The Impact of Market and Non-Market-Based Environmental Policy Instruments on Firms’ Sustainable Technological Innovation: Evidence from Chinese Firms
Abstract
:1. Introduction
2. Literature Review and Hypotheses
2.1. The Framework of EP Instruments and Innovation
2.1.1. Stepping to Embrace Market-Based EP Instruments from EPT Reform
2.1.2. Market-Based and Non-Market-Based EP Instruments’ Relationships with Firms’ STI
2.2. The Harmonization Mechanism of EP Instruments and Impacts on Firms’ STI
2.2.1. Policy Mix Theory
2.2.2. The Harmonization of Non-Market-Based and Market-Based EP Instruments
2.3. The Top Manager’s Reaction to EP Implementation and the Moderate Effect on Firms’ STI
3. Methodology and Research Design
3.1. Samples and Data Collecting Process
3.2. Measuring Variables
3.2.1. Dependent Variable
3.2.2. Independent Variables
3.2.3. Moderating Variable
3.2.4. Control Variables
3.3. Data Analysis Strategy
4. Data Analysis
4.1. Hypotheses Test
4.2. Robustness Check
5. Conclusions
5.1. Main Findings and Their Theoretical Contributions
5.2. Policy Implications
5.3. Limitation and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coad, A.; Segarra-Blasco, A.; Teruel, M. A Bit of Basic, a Bit of Applied? R&D Strategies and Firm Performance. J. Technol. Transf. 2020, 46, 1758–1783. [Google Scholar]
- Charter, M.; Clark, T. Sustainable Innovation: Key Conclusions from Sustainable Innovation Conferences 2003–2006 Organised by the Centre for Sustainable Design. Available online: http://cfsd.org.uk/Sustainable%20Innovation/Sustainable_Innovation_report.pdf (accessed on 23 February 2023).
- Charter, M.; Tischner, U. Sustainable Solutions: Developing Products and Services for the Future; Routledge: London, UK, 2017. [Google Scholar]
- Rennings, K. Redefining Innovation—Eco-Innovation Research and the Contribution from Ecological Economics. Ecol. Econ. 2000, 32, 319–332. [Google Scholar] [CrossRef]
- Kivimaa, P.; Kern, F. Creative Destruction or Mere Niche Support? Innovation Policy Mixes for Sustainability Transitions. Res. Policy 2016, 45, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.; Jeanrenaud, S.; Bessant, J.; Denyer, D.; Overy, P. Sustainability-Oriented Innovation: A Systematic Review. Int. J. Manag. Rev. 2016, 18, 180–205. [Google Scholar] [CrossRef] [Green Version]
- Porter, M. America’s Green Strategy; Scientific American: New York, NY, USA, 1991. [Google Scholar]
- Porter, M.E.; Linde, C. van der Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Sarkodie, S.A. Failure to Control Economic Sectoral Inefficiencies through Policy Stringency Disrupts Environmental Performance. Sci. Total Environ. 2021, 772, 145603. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, R.; Chang, Y.; Zhou, Y. Does Green Industrial Policy Promote the Sustainable Growth of Polluting Firms? Evidences from China. Sci. Total Environ. 2021, 764, 142927. [Google Scholar] [CrossRef]
- Mina, D.; Hadi, S.; Jalal, A. The Incorporated Environmental Policies and Regulations into Bioenergy Supply Chain Management: A Literature Review. Sci. Total Environ. 2022, 820, 153202. [Google Scholar]
- LaCount, M.D.; Haeuber, R.A.; Macy, T.R.; Murray, B.A. Reducing Power Sector Emissions under the 1990 Clean Air Act Amendments: A Retrospective on 30 Years of Program Development and Implementation. Atmos. Environ. 2021, 245, 118012. [Google Scholar] [CrossRef]
- Albrizio, S.; Kozluk, T.; Zipperer, V. Environmental Policies and Productivity Growth: Evidence across Industries and Firms. J. Environ. Econ. Manag. 2017, 81, 209–226. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, M.; Feng, G.-F.; Chang, C.-P. Does an Environmental Policy Bring to Green Innovation in Renewable Energy? Renew. Energy 2022, 195, 1113–1124. [Google Scholar] [CrossRef]
