Characterization Methods of Ions and Metals in Particulate Matter Pollutants on PM2.5 and PM10 Samples from Several Emission Sources
Abstract
:1. Introduction
1.1. The Main Technologies
1.2. The Filters
2. Methods
2.1. Data Collection
2.2. Information Analysis
3. Results
3.1. Filters Types and Parameters
3.2. Characterization Techniques
4. Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ubilla, C.; Yohannessen, K. Contaminación Atmosférica Efectos En La Salud Respiratoria En El Niño. Rev. Médica Clínica Las Condes 2017, 28, 111–118. [Google Scholar] [CrossRef]
- Maya, A.; del Pilar, M.; Posada-Posada; Isabel, M.; Nowak David, J.; Hoehn Robert, E. Remoción de contaminantes atmosféricos por el bosque urbano en el valle de Aburrá. Colomb. For. 2019, 22, 5–16. [Google Scholar] [CrossRef]
- Murillo, P.; Emperatriz, S. Impact of atmospheric contamination in two main cities of Ecuador. Rev. Univ. Y Soc. 2018, 10, 289–293. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202018000200289&lng=es&tlng=en (accessed on 27 January 2023).
- Dhiraj, G.; Krishnamurthy, V.; Adhikary, P. The Influence of Meteorological Conditions on PM10 Concentrations in Kathmandu Valley. Int. J. Environ. Res. 2008, 2, 2. [Google Scholar]
- Zhou, X.; Li, Z.; Zhang, T.; Wang, F.; Tao, Y.; Zhang, X.; Wang, F.; Huang, J.; Cheng, T.; Jiang, H.; et al. Chemical nature and predominant sources of PM10 and PM2.5 from multiple sites on the Silk Road, Northwest China. Atmos. Pollut. Res. 2021, 12, 425–436. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Saravanan, R. Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nat. Commun. 2014, 5, 3098. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Hoek, G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef]
- Sanhueza, P.A.; Torreblanca, M.A.; Diaz-Robles, L.A.; Schiappacasse, L.N.; Silva, M.P.; Teresa, D.A. Particulate Air Pollution and Health Effects for Cardiovascular and Respiratory Causes in Temuco, Chile: A Wood-Smoke Polluted Urban Area. J. Air Waste Manag. Assoc. 2009, 59, 1481–1488. [Google Scholar] [CrossRef]
- Fonseca-Hernández, M.; Tereshchenko, I.; Mayor, Y.G.; Figueroa-Montaño, A.; Cuesta-Santos, O.; Monzón, C. Atmospheric Pollution by PM10 and O3 in the Guadalajara Metropolitan Area, Mexico. Atmosphere 2018, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Sandra, V.; William, O.; Lucia, O.; Eduardo, P.; Orlando, S. Contaminación Atmosférica Y Efectos Respiratorios En Niños, En Mujeres Embarazadas Y En Adultos Mayores. Rev. UDCA Ac-Tualidad Divulg. Científica 2008, 11, 31–45. [Google Scholar]
- Doria, A.C.; Fagundo, C.J. Caracterización química de material particulado PM10 en la atmósfera de La Guajira. Colombia. Rev. Colomb. Química 2016, 45, 19–29. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Atmosphere —Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negral, L.; Suárez-Peña, B.; Zapico, E.; Fernández-Nava, Y.; Megido, L.; Moreno, J.; Marañón, E.; Castrillón, L. Anthropogenic and meteorological influences on PM10 metal/semi-metal concentrations: Implications for human health. Chemosphere 2020, 243, 125347. [Google Scholar] [CrossRef] [PubMed]
- Sopittaporn, S.; Somporn, C.; Urai, T.; Sukon, P.; Tippawan, P. Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions. Chemosphere 2023, 93, 1912–1919. [Google Scholar] [CrossRef]
- Alvarez, E.; Juan; Alvarez, M.; Alfredo; Sánchez, L.; Diana; González, P.; Iván; Torres, H.; Débora; et al. Biomonitoreo de la contaminación atmosférica en La Habana durante la campaña 2004–2005. Nucleus 2011, 50, 18–23. [Google Scholar]
- Analí, M.; Harvi, V.; Neyma, G.; Cézar, G.; Lorena, A.; Alberto, C.; María, L. Metales en PM10 y su dispersión en una zona de alto tráfico vehicular. Interciencia 2007, 32, 312–317. [Google Scholar]
