Research on Demand Price Elasticity Based on Expressway ETC Data: A Case Study of Shanghai, China
Abstract
:1. Introduction
2. Methodology
2.1. Demand Elasticity
2.2. Experimental Method
3. Case Studies and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olszewski, P.; Xie, L. Modelling the effects of road pricing on traffic in Singapore. Transp. Res. Part A Policy Pract. 2005, 39, 755–772. [Google Scholar] [CrossRef]
- TfL: Transport for London. 2003. Available online: http://www.cclondon.com/ (accessed on 16 March 2003).
- Burris, M.W. The toll-price component of travel demand elasticity. Int. J. Transport Econ./Riv. Internazionale Di Econ. Dei Trasp. 2003, 1, 45–59. [Google Scholar]
- Holguín-Veras, J.; Wang, Q.; Xu, N.; Ozbay, K.; Cetin, M.; Polimeni, J. The impacts of time of day pricing on the behavior of freight carriers in a congested urban area: Implications to road pricing. Transport. Res. Part A Policy Pract. 2006, 40, 744–766. [Google Scholar] [CrossRef]
- Holguín-Veras, J. Necessary conditions for off-hour deliveries and the effectiveness of urban freight road pricing and alternative financial policies in competitive markets. Transport. Res. Part A Policy Pract. 2008, 42, 392–413. [Google Scholar] [CrossRef]
- Holguín-Veras, J. The truth, the myths and the possible in freight road pricing in congested urban areas. Procedia-Social Behav. Sci. 2010, 2, 6366–6377. [Google Scholar] [CrossRef] [Green Version]
- Litman, T. Understanding Transport Demands and Elasticities. How Prices and Other Factors Affect Travel Behavior. (Victoria Transport Policy Institute: Litman). 2013. Available online: http://www.vtpi.org/elasticities.pdf (accessed on 22 November 2013).
- McKnight, C.E.; Hirschman, I.; Pucher, J.R.; Berechman, J.; Paaswell, R.E.; Hernandez, J.A.; Gamill, J. Optimal Toll Strategies for the Triborough Bridge and Tunnel Authority; Final Report; Triborough Bridge and Tunnel Authority: New York, NY, USA, 1992. [Google Scholar]
- Zou, W.; Wang, X.; Zhang, D. Truck crash severity in New York city: An investigation of the spatial and the time of day effects. Acc. Anal. Prevent. 2017, 99, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Bari, M.E.; Burris, M.W.; Huang, C. The Impact of a Toll Reduction for Truck Traffic Using SH 130. Case Stud. Transp. Policy 2015, 2, 222–228. [Google Scholar] [CrossRef]
- Urbanek, A. Public Transport Fares as an Instrument of Impact on the Travel Behaviour: An Empirical Analysis of the Price Elasticity of Demand. In Challenges of Urban Mobility, Transport Companies and Systems; Springer Proceedings in Business and Economics: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Sianturi, P.C.; Nasrudin, R.; Yudhistira, M.H. Estimating the price elasticity of demand for urban mass rapid transit ridership: A quasi-experimental evidence from Jakarta, Indonesia. Transp. Policy 2022, 10, 354–364. [Google Scholar] [CrossRef]