- Greco, M.; Germani, F.; Grimaldi, M.; Radicic, D. Policy Mix or Policy Mess? Effects of Cross-Instrumental Policy Mix on Eco-Innovation in German Firms. Technovation 2020, 117, 102194. [Google Scholar] [CrossRef]
- Dolfsma, W.; Seo, D. Government Policy and Technological Innovation—A Suggested Typology. Technovation 2013, 33, 173–179. [Google Scholar] [CrossRef]
- Stavins, R.N. Experience with Market-Based Environmental Policy Instruments. In Handbook of Environmental Economics; Elsevier: Amsterdam, The Netherlands, 2003; Volume 1, pp. 355–435. [Google Scholar]
- Jaffe, A.B.; Palmer, K. Environmental Regulation and Innovation: A Panel Data Study. Rev. Econ. Stat. 1997, 79, 610–619. [Google Scholar] [CrossRef]
- Tu, Z.; Shen, R. Can the Emissions Trading Mechanism Realize the Porter Effect in China? Econ. Res. 2015, 50, 160–173. [Google Scholar]
- Lanoie, P.; Laurent-Lucchetti, J.; Johnstone, N.; Ambec, S. Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis. J. Econ. Manag. Strategy 2011, 20, 803–842. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wang, X.; Su, S.; Su, Y. How Green Technological Innovation Ability Influences Enterprise Competitiveness. Technol. Soc. 2019, 59, 101136. [Google Scholar] [CrossRef]
- Helfand, G.E. Standards versus Standards: The Effects of Different Pollution Restrictions. Am. Econ. Rev. 1991, 81, 622–634. [Google Scholar]
- Wang, B.; Qi, S. The Effect of Market-Oriented and Command-and-Control Policy Tools on Emissions Reduction Innovation: An Empirical Analysis Based on China’s Industrial Patents Data. China Ind. Econ 2016, 6, 91–108. [Google Scholar]
- Wang, H.; Wheeler, D. Endogenous Enforcement and Effectiveness of China’s Pollution Levy System; World Bank Publications: Washington, DC., USA, 2000; Volume 2336. [Google Scholar]
- Maung, M.; Wilson, C.; Tang, X. Political Connections and Industrial Pollution: Evidence Based on State Ownership and Environmental Levies in China. J. Bus. Ethics 2016, 138, 649–659. [Google Scholar] [CrossRef]
- Wu, S.; Han, H. Energy Transition, Intensity Growth, and Policy Evolution: Evidence from Rural China. Energy Econ. 2022, 105, 105746. [Google Scholar] [CrossRef]
- Yan, X.; Tuo, H.; Lai, Y. A Two-Way Fixed Effects Estimation on the Impact of Industrial Land Supply on Environmental Pollution in Urban China. Int. J. Environ. Res. Public Health 2022, 19, 14890. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.; Cheng, J.; Liu, Y.; Yu, S.; Yan, L.; Hong, C.; Qin, Y.; Zhao, H.; Zheng, Y.; Geng, G. Dynamic Projection of Anthropogenic Emissions in China: Methodology and 2015–2050 Emission Pathways under a Range of Socio-Economic, Climate Policy, and Pollution Control Scenarios. Atmos. Chem. Phys. 2020, 20, 5729–5757. [Google Scholar] [CrossRef]
- Metcalf, G.E. Market-Based Policy Options to Control US Greenhouse Gas Emissions. J. Econ. Perspect. 2009, 23, 5–27. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; He, Z. Environmental Regulation, Green Innovation and Industrial Structure Upgrading. Stat. Decis. Mak. 2022, 38, 73–76. [Google Scholar]
- Wang, C.; Lv, M.; Qiao, P. Does International Expansion Promote Multinational Enterprises’Green Innovation?—The Moderating Effect of Environmental Regulation and Industry Regulation. Sci. Technol. Prog. Countermeas. 2022, 40, 81–91. Available online: http://www.kjjb.org/EN/10.6049/kjjbydc.2021090353 (accessed on 23 February 2023).