- Liu, Y.; Zhang, W.; Yang, W.; Bai, Z.; Zhao, X. Chemical compositions of PM 2.5 emitted from diesel trucks and construction equipment. Aerosol Sci. Eng. 2018, 2, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Gehui, W.; Renyi, Z.; Mario, E.; Lingxiao, Y.; Misti, L.; Min, H.; Yun, L. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Impacts, adaptation and vulnerability: Working group II contribution to the intergovernmental panel on climate change: Fifth assessment report (AR5): Summary for policymakers, intergovernmental panel on climate change. Working Group Impacts. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1–32. [Google Scholar]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Galon-Negru, A.G.; Olariu, R.I.; Arsene, C. Size-resolved measurements of PM2.5 water-soluble elements in Iasi, north-eastern Romania: Seasonality, source apportionment and potential implications for human health. Sci. Total Environ. 2019, 695, 133839. [Google Scholar] [CrossRef]
- Cerón Bretón, J.G.; Cerón Bretón, R.M.; Espinosa Guzman, A.A.; Guarnaccia, C.; Martínez Morales, S.; Lara Severino, R.d.C.; Rangel Marrón, M.; Hernández López, G.; Carranco Lozada, S.E.; Kahl, J.D.W.; et al. Trace Metal Content and Health Risk Assessment of PM10 in an Urban Environment of León, Mexi-co. Atmosphere 2019, 10, 573. [Google Scholar] [CrossRef] [Green Version]
- Rengarajan, R.; Sudheer, A.; Sarin, M. Wintertime PM2.5 and PM10 carbonaceous and inorganic constituents from urban site in western India. Atmos. Res. 2011, 102, 420–431. [Google Scholar] [CrossRef]
- Christopher, M.; Long Marc, A.; Nascarella Peter, A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 2013, 181, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Bhuyan, P.; Barman, N.; Bora, J.; Daimari, R.; Deka, P.; Hoque, R.R. Attributes of aerosol bound water soluble ions and carbon, and their relationships with AOD over the Brahmaputra Valley. Atmos. Environ. 2016, 142, 194–209. [Google Scholar] [CrossRef]
- Hama, S.; Kumar, P.; Alam, M.S.; Rooney, D.J.; Bloss, W.J.; Shi, Z.; Harrison, R.M.; Crilley, L.R.; Khare, M.; Gupta, S.K. Chemical source profiles of fine particles for five different sources in Delhi. Chemosphere 2021, 274, 129913. [Google Scholar] [CrossRef] [PubMed]
- Evagelopoulos, V.; Charisiou, N.D.; Zoras, S. Dataset of Polycyclic aromatic hydrocarbons and trace elements in PM2.5 and PM10 atmospheric particles from two locations in North-Western Greece. Data Brief 2022, 42, 108266. [Google Scholar] [CrossRef] [PubMed]
- Javed, W.; Wexler, A.S.; Murtaza, G.; Ahmad, H.R.; Basra, S.M. Spatial, temporal and size distribution of particulate matter and its chemical constituents in Faisalabad, Pakistan. Atmósfera 2015, 28, 99–116. [Google Scholar] [CrossRef]
- Ge, X.; Li, L.; Chen, Y.; Chen, H.; Wu, D.; Wang, J.; Xie, X.; Ge, S.; Ye, Z.; Xu, J.; et al. Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques. Environ. Pollut. 2017, 225, 74–85. [Google Scholar] [CrossRef]
- Hanna, E.; Fuchte; Paas, B.; Auer, F.; Bayer, V.J.; Achten, C.; Schäffer, A.; Smith, K.E. Identi-fication of sites with elevated PM levels along an urban cycle path using a mobile platform and the analysis of 48 particle bound PAH. Atmos. Environ. 2022, 271, 118912. [Google Scholar] [CrossRef]
- Insian, W.; Yabueng, N.; Wiriya, W.; Chantara, S. Size-fractionated PM-bound PAHs in urban and rural atmospheres of northern Thailand for respiratory health risk assessment. Environ. Pollut. 2022, 293, 118488. [Google Scholar] [CrossRef]
- Ko, J.H.; Wang, J.; Xu, Q. Impact of pyrolysis conditions on polycyclic aromatic hydrocarbons (PAHs) for-mation in particulate matter (PM) during sewage sludge pyrolysis. Chemosphere 2018, 208, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Fatima, S.; Mishra, S.K.; Kumar, U.; Ahlawat, A.; Dabodiya, T.S.; Khosla, D. Role of morphology and chemical composition of PM for particle deposition in human respiratory system: A case study over megacity-Delhi. Urban Clim. 2023, 47, 101344. [Google Scholar] [CrossRef]
- Pereira, G.M.; Oraggio, B.; Teinilä, K.; Custódio, D.; Huang, X.; Hillamo, R.; Alves, C.A.; Balasubramanian, R.; Rojas, N.Y.; Sanchez-Ccoyllo, O.R.; et al. A comparative chemical study of PM10 in three Latin American cities: Lima, Medellín, and São Paulo. Air Qual. Atmos. Health 2019, 12, 1141–1152. [Google Scholar] [CrossRef]