- Davis, L.W. Estimating the price elasticity of demand for subways: Evidence from Mexico. Reg. Sci. Urban Econ. 2021, 87, 103651. [Google Scholar] [CrossRef]
- Melo, P.C.; Sobreira, N.; Goulart, P. Estimating the long-run metro demand elasticities for Lisbon: A time-varying approach. Transp. Res. Part A 2019, 26, 360–376. [Google Scholar] [CrossRef]
- Holmgren, J. Meta-analysis of public transport demand. Transp. Res. Part A Policy Pract. 2017, 41, 1021–1035. [Google Scholar] [CrossRef] [Green Version]
OD Pairs | 2019 Charge/yuan | 2020 Charge/yuan | Distance/km | Charge Difference/yuan | Elasticity Value |
---|---|---|---|---|---|
S24-S19 | 4.75 | 0.95 | 1.58 | 3.8 | −0.42 |
S22-S24 | 4.75 | 1.46 | 2.43 | 3.29 | −0.46 |
S24-S22 | 4.75 | 1.46 | 2.43 | 3.29 | −0.37 |
S14-S15 | 4.75 | 1.9 | 3.17 | 2.85 | −0.38 |
S11-S16 | 4.75 | 1.9 | 3.17 | 2.85 | −0.50 |
S15-S14 | 4.75 | 1.9 | 3.17 | 2.85 | −0.23 |
S3-S21 | 4.75 | 3.8 | 6.30 | 0.95 | −1.78 |
S21-S3 | 4.75 | 3.8 | 6.30 | 0.95 | −1.29 |
S19-S26 | 4.75 | 5.23 | 8.72 | −0.48 | 2.17 |
S26-S19 | 4.75 | 5.23 | 8.72 | −0.48 | 1.40 |
S9-S10 | 9.5 | 5.48 | 9.13 | 4.02 | −0.81 |
S22-S23 | 9.5 | 6.21 | 10.35 | 3.29 | −0.93 |
S23-S22 | 9.5 | 6.21 | 10.35 | 3.29 | −0.86 |
S22-S25 | 9.5 | 6.21 | 10.35 | 3.29 | −0.69 |
S25-S22 | 9.5 | 6.21 | 10.35 | 3.29 | −0.71 |
S5-S6 | 9.5 | 6.65 | 11.08 | 2.85 | −0.75 |
S6-S5 | 9.5 | 6.65 | 11.08 | 2.85 | −0.33 |
S17-S18 | 4.75 | 7 | 11.66 | −2.25 | −0.27 |
S18-S17 | 4.75 | 7 | 11.66 | −2.25 | −0.28 |
S11-S12 | 14.25 | 9.5 | 15.83 | 4.75 | −0.90 |
S12-S11 | 14.25 | 9.5 | 15.83 | 4.75 | −0.54 |
S3-S4 | 14.25 | 10.45 | 17.41 | 3.8 | −1.59 |
S4-S3 | 14.25 | 10.45 | 17.41 | 3.8 | −1.30 |
S19-S20 | 14.25 | 11.23 | 18.71 | 3.02 | −1.78 |
S20-S19 | 14.25 | 11.23 | 18.71 | 3.02 | −1.36 |
S7-S8 | 14.25 | 11.4 | 19 | 2.85 | −1.91 |
S13-S11 | 14.25 | 11.4 | 19 | 2.85 | −1.41 |
S1-S2 | 19 | 15.2 | 25.33 | 3.8 | −1.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Shao, M.; Sun, L.; Wang, X.; Song, S. Research on Demand Price Elasticity Based on Expressway ETC Data: A Case Study of Shanghai, China. Sustainability 2023, 15, 4379. https://doi.org/10.3390/su15054379
Li Y, Shao M, Sun L, Wang X, Song S. Research on Demand Price Elasticity Based on Expressway ETC Data: A Case Study of Shanghai, China. Sustainability. 2023; 15(5):4379. https://doi.org/10.3390/su15054379
Chicago/Turabian StyleLi, Yunyi, Minhua Shao, Lijun Sun, Xinmiao Wang, and Shizhao Song. 2023. "Research on Demand Price Elasticity Based on Expressway ETC Data: A Case Study of Shanghai, China" Sustainability 15, no. 5: 4379. https://doi.org/10.3390/su15054379
APA StyleLi, Y., Shao, M., Sun, L., Wang, X., & Song, S. (2023). Research on Demand Price Elasticity Based on Expressway ETC Data: A Case Study of Shanghai, China. Sustainability, 15(5), 4379. https://doi.org/10.3390/su15054379