- Yu, Y.; Zhang, H.; Zhang, P. The Research of the Yardstick Phenomenon and Mechanisms of Asymmetric Environmental Regulation. Manag. World 2021, 37, 134–147. [Google Scholar]
- Boons, F.; Montalvo, C.; Quist, J.; Wagner, M. Sustainable Innovation, Business Models and Economic Performance: An Overview. J. Clean. Prod. 2013, 45, 1–8. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, M.; Liu, N.; Wang, Y. Spatial Effects of Environmental Regulation and Green Credits on Green Technology Innovation under Low-Carbon Economy Background Conditions. Int. J. Environ. Res. Public Health 2019, 16, 3027. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, A.B.; Stavins, R.N. Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion. J. Environ. Econ. Manag. 1995, 29, S43–S63. [Google Scholar] [CrossRef]
- Sahoo, P.; Nayak, B.P. Green Banking in India. Indian Econ. J. 2007, 55, 82–98. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, K.; Uyarra, E.; Laranja, M. Reconceptualizing the ‘Policy Mix’ for Innovation. Res. Policy 2011, 40, 702–713. [Google Scholar] [CrossRef]
- Reichardt, K.; Rogge, K. How the Policy Mix Impacts Innovation: Findings from Company Case Studies on Offshore Wind in Germany. Environ. Innov. Soc. Transit. 2016, 18, 62–81. [Google Scholar] [CrossRef]
- Sorrell, S.; Sijm, J. Carbon Trading in the Policy Mix. Oxf. Rev. Econ. Policy 2003, 19, 420–437. [Google Scholar] [CrossRef]
- Braathen, N.A. Interactions Between Emission Trading Systems and Other Overlapping Policy Instruments; OECD Publishing: Paris, France, 2011. [Google Scholar]
- Wu, H.; Xu, L.; Ren, S.; Hao, Y.; Yan, G. How Do Energy Consumption and Environmental Regulation Affect Carbon Emissions in China? New Evidence from a Dynamic Threshold Panel Model. Resour. Policy 2020, 67, 101678. [Google Scholar] [CrossRef]
- Beise, M.; Rennings, K. Lead Markets and Regulation: A Framework for Analyzing the International Diffusion of Environmental Innovations. Ecol. Econ. 2005, 52, 5–17. [Google Scholar] [CrossRef]
- Cai, W.; Li, G. The Drivers of Eco-Innovation and Its Impact on Performance: Evidence from China. J. Clean. Prod. 2018, 176, 110–118. [Google Scholar] [CrossRef]
- Howlett, M.; Del Rio, P. The Parameters of Policy Portfolios: Verticality and Horizontality in Design Spaces and Their Consequences for Policy Mix Formulation. Environ. Plan. C Gov. Policy 2015, 33, 1233–1245. [Google Scholar] [CrossRef]
- Joskow, P.L.; Schmalensee, R.; Bailey, E.M. The Market for Sulfur Dioxide Emissions. Am. Econ. Rev. 1998, 88, 669–685. [Google Scholar]
- Newell, R.G.; Stavins, R.N. Cost Heterogeneity and the Potential Savings from Market-Based Policies. J. Regul. Econ. 2003, 23, 43–59. [Google Scholar] [CrossRef]
- Goulder, L.H. Effects of Carbon Taxes in an Economy with Prior Tax Distortions: An Intertemporal General Equilibrium Analysis. J. Environ. Econ. Manag. 1995, 29, 271–297. [Google Scholar] [CrossRef]
- Hambrick, D.C.; Mason, P.A. Upper Echelons: The Organization as a Reflection of Its Top Managers. Acad. Manag. Rev. 1984, 9, 193–206. [Google Scholar] [CrossRef]