- Dubey, B.; Pal, A.K.; Singh, G. Trace metal composition of airborne particulate matter in the coal mining and non–mining areas of Dhanbad Region, Jharkhand, India. Atmos. Pollut. Res. 2012, 3, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Kastury, F.; Smith, E.; Karna, R.R.; Scheckel, K.G.; Juhasz, A. An inhalation-ingestion bioaccessibility assay (IIBA) for the assessment of exposure to metal(loid)s in PM10. Sci. Total Environ. 2018, 631–632, 92–104. [Google Scholar] [CrossRef]
- Quijano Parra, A.; Quijano Vargas, M.J.; Henao Martínez, J.A. Caracterización fisicoquímica del material par-ticu-ladofracción respirable PM2.5 en Pamplona-Norte de Santander-Colombia. Bistua: Rev. De La Fac. De Cienc. Básicas 2010, 8, 1–20. [Google Scholar]
- William, J.; Shaughnessy, M.M.; Venigalla, T.D. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population. Atmos. Environ. 2015, 123, 102–111. [Google Scholar] [CrossRef]
- Yang, M.; Zeng, H.-X.; Wang, X.-F.; Hakkarainen, H.; Leskinen, A. Sources, chemical components, and toxicological responses of size segregated urban air PM samples in high air pollution season in Guangzhou, China. Sci. Total Environ. 2023, 865, 161092. [Google Scholar] [CrossRef]
- Henderson, D.E.; Milford, J.B.; Miller, S.L. Prescribed burns and wildfires in Colorado: Impacts of mitigation measures on indoor air particulate matter. J. Air Waste Manag. Assoc. 2005, 55, 1516–1526. [Google Scholar] [CrossRef]
- Nagar, P.K.; Singh, D.; Sharma, M.; Kumar, A.; Aneja, V.P.; George, M.P.; Agarwal, N. Characterization of PM2.5 in Delhi: Role and impact of secondary aerosol, burning of biomass, and municipal solid waste and crustal matter. Environ. Sci. Pollut. Res. 2017, 24, 25179–25189. [Google Scholar] [CrossRef]
- Wegesser, T.C.; Pinkerton, K.E.; Last, J.A. California wildfires of 2008: Coarse and fine particulate matter toxicity. Environ. Health Perspect. 2009, 117, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Franzi, L.M.; Bratt, J.M.; Williams, K.M.; Last, J.A. Why is particulate matter produced by wildfires toxic to lung macrophages? Toxicol. Appl. Pharmacol. 2011, 257, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, K.; Mills, N.; MacNee, W.; Robinson, S.; Newby, D. Role of inflammation in cardiopulmonary health effects of PM. Toxicol. Appl. Pharmacol. 2005, 207, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Hao, M.; Phalen, R.F.; Hinds, W.C.; Nel, A.E. Particulate air pollutants and asthma: A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. Immunol. 2003, 109, 250–265. [Google Scholar] [CrossRef]
- Grigoropoulos, K.; Panagopoulos, C.; Gialouris, A.; Kouris, N.; Ferentinos, G.; Polichetti, G.; Thoma, E.; Papadopoulos, J.; Nastos, P.; Tsirogiani, Z.; et al. PM (Particles Matters) And Health Effects In A Pollution Episode In Athens. Eur. J. Intern. Med. 2011, 22 (Suppl. S1), S37–S38. [Google Scholar] [CrossRef]
- Lan, Y.; Ng, C.T.; Ong, R.X.S.; Muniasamy, U.; Baeg, G.H.; Ong, C.N.; Yu, L.E.; Bay, B.H. Urban PM2.5 reduces angiogenic ability of endothelial cells in an alveolar-capillary co-culture lung model. Ecotoxicol. Environ. Saf. 2020, 202, 110932. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Feng, P.-H.; Han, C.-L.; Jheng, Y.-T.; Wu, C.-D. Alveolar epithelial inter-alpha-trypsin inhibitor heavy chain 4 deficiency associated with senescence-regulated apoptosis by air pollution. Environ. Pollut. 2021, 278, 116863. [Google Scholar] [CrossRef]
- von Schneidemesser, E.; Monks, P.S.; Allan, J.D.; Bruhwiler, L.; Forster, P.; Fowler, D.; Lauer, A.; Morgan, W.T.; Paasonen, P.; Righi, M.; et al. Chemistry and the linkages between air quality and climate change. Chem. Rev. 2015, 115, 3856–3897. [Google Scholar] [CrossRef]
- Nueve de Cada Diez Personas de Todo el Mundo Respiran Aire Contaminado Sin Embargo, Cada Vez Hay Más Países Que Toman Medidas. 2018. Available online: https://www.who.int/es/news/item/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action (accessed on 12 December 2022).
