermal system. Appl. Therm. Eng. 2022, 213, 118643. [Google Scholar] [CrossRef]
Component | Size (m) | Density (kg/m3) | Heat Capacity (J/kg K) | Thermal Conductivity (W/m K) | Viscosity (Pa s) | Optical Property |
---|---|---|---|---|---|---|
Optical glass [29] | 0.156 × 1.56 × 0.0015 | 2530 | 850 | 0.937 | - | [30] |
EVA [29] | 0.156 × 1.56 × 0.0005 | 970 | 1400 | 0.34 | - | [31] |
PV cell [29] | 0.156 × 1.56 × 0.0003 | 2328 | 677 | 150 | - | [32] |
Tedlar [33] | 0.156 × 1.56 × 0.0003 | 1200 | 1250 | 0.15 | - | - |
Air [33] | 0.156 × 1.56 × 0.02 | 1.225 | 1006.43 | 0.0242 | - | - |
Splitting NF [33] | 0.156 × 1.56 × 0.01 | 997 | 4220 | 0.606 | 1.01 × 10−3 | [34] |
Cell Number | Pressure Drop (Pa) | The Outlet Temperature of Splitting NF (K) |
---|---|---|
52,380 | 1.73 | 322.33 |
155,833 | 2.21 | 322.51 |
256,631 | 2.23 | 322.58 |
463,322 | 2.27 | 322.58 |
511,212 | 2.27 | 322.58 |
Category | Parameters |
---|---|
Concentration ratio | Four suns |
Height (Y) | 550.18 mm |
Length (Z) | 852 mm |
Upper opening width (X) | 624 mm |
Receiving half angle | 35.35° |
CPC specular reflectance | 100% |
Cell Number | Cell Temperature (K) | NF Outlet Temperature (K) |
---|---|---|
Experimental data | 339.20 | 321.30 |
Present data | 334.71 | 322.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, T.; Liu, M.; Lin, J. A Detailed Numerical Study of a Nanofluid-Based Photovoltaic/THERMAL Hybrid System under Non-Uniform Solar Flux Distribution. Sustainability 2023, 15, 4377. https://doi.org/10.3390/su15054377
Jiang T, Liu M, Lin J. A Detailed Numerical Study of a Nanofluid-Based Photovoltaic/THERMAL Hybrid System under Non-Uniform Solar Flux Distribution. Sustainability. 2023; 15(5):4377. https://doi.org/10.3390/su15054377
Chicago/Turabian StyleJiang, Tieliu, Mingqi Liu, and Jianqing Lin. 2023. "A Detailed Numerical Study of a Nanofluid-Based Photovoltaic/THERMAL Hybrid System under Non-Uniform Solar Flux Distribution" Sustainability 15, no. 5: 4377. https://doi.org/10.3390/su15054377
APA StyleJiang, T., Liu, M., & Lin, J. (2023). A Detailed Numerical Study of a Nanofluid-Based Photovoltaic/THERMAL Hybrid System under Non-Uniform Solar Flux Distribution. Sustainability, 15(5), 4377. https://doi.org/10.3390/su15054377