- Yoon, S.N.; Lee, D.; Schniederjans, M. Effects of Innovation Leadership and Supply Chain Innovation on Supply Chain Efficiency: Focusing on Hospital Size. Technol. Forecast. Soc. Change 2016, 113, 412–421. [Google Scholar] [CrossRef]
- Hambrick, D.C. What If the Academy Actually Mattered? Acad. Manag. Rev. 1994, 19, 11–16. [Google Scholar] [CrossRef]
- Hambrick, D.C.; Cho, T.S.; Chen, M.-J. The Influence of Top Management Team Heterogeneity on Firms’ Competitive Moves. Adm. Sci. Q. 1996, 41, 659–684. [Google Scholar] [CrossRef]
- Ahlstrom, D.; Yang, X.; Wang, L.; Wu, C. A Global Perspective of Entrepreneurship and Innovation in China. Multinatl. Bus. Rev. 2018, 26, 302–318. [Google Scholar] [CrossRef] [Green Version]
- Heyden, M.L.; Van Doorn, S.; Reimer, M.; Van Den Bosch, F.A.; Volberda, H.W. Perceived Environmental Dynamism, Relative Competitive Performance, and Top Management Team Heterogeneity: Examining Correlates of Upper Echelons’ Advice-Seeking. Organ. Stud. 2013, 34, 1327–1356. [Google Scholar] [CrossRef]
- Mihalache, O.R.; Jansen, J.J.; Van Den Bosch, F.A.; Volberda, H.W. Offshoring and Firm Innovation: The Moderating Role of Top Management Team Attributes. Strateg. Manag. J. 2012, 33, 1480–1498. [Google Scholar] [CrossRef]
- Brousseau, K.R.; Prince, J.B. Job-Person Dynamics: An Extension of Longitudinal Research. J. Appl. Psychol. 1981, 66, 59. [Google Scholar] [CrossRef]
- Farag, H.; Mallin, C. The Influence of CEO Demographic Characteristics on Corporate Risk-Taking: Evidence from Chinese IPOs. Eur. J. Financ. 2018, 24, 1528–1551. [Google Scholar] [CrossRef] [Green Version]
- Hertwig, R.; Barron, G.; Weber, E.U.; Erev, I. Decisions from Experience and the Effect of Rare Events in Risky Choice. Psychol. Sci. 2004, 15, 534–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Solvang, W.D. Incorporating Flexible Capacity in the Planning of a Multi-Product Multi-Echelon Sustainable Reverse Logistics Network under Uncertainty. J. Clean. Prod. 2018, 198, 285–303. [Google Scholar] [CrossRef]
- Hambrick, D.C. Upper Echelons Theory: An Update. Acad. Manag. Rev. 2007, 32, 334–343. [Google Scholar] [CrossRef]
- Dearborn, D.C.; Simon, H.A. Selective Perception: A Note on the Departmental Identifications of Executives. Sociometry 1958, 21, 140–144. [Google Scholar] [CrossRef]
- Malmendier, U.; Tate, G.; Yan, J. Overconfidence and Early-Life Experiences: The Effect of Managerial Traits on Corporate Financial Policies. J. Financ. 2011, 66, 1687–1733. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Sung, H.-Y.; Chen, D.-Z.; Huang, M.-H. Strong Ties and Weak Ties of the Knowledge Spillover Network in the Semiconductor Industry. Technol. Forecast. Soc. Change 2017, 118, 114–127. [Google Scholar] [CrossRef]
- Finkelstein, S. Power in Top Management Teams: Dimensions, Measurement, and Validation. Acad. Manag. J. 1992, 35, 505–538. [Google Scholar] [CrossRef]
- Han, H. The Norm Activation Model and Theory-Broadening: Individuals’ Decision-Making on Environmentally-Responsible Convention Attendance. J. Environ. Psychol. 2014, 40, 462–471. [Google Scholar] [CrossRef]