- Zalakeviciute, R.; Alexandrino, K.; Mejia, D.; Bastidas, M.G.; Oleas, N.H.; Gabela, D.; Rybarczyk, Y. The effect of national protest in Ecuador on PM pollution. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Colorado, H.A.; Muñoz, A.; Neves Monteiro, S. Circular economy of construction and demolition waste: A case study of Colombia. Sustainability 2022, 14, 7225. [Google Scholar] [CrossRef]
- Agudelo, G.; Cifuentes, S.; Colorado, H.A. Ground tire rubber and bitumen with wax and its application in a real highway. J. Clean. Prod. 2019, 228, 1048–1061. [Google Scholar] [CrossRef]
- Rendón, J.; Giraldo, C.H.; Monyake, K.C.; Alagha, L.; Colorado, H.A. Experimental investigation on composites incorporating rice husk nanoparticles for environmental noise management. J. Environ. Manag. 2023, 325, 116477. [Google Scholar] [CrossRef] [PubMed]
- Colorado, H.A.; Mendoza, D.E.; Valencia, F.L. A combined strategy of additive manufacturing to support multidisciplinary education in arts, biology, and engineering. J. Sci. Educ. Technol. 2021, 30, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Colorado, H.A.; Velásquez EI, G.; Monteiro, S.N. Sustainability of additive manufacturing: The circular economy of materials and environmental perspectives. J. Mater. Res. Technol. 2020, 9, 8221–8234. [Google Scholar] [CrossRef]
- Ordoñez, E.; Monteiro, S.N.; Colorado, H.A. Valorization of a hazardous waste with 3D-printing: Combination of kaolin clay and electric arc furnace dust from the steel making industry. Mater. Des. 2022, 217, 110617. [Google Scholar] [CrossRef]
- Ferreira, S.L.; Bezerra, M.A.; Santos, A.S.; dos Santos, W.N.; Novaes, C.G.; de Oliveira, O.M.; Garcia, R.L. Atomic absorption spectrometry–A multi element technique. TrAC Trends Anal. Chem. 2018, 100, 1–6. [Google Scholar] [CrossRef]
- Jackson, P.E. Ion chromatography in environmental analysis. In Encyclopedia of Analytical Chemistry; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2000; pp. 2779–2801. [Google Scholar]
- Hill, S.J. (Ed.) Inductively Coupled Plasma Spectrometry and Its Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Batchelor-McAuley, C.; Kätelhön, E.; Barnes, E.O.; Compton, R.G.; Laborda, E.; Molina, A. Recent advances in voltammetry. ChemistryOpen 2015, 4, 224–260. [Google Scholar] [CrossRef]
- Fanali, S.; Haddad, P.R.; Poole, C.; Riekkola, M.L. (Eds.) Liquid Chromatography: Applications; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Bunaciu, A.A.; UdriŞTioiu, E.G.; Aboul-Enein, H.Y. X-ray diffraction: Instrumentation and applica-tions. Crit. Rev. Anal. Chem. 2015, 45, 289–299. [Google Scholar] [CrossRef]
- Greenberg, R.R.; Bode, P.; Fernandes, E.A.D.N. Neutron activation analysis: A primary method of meas-urement. Spectrochim. Acta Part B: At. Spectrosc. 2011, 66, 193–241. [Google Scholar] [CrossRef]
- Vaughn, E.; Ramachandran, G. Fiberglass vs. synthetic air filtration media. Int. Nonwovens J. 2002, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Brincat, J.P.; Sardella, D.; Muscat, A.; Decelis, S.; Grima, J.N.; Valdramidis, V.; Gatt, R. A review of the state-of-the-art in air filtration technologies as may be applied to cold storage warehouses. Trends Food Sci. Technol. 2016, 50, 175–185. [Google Scholar] [CrossRef]
- Aikawa, M.; Hiraki, T. Difference in the use of a quartz filter and a PTFE filter as first-stage filter in the four-stage filter-pack method. Water Air Soil Pollut. 2010, 213, 331–339. [Google Scholar] [CrossRef]
- Hänninen, O.O.; Koistinen, K.J.; Kousa, A.; Keski-Karhu, J.; Jantunen, M.J. Quantitative analysis of envi-ronmental factors in differential weighing of blank Teflon filters. J. Air Waste Manag. Assoc. Tion 2002, 52, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Y.; Tan, Y.; Zhu, J.; Liu, K.; Zhu, J. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering. Mater. Res. Express 2016, 3, 074004. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.; Mages, M. Total-Reflection X-ray fluorescence analysis of elements in size-fractionated partic-ulate matter sampled on polycarbonate filters—Composition and sources of aerosol particles in Göteborg, Sweden. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 471–477. [Google Scholar] [CrossRef]
- Avnimelech, Y. Bio-filters: The need for an new comprehensive approach. Aquac. Eng. 2006, 34, 172–178. [Google Scholar] [CrossRef]
- Chaves, L.C.; Ensslin, L.; Ensslin, S.R.; Petri, S.M.; Da Rosa, F.S. Gestão do processo decisório: Mapeamento ao tema conforme as delimitações postas pelos pesquisadores. Rev. Eletrônica Estratégia Negócios 2012, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Duarte, R.M.; Matos, J.T.; Paula, A.S.; Lopes, S.P.; Pereira, G.; Vasconcellos, P.; Gioda, A.; Carreira, R.; Silva, A.M.; Duarte, A.C.; et al. Structural signatures of water-soluble organic aerosols in contrasting environments in South America and Western Europe. Environ. Pollut. 2017, 227, 513–525. [Google Scholar] [CrossRef] [Green Version]
- Bu-Olayan, A.H.; Thomas, B.V. Exposition of respiratory ailments from trace metals concentrations in incenses. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Pey, J.; Alastuey, A.; Querol, X.; Pérez, N.; Cusack, M. A simplified approach to the indirect evaluation of the chemical composition of atmospheric aerosols from PM mass concentrations. Atmos. Environ. 2010, 44, 5112–5121. [Google Scholar] [CrossRef]
- Police, S.; Sahu, S.K.; Pandit, G.G. Chemical characterization of atmospheric particulate matter and their source apportionment at an emerging industrial coastal city, Visakhapatnam, India. Atmos. Pollut. Res. 2016, 7, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Pellón, A.; Fernández-Olmo, I. Airborne concentration and deposition of trace metals and metalloids in an urban area downwind of a manganese alloy plant. Atmos. Pollut. Res. 2019, 10, 712–721. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, L.; Gao, J.; Wang, H.; Chai, F.; Wang, S. Aerosol chemical composition and light scattering during a winter season in Beijing. Atmos. Environ. 2015, 110, 36–44. [Google Scholar] [CrossRef]
- Shahid, I.; Kistler, M.; Mukhtar, A.; Ghauri, B.M.; Cruz, C.R.-S.; Bauer, H.; Puxbaum, H. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi—Pakistan. Atmos. Environ. 2016, 128, 114–123. [Google Scholar] [CrossRef]
- Souza, E.J.S.; Mora, C.Z.; Zuluaga, B.H.A.; Amaral, C.D.B.; Grassi, M.T. Multi-elemental analysis of particulate matter PM2.5 and PM10 by ICP OES. Talanta 2021, 221, 121457. [Google Scholar] [CrossRef]
- Foley, T.; Betterton, E.A.; Wolf, A.M.A. Ambient PM10 and metal concentrations measured in the Sunnyside unified school district, Tucson, Arizona. J. Ariz. Nev. Acad. Sci. 2012, 43, 67–76. [Google Scholar] [CrossRef]
- Bencardino, M.; Pirrone, N.; Sprovieri, F. Aerosol Trace Metal Concentrations over the Mediterranean Basin: Observations through six cruise campaigns on board the CNR Research Vessel URANIA. In Proceedings of the E3S Web of Conferences, Rome, Italy, 23-27 September 2013; Volume 1, p. 23002. [Google Scholar]
- Ezeh, G.; Obioh, I.; Asubiojo, O.; Chiari, M.; Nava, S.; Calzolai, G.; Lucarelli, F.; Nuviadenu, C. Elemental compositions of PM10–2.5 and PM2.5 aerosols of a Nigerian urban city using ion beam analytical techniques. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 334, 28–33. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Fan, S.; Mao, X.; Chen, H. A one-year, on-line, multi-site observational study on water-soluble inorganic ions in PM2.5 over the Pearl River Delta region. China Sci. Total Environ. 2017, 601–602, 1720–1732. [Google Scholar] [CrossRef]
- Mohammed, G.; Karani, G.; Mitchell, D. Trace Elemental Composition in PM10 and PM2.5 Collected in Cardiff. Wales Energy Procedia 2017, 111, 540–547. [Google Scholar] [CrossRef]
- Quiterio, S.L.; Arbilla, G.; Escaleira, V.; Silva, C.R.S.; Wasserman, M.A. Characterization of Airborne Trace Metal Distribution in Baixada Fluminense, Rio de Janeiro, Brazil, by Operational Speciation. Bull. Environ. Con-Tami-Nation Toxicol. 2006, 77, 119–125. [Google Scholar] [CrossRef]
- El-Araby, E.; El-Wahab, M.A.; Diab, H.; El-Desouky, T.; Mohsen, M. Assessment of Atmospheric heavy metal depo-sition in North Egypt aerosols using neutron activation analysis and optical emission inductively coupled plasma. Appl. Radiat. Isot. 2011, 69, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; Oldroyd, A.; McDonald, I.; Gibbons, W. Preferential fractionation of trace metals–metalloids into PM 10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain. Water Air Soil Pollut. 2007, 179, 93–105. [Google Scholar] [CrossRef]
- Gray, D.L.; Wallace, L.A.; Brinkman, M.C.; Buehler, S.S.; La Londe, C. Respiratory and Cardiovascular Effects of Metals in Ambient Particulate Matter: A Critical Review. Rev. Environ. Contam. Toxicol. 2014, 135–203. [Google Scholar] [CrossRef]
- Rosa, M.J.; Benedetti, C.; Peli, M.; Donna, F.; Nazzaro, M.; Fedrighi, C.; Lucchini, R. Association between personal exposure to ambient metals and respiratory disease in italian adolescents: A cross-sectional study. BMC Pulm. Med. 2016, 16, 6. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Wang, C.L.; Liu, J.; Wang, J.; Qi, J.Y.; Wu, Y.J. Environmental exposure and flux of thallium by industrial activities utilizing thallium-bearing pyrite. Sci. China Earth Sci. 2013, 56, 1502–1509. [Google Scholar] [CrossRef]
- Demiray, A.D.; Yolcubal, I.; Akyol, N.H.; Çobanoǧlu, G. Biomonitoring of airborne metals using the lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecol. Indic 2012, 18, 632–643. [Google Scholar] [CrossRef]
- Kazantzis, G. Thallium in the environment and health effects. Environ. Geochem. Health 2000, 22, 275–280. [Google Scholar] [CrossRef]
- Bohdalkova, L.; Novak, M.; Voldrichova, P.; Prechova, E.; Veselovsky, F.; Erbanova, L.; Krachler, M.; Komarek, A.; Mikova, J. Atmospheric deposition of beryllium in Central Europe: Comparison of soluble and insoluble fractions in rime and snow across a pollution gradient. Sci. Total Environ. 2012, 439, 26–34. [Google Scholar] [CrossRef]
- Malandrino, M.; Casazza, M.; Abollino, O.; Minero, C.; Maurino, V. Size resolved metal distribution in the PM matter of the city of Turin (Italy). Chemosphere 2016, 147, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Harper, C. Toxicological Profile for Tin; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2005; pp. 249–250.