- Francis, B.; Hasan, I.; Wu, Q. Professors in the Boardroom and Their Impact on Corporate Governance and Firm Performance. Financ. Manag. 2015, 44, 547–581. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Bulak, M.E.; Turkyilmaz, A. Performance Assessment of Manufacturing SMEs: A Frontier Approach. Ind. Manag. Data Syst. 2014, 114, 797–816. [Google Scholar] [CrossRef]
- Cullinane, K.; Song, D.-W.; Ji, P.; Wang, T.-F. An Application of DEA Windows Analysis to Container Port Production Efficiency. Rev. Netw. Econ. 2004, 23, 669–685. [Google Scholar] [CrossRef] [Green Version]
- Fadzlan, S.; Muhd-Zulkhibri, A.M. Singapore Banking Efficiency and Its Relation to Stock Returns: A DEA Window Analysis Approach. Int. J. Bus. Stud. A Publ. Fac. Bus. Adm. Ed. Cowan Univ. 2007, 15, 83–106. [Google Scholar]
- Hemmasi, A.; Talaeipour, M.; Khademi-Eslam, H.; Pourmousa, S. Using DEA Window Analysis for Performance Evaluation of Iranian Wood Panels Industry. Afr. J. Agric. Res. 2011, 6, 1802–1806. [Google Scholar]
- Pulina, M.; Detotto, C.; Paba, A. An Investigation into the Relationship between Size and Efficiency of the Italian Hospitality Sector: A Window DEA Approach. Eur. J. Oper. Res. 2010, 204, 613–620. [Google Scholar] [CrossRef]
- Sofka, W.; Grimpe, C. Specialized Search and Innovation Performance Evidence across Europe. RD Manag. 2010, 40, 310–323. [Google Scholar] [CrossRef]
- Bowlin, W.F. Measuring Performance: An Introduction to Data Envelopment Analysis (DEA). J. Cost Anal. 1998, 15, 3–27. [Google Scholar] [CrossRef]
- Balasubramanian, N.; Lee, J. Firm Age and Innovation. Ind. Corp. Change 2008, 17, 1019–1047. [Google Scholar] [CrossRef]
- Huergo, E.; Jaumandreu, J. How Does Probability of Innovation Change with Firm Age? Small Bus. Econ. 2004, 22, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Abernathy, W.J.; Clark, K.B. Innovation: Mapping the Winds of Creative Destruction. Res. Policy 1985, 14, 3–22. [Google Scholar] [CrossRef]
- Choi, M.; Lee, C.-Y. Technological Diversification and R&D Productivity: The Moderating Effects of Knowledge Spillovers and Core-Technology Competence. Technovation 2021, 104, 102249. [Google Scholar] [CrossRef]
- Evenson, R.E. Patents, R&D, and Invention Potential: International Evidence. Am. Econ. Rev. 1993, 83, 463–468. [Google Scholar]
- Kortum, S. Equilibrium R&d and the Patent–R&d Ratio: Us Evidence. Am. Econ. Rev. 1993, 83, 450–457. [Google Scholar]
- Tushman, M.L.; Anderson, P. Technological Discontinuities and Organizational Environments. Adm. Sci. Q. 1986, 31, 439–465. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, S.; Welch, I. Corporate Research & Development Investments International Comparisons. J. Account. Econ. 1995, 19, 443–470. [Google Scholar]
- Hsu, H. The Moderating Effects of Leverage and Ownership Structure on Firm Performance. S. E. Asia J. Contemp. Bus. Econ. Law 2013, 2, 73–76. [Google Scholar]
- Nanda, R.; Rhodes-Kropf, M. Financing Risk and Innovation. Manag. Sci. 2017, 63, 901–918. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Faircloth, S. The Impact of Corporate Debt on Long Term Investment and Firm Performance. Appl. Econ. 2005, 37, 875–883. [Google Scholar] [CrossRef]