- Ledoux, F.; Kfoury, A.; Delmaire, G.; Roussel, G.; El Zein, A.; Courcot, D. Contributions of local and regional anthro-pogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere 2017, 181, 713–724. [Google Scholar] [CrossRef]
- Altıntas, Y.; Kaygısız, Y.; Öztürk, E.; Aksӧz, S.; Keşlioğlu, K.; Maraşli, N. The measurements of electrical and thermal conductivity variations with temperature and phonon component of the thermal conductivity in Sn-Cd-Sb, Sn-In-Cu, Sn-Ag-Bi and Sn-Bi-Zn alloys. Int. J. Therm. Sci. 2016, 100, 1–9. [Google Scholar] [CrossRef]
- Abkowitz, S.M.; Abkowitz, S.; Fisher, H. Breakthrough claimed for titanium PM. Met. Powder Rep. 2011, 66, 16–21. [Google Scholar] [CrossRef]
- Onishchenko, D.V.; Reva, V.P.; Kuryavy, V.G.; Petrov, V.V. Use of carbon compacts based on natural graphite for the mechanochemical synthesis of titanium carbide. Metallurgist 2012, 56, 456–461. [Google Scholar] [CrossRef]
- Sampad, G.; Balram, A. Characterization of PM10 in the ambient air during Deepawali festival of Rajnandgaon district, India. Nat. Hazards 2013, 69, 589–598. [Google Scholar] [CrossRef]
- Neckel, A.; Oliveira, M.L.; Maculan, L.S.; Bodah, B.W.; Gonçalves, A.C.; Silva, L.F. Air pollution in central European capital (Budapest) via self-made passive samplers and Sentinel-3B SYN satellite images. Urban Clim. 2023, 47, 101384. [Google Scholar] [CrossRef]
Type | Search Command |
---|---|
1 | (Characterization or analysis) and (PM10 or PM2.5) and (metals or ions) |
2 | (Characterization or analysis) and (PM10 or PM2.5) and (AAS or ICP) |
3 | (Characterization or analysis) and (PM10 or PM2.5) and (IC or chromatography) |
4 | (Characterization or analysis) and (PM10 or PM2.5) and (Metals or trace elements) |
5 | (Characterization or analysis) and (PM10 or PM2.5) and ((anion or cation) or WSIS) |
Filter | Pore | Brand | M or I | Pollutant | Reference | |
---|---|---|---|---|---|---|
Fiber glass | 47 mm | Whatman | Metals | PM10 | PM2.5 | [35] |
47 mm | Whatman | Metals | PM10 | - | [76] | |
47 mm | Whatman | Ion | PM10 | - | [25] | |
- | Whatman | - | PM10 | - | [35] | |
PUF (Polyurethane foam) | - | - | Metals | PM10 | PM2.5 | [28] |
Ion | ||||||
Quartz fiber | 47 mm | Pallflex | Metals | - | PM2.5 | [29] |
Ion | ||||||
150 mm | Sartorious | Metals | PM10 | - | [77] | |
47 mm | Whatman | Ion | - | PM2.5 | [78] | |
47 mm | - | Ion | PM10 | PM2.5 | [26] | |
47 mm | Whatman | Ion | PM10 | - | [79] | |
Metals | ||||||
47 mm | Whatman | Ion | - | PM2.5 | ||
Metals | ||||||
- | - | - | PM10 | PM2.5 | [80] | |
- | Tissuequartz | Ion | PM10 | PM2.5 | [23] | |
- | - | Metals | PM10 | - | [81] | |
Teflon | 47 mm | Whatman | Ion | PM10 | - | [11] |
37 mm | - | Metals | PM10 | PM2.5 | [82] | |
Alumium | 25 mm | - | Metals | - | PM2.5 | [21] |
Tedlar bag | - | - | Metals | - | PM2.5 | [74] |
Leaves | - | Malaleuca | Metals | - | PM2.5 | [51] |
Polycarbonate | - | Essque | Metals | PM10 | PM2.5 | [83] |
- | - | - | Ion | - | PM2.5 | [84] |
37 mm | - | Metals | PM10 | PM2.5 | [85] |
Filter | Measuring Device | Pollutant Extraction | Reference | ||
---|---|---|---|---|---|
Kind | Model | Brand | |||
Fiber glass | Low volume | LVS3.1 | - | Microwave extraction | [27] |
PNS16T-3.1 | |||||
High volume | 460NL | Envirotech | Acidification with HNO3 | [76] | |
High volume | APM 460 BL | Envirotech | Ultrasonication | [25] | |
Respirable dust | 460NL | Envirotech | Acidification with HNO3 | [35] | |
PUF (Polyurethane foam) | MicroDust Pro Real | HB3275-07 | Casella | method IO-3.1, US-EPA | [28] |
Qartz fiber | High volume | KB1000 | Jinshida | - | [29] |
High volume | - | MCV | Acidification with HNO3 | [77] | |
Four channel sampler | TH-16A | Tisnhong | - | [78] | |
Mini-Vol portable | - | Airmetrics | Ultra pure-water | [26] | |
High volume | - | Andersen Sierra | Sonication and multiwave extraction | [79] | |
Low volume | PQ200 | BGI | |||
High volume | GMB2360 | Thermo | (USMW) | [80] | |
Low volume | 2025 | Partisol | |||
High volume | - | Tish | Ultrasonication | [23] | |
- | - | Anderson | Acidification with HNO3 | [81] | |
Med volume | TH-150F | Tianhong | - | [5] | |
Teflon | Four channel sampler | TH-16A | Tianhong | Ultrasonic agitation | [78] |
Dichotomous | 241 | Anderson | Acidification with HNO3 | [82] | |
Alumium | Low P. impactor | DLPI | Dekati | Acidification with HNO3 | [21] |
Tedlar bag | - | EPAM 5000 | Hazdust | Acidification with HNO3 | [74] |
Leaves | - | - | - | Acidification with HNO3 | [68] |
- | Automatic | MARGA | MARGA | - | [84] |
Dichotomous | 241 | - | Acidification with HNO3 | [85] |
Technique | Device | Followed Method | Sources Detection | Chemical Compound | Pollutant | Sampling Period | Ref. |
---|---|---|---|---|---|---|---|
AAS | ZEEnit 700—Analytic Jena GmbH | EN12341 | - | Al, Mn, Fe, Ni, Cu, Zn, Sn, Pb, Si, Mg, Cr, As, Na, K, Ca, Sr, Cd | Both | December 2017–November 2018 | [27] |
Thermo AA, Solar-Series | Method IO-3.2, US-EPA | - | Pb, Cd, Ni, Zn, Fe, Cu, Mg, Na, Ca, K | Both | June 2012–April 2013 | [28] | |
GBC-Avanta | - | USEPA PMF5.0 | As | PM10 | April 2010–December 2011 | [76] | |
SOLAAR 969 | - | - | Ca, K, Mg, Na, Al, Pb, Cr, Ni, Zn, Cu, Cd, and Fe | Both | December 2009–December 2010 | [85] | |
GBC, Avanta, Australia | - | - | Fe, Cu, Zn, Mn, Cr, Cd, Pb, Ni | PM10 | December 2008–January 2009 | [35] | |
IC | IC Vario-940 Metrohom, Switzerland | Ca+2, Mg+2, Na+, K+, NH4+, Cl−, SO4−2, NO3−, | Both | June 2012–April 2013 | [28] | ||
- | - | - | Ca+2, Mg+2, Na+, K+, NH4+, Cl−, SO4−2, NO3−, | PM2.5 | - | [84] | |
881 Compact IC Pro, Switzerland | - | - | Ca+2, Na+, K+, NH4+, Cl−, SO4−2, NO3−, F− | PM2.5 | November 2015–April 2016 | [29] | |
Thermo Dionex; Sunnyvale, CA | US EPA protocols (Chow and Watson, 1998) | - | Na+, NH4+, Cl−, SO4−2, NO3−, NO2−, F−, PO4−3 | Both | January 2018–October 2018 | [26] | |
AS12A, ASRS Ultra II CD20 Dionex | - | - | Cl−, SO4−2, NO3− | Both | March and April 2009 | [79] | |
Dionex QIC CS12A | - | - | Ca+2, Mg+2, Na+, K+, NH4+ | Both | March and April 2009 | [79] | |
Thermo Fisher Scientific Inc., USA | - | USEPA PMF5.0 | Ca+2, Mg+2, Na+, K+, NH4+, Cl−, SO4−2, NO3− | Both | June and December 2018 | [5] | |
Dionex | - | - | Ca+2, Mg+2, Na+, K+, NH4+, Cl−, SO4−2, NO3− | Both | December 2006–January 2007 | [23] | |
Metrohm 882 Professional IC | - | - | Ca+2, Mg+2, Na+, K+, NH4+, Cl−, SO4−2, NO3− | PM10 | December 2010–October 2014 | [25] | |