- Himmelberg, C.P.; Petersen, B.C. R & D and Internal Finance: A Panel Study of Small Firms in High-Tech Industries. Rev. Econ. Stat. 1994, 76, 38–51. [Google Scholar]
- Miao, J.Y.; Cai, C.W. The Study on the Technical Efficiency of the Listed Coal Companies. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013; Volume 616, pp. 528–532. [Google Scholar]
- Nie, Y.; Nie, H. The Impact of Ownership Structure on Innovation Level: Moderating Effect Based on the Life Cycle. BCPBM 2021, 15, 202–210. [Google Scholar] [CrossRef]
- Meyer, B.D. Natural and Quasi-Experiments in Economics. J. Bus. Econ. Stat. 1995, 13, 151–161. [Google Scholar]
- Berger, A.; Roman, R. TARP and Other Bank Bailouts and Bail-Ins around the World: Connecting Wall Street, Main Street, and the Financial System; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Bai, J. Panel Data Models with Interactive Fixed Effects. Econometrica 2009, 77, 1229–1279. [Google Scholar]
- Eberhardt, M.; Helmers, C.; Strauss, H. Do Spillovers Matter When Estimating Private Returns to R&D? Rev. Econ. Stat. 2013, 95, 436–448. [Google Scholar]
- Gobillon, L.; Magnac, T. Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls. Rev. Econ. Stat. 2016, 98, 535–551. [Google Scholar] [CrossRef]
- Hagedorn, M.; Karahan, F.; Manovskii, I.; Mitman, K. Unemployment Benefits and Unemployment in the Great Recession: The Role of Macro Effects; National Bureau of Economic Research: Cambridge, MA, USA, 2013. [Google Scholar]
- Hsiao, C.; Xie, Y.; Zhou, Q. Factor Dimension Determination for Panel Interactive Effects Models: An Orthogonal Projection Approach. Comput. Stat. 2021, 36, 1481–1497. [Google Scholar] [CrossRef]
- Petrova, Y.; Westerlund, J. Fixed Effects Demeaning in the Presence of Interactive Effects in Treatment Effects Regressions and Elsewhere. J. Appl. Econ. 2020, 35, 960–964. [Google Scholar] [CrossRef]
- Wang, J. The Economic Impact of Special Economic Zones: Evidence from Chinese Municipalities. J. Dev. Econ. 2013, 101, 133–147. [Google Scholar] [CrossRef]
- Guan, J.; Chen, K. Modeling the Relative Efficiency of National Innovation Systems. Res. Policy 2012, 41, 102–115. [Google Scholar] [CrossRef]
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The Environment and Directed Technical Change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef] [Green Version]
- Milliman, S.R.; Prince, R. Firm Incentives to Promote Technological Change in Pollution Control. J. Environ. Econ. Manag. 1989, 17, 247–265. [Google Scholar] [CrossRef]
- Del Río, P.; Carrillo-Hermosilla, J.; Könnölä, T. Policy Strategies to Promote Eco-Innovation: An Integrated Framework. J. Ind. Ecol. 2010, 14, 541–557. [Google Scholar] [CrossRef]
- Kerr, S.; Newell, R.G. Policy-Induced Technology Adoption: Evidence from the US Lead Phasedown. J. Ind. Econ. 2003, 51, 317–343. [Google Scholar] [CrossRef]
- Crespi, F.; Ghisetti, C.; Quatraro, F. Environmental and Innovation Policies for the Evolution of Green Technologies: A Survey and a Test. Eurasian Bus. Rev. 2015, 5, 343–370. [Google Scholar] [CrossRef]
- Kemp, R.; Pontoglio, S. The Innovation Effects of Environmental Policy Instruments—A Typical Case of the Blind Men and the Elephant? Ecol. Econ. 2011, 72, 28–36. [Google Scholar] [CrossRef]
- Bovenberg, A.L.; De Mooij, R.A. Environmental Tax Reform and Endogenous Growth. J. Public Econ. 1997, 63, 207–237. [Google Scholar] [CrossRef] [Green Version]
- Braathen, N.A. Instrument Mixes for Environmental Policy: How Many Stones Should Be Used to Kill a Bird? Int. Rev. Environ. Resour. Econ. 2007, 1, 185–236. [Google Scholar] [CrossRef]
- Meissner, D.; Kergroach, S. Innovation Policy Mix: Mapping and Measurement. J. Technol. Transf. 2021, 46, 197–222. [Google Scholar] [CrossRef]
- Magro, E.; Wilson, J.R. Policy-Mix Evaluation: Governance Challenges from New Place-Based Innovation Policies. Res. Policy 2019, 48, 103612. [Google Scholar] [CrossRef]
- Prasad, B.; Martens, R. Top Management Team Advice-Seeking and Environmental Competitiveness Impacts on Technological Innovation. Int. J. Technol. Manag. 2015, 69, 77–92. [Google Scholar] [CrossRef]
- Yafei, L.; Fengrong, W.; Anran, L. Do Technological Entrepreneurs Promote Enterprise Innovation? Sci. Res. Manag. 2022, 43, 186. [Google Scholar]
- Yu, X.; Wang, P. Economic Effects Analysis of Environmental Regulation Policy in the Process of Industrial Structure Upgrading: Evidence from Chinese Provincial Panel Data. Sci. Total Environ. 2021, 753, 142004. [Google Scholar] [CrossRef] [PubMed]
- Uyarra, E.; Flanagan, K. From Regional Systems of Innovation to Regions as Innovation Policy Spaces. Environ. Plan. C: Gov. Policy 2010, 28, 681–695. [Google Scholar] [CrossRef]
- Tidd, J. Innovation Management in Context: Environment, Organization and Performance. Int. J. Manag. Rev. 2001, 3, 169–183. [Google Scholar] [CrossRef]
Count | Mean | Sd | Max | STI | EPT | EPI | Technical Executive | Age | Growth | Manage Cost | Leverage | Cash | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STI | 3090 | 0.5807 | 0.1218 | 1 | 1 | ||||||||
EPT | 515 | 0.4185 | 1.3953 | 12.633 | 0.0445 | 1 | |||||||
EPI | 3090 | 0.0147 | 0.0217 | 0.1146 | −0.114 *** | 0.200 *** | 1 | ||||||
Technical Executive | 1482 | 0.5007 | 0.5002 | 1 | −0.0190 | 0.0984 | 0.0495 | 1 | |||||
Age | 3090 | 2.9310 | 0.2747 | 3.6636 | −0.111 *** | 0.102 * | 0.140 *** | 0.0336 | 1 | ||||
Growth | 3090 | 0.1427 | 0.3464 | 2.1684 | 0.0646 *** | −0.0482 | −0.0407 * | 0.0104 | −0.0841 *** | 1 | |||
Manage cost | 3090 | 0.0951 | 0.1691 | 7.2843 | 0.0408 * | −0.165 *** | −0.0896 *** | −0.0236 | −0.0883 *** | 0.152 *** | 1 | ||
Leverage | 3090 | 2.1943 | 5.2525 | 206.89 | 0.0363 * | 0.0123 | 0.0439* | 0.0542 * | 0.0324 | −0.0355 * | 0.0275 | 1 | |
Cash | 3090 | 0.1311 | 0.0953 | 0.4797 | 0.0411 * | −0.0860 | −0.0656 *** | 0.0429 | −0.0224 | 0.00425 | 0.0185 | −0.0567 ** | 1 |
Model 1 | Model 2 | |
---|---|---|
post *taxtreat | 0.01425 ** | 0.01151 * |
0.00686 | 0.00671 | |
Age | −0.28433 *** | |
0.06724 | ||
Growth | 0.00001 | |
0.00087 | ||
Management cost | −0.02201 *** | |