ICP-MS | - | EN-UNE 14902 | - | V, Mn, Fe, Ni, Cu, Zn, As, Mo, Cd, Sb, Pb | PM10 | January 2015–January 2016 | [77] |
ICP-MS 7700× system (Agilent Technologies, USA) | - | PMF: Paatero and Tapper (1994) | Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cu, Cr, Fe, Ga, Mg, Mn, Mo, Ni, Pb, Rb, Se, Sr, Te, Ti, U, V, Zn | PM2.5 | 2016 | [21] | |
- | Compendium Method IO 3.5 | - | As, Be, Cd, Cr, Co, Pb, Mn, Ni | PM10 | July 2017 | [81] | |
ICP-MS, Agilent Technologies, model 7500 CE | - | - | As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, V | Both | - | [82] | |
NexION-350, Perkin Elmer, Inc., USA | - | - | Pb, Ni, Cr, As, Cd, V | PM2.5 | - | [74] | |
Thermo X2 Series | - | Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Ba, Pb | PM2.5 | November 2015–April 2016 | [29] | ||
Thermo Finnigan, Bremen, Germany | - | USEPA PMF5.0 | Al, Ca, Fe, Mg, Zn, Ba, Cd, Cr, Cu, Mn, Pb, As, Ni, Se | Both | June and December 2018 | [5] | |
Voltametry | - | - | USEPA PMF5.0 | Pb, Cu, Cd | PM10 | April 2010–December 2011 | [76] |
ICP-AES | Jobin Yvon, Model ULTIMA 2 | - | USEPA PMF5.0 | Al, Mn, Cr, V, Fe, Ni, Zn | PM10 | April 2010–December 2011 | [76] |
ICP-OES | iCAP 6500 (Thermo Scientific) | Ca, Al | Both | March and April 2009 | [79] | ||
ICP-OES | ICP-OES, Termo Scientifc iCAP 7000 series | - | - | Al, Fe, Zn, Pb, Cu, Mg, Co, Ba Cr K Ca Mn | PM2.5 | October 2019 | [51] |
iCAP 6000 Series (Thermo Scientific, Massachusetts, USA) | - | - | Al, As, Ca, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, Pr, Sn, Tb, Ti, V, Zn | Both | October 2018 and January 2019 | [80] | |
LC | LC20AD, Shimadzu Corp., Kyoto, Japan | - | - | Ca+2, Mg+2, Na+, K+, NH4+, Cl−, SO4−2, NO3− | Both | January 2013 | [78] |
HPLC | WATERS IC-pakTM | NH4+, Cl−, SO4−2, NO3− | PM10 | June 2004–February 2005 | [86] | ||
XAS | MRCAT | As, Pb | PM10 | - | [36] | ||
SUV-VIS | HACH DR 5000 | NH4+, Cl−, SO4−2, NO3−, NO2−, PO4−3 | PM10 | - | [11] | ||
NAA | - | - | - | Ba, Br, Co, Sb, Cr, Fe, Ca and Zn | PM10 | - | [87] |
XRD | - | - | - | Fe As | PM10 | - | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa, M.A.; Franco, S.A.; Gómez, L.M.; Aguiar, D.; Colorado, H.A. Characterization Methods of Ions and Metals in Particulate Matter Pollutants on PM2.5 and PM10 Samples from Several Emission Sources. Sustainability 2023, 15, 4402. https://doi.org/10.3390/su15054402
Correa MA, Franco SA, Gómez LM, Aguiar D, Colorado HA. Characterization Methods of Ions and Metals in Particulate Matter Pollutants on PM2.5 and PM10 Samples from Several Emission Sources. Sustainability. 2023; 15(5):4402. https://doi.org/10.3390/su15054402
Chicago/Turabian StyleCorrea, Mauricio A., Santiago A. Franco, Luisa M. Gómez, David Aguiar, and Henry A. Colorado. 2023. "Characterization Methods of Ions and Metals in Particulate Matter Pollutants on PM2.5 and PM10 Samples from Several Emission Sources" Sustainability 15, no. 5: 4402. https://doi.org/10.3390/su15054402
APA StyleCorrea, M. A., Franco, S. A., Gómez, L. M., Aguiar, D., & Colorado, H. A. (2023). Characterization Methods of Ions and Metals in Particulate Matter Pollutants on PM2.5 and PM10 Samples from Several Emission Sources. Sustainability, 15(5), 4402. https://doi.org/10.3390/su15054402