0.00595 | ||
Leverage | 0.00084 ** | |
0.00038 | ||
Cash | 0.05451 | |
0.03696 | ||
Constant | 0.57853 *** | 0.1405 *** |
0.00104 | 0.19667 | |
Fixed effects | Firm, Year | Firm, Year |
Industry dummies | No | Yes |
Observations | 3090 | 3090 |
R-squared | 0.43758 | 0.44250 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
EPT | 0.04598 * | 0.05068 * | 0.02830 | −0.01863 | ||
0.02669 | 0.02531 | 0.02489 | 0.06002 | |||
EPI | −0.54097 * | −1.14048 ** | −1.07970 * | −0.80446 | ||
0.27015 | 0.51908 | 0.53613 | 0.51000 | |||
EPT *EPI | 3.71294 * | |||||
2.18392 | ||||||
Technical executive | −0.03616 | −0.02817 ** | ||||
0.02869 | 0.01358 | |||||
Technical executive *EPT | 0.04043 * | |||||
0.02192 | ||||||
Technical executive *EPI | 1.10375 ** | |||||
0.50639 | ||||||
Age | −0.27273 | −0.39825 ** | −0.36667 | −0.30670 | 2.0778 | −0.40521 |
0.94956 | 0.18870 | 0.96546 | 0.94846 | 2.29738 | 0.34806 | |
Growth | 0.00858 | −0.00315 | 0.00096 | 0.00418 | 0.01196 | 0.01067 |
0.02272 | 0.00921 | 0.02504 | 0.02542 | 0.05570 | 0.01646 | |
Manage cost | 0.31397 | −0.02308 *** | 0.35422 | 0.35275 | 0.19871 | −0.32959 * |
0.24428 | 0.00598 | 0.26318 | 0.26317 | 0.85678 | 0.17359 | |
Leverage | 0.00065 ** | 0.00149 *** | 0.00082 *** | 0.00080 *** | 0.02458 | 0.00168 |
0.00028 | 0.00031 | 0.00028 | 0.00028 | 0.08479 | 0.00133 | |
Cash | 0.05303 | 0.08639 | 0.08965 | 0.07935 | −0.25673 | 0.03552 |
0.10183 | 0.05504 | 0.11073 | 0.11180 | 0.22368 | 0.0718224 | |
_Cons | 1.29884 | 1.752701 *** | 1.602386 | 1.428695 | −5.802588 | 1.823488 * |
2.870439 | 0.5569115 | 2.918955 | 2.866922 | 7.044497 | 1.023708 | |
Fixed effects | Firm, Year *Industry | Firm, Year *Industry | Firm, Year *Industry | Firm, Year *Industry | Firm, Year *Industry | Firm, Year *Industry |
Observations | 515 | 1395 | 515 | 515 | 252 | 670 |
R-squared | 0.7094817 | 0.5323189 | 0.7182822 | 0.7210598 | 0.9148703 | 0.7821413 |
Model 1 (STI) | Model 2 (Age) | Model 3 (STI) | |
---|---|---|---|
before3tax | 0.0054983 | ||
0.0074274 | |||
before2tax | 0.0160232 | ||
0.0095138 | |||
currenttax | 0.0541049 *** | ||
0.0084794 | |||
after1tax | −0.0123378 | ||
0.0101929 | |||
post × taxtreat | −0.0048147 | ||
0.002947 | |||
post × aketreat | 0.0015744 | ||
0.0111456 | |||
Age | −0.0038325 | −0.2907942 *** | |
0.0081176 | 0.0675471 | ||
Growth | −0.0002707 | 0.0001709 | 0.0000222 |
0.0005769 | 0.0004822 | 0.0008651 | |
Manage cost | 0.002272 | 0.0033239 | −0.0219516 *** |
0.0068008 | 0.0038152 | 0.0059157 | |
Leverage | 0.0008056 *** | 0.0000435 | 0.0008696 ** |
0.0002618 | 0.0000629 | 0.0003918 | |
Cash | −0.0011249 | −0.0130806 | 0.0573884 |
0.0178809 | 0.0105779 | 0.0366584 | |
_cons | 0.6183107 *** | 2.93304 *** | 1.425498 *** |
0.0202456 | 0.0013076 | 0.1976628 | |
Industry dummies | Yes | Yes | Yes |
Firm fixed | Yes | Yes | Yes |
Time fixed | Yes | Yes | Yes |
Observations | 3090 | 3090 | 3090 |
R-squared | 0.2479216 | 0.9935008 | 0.4420072 |
Model 1 | Model 2 | |
---|---|---|
EPT | −0.0306389 | |
0.0609536 | ||
EPI | −0.8026819 | |
0.51504 | ||
Technical executive | −0.03914 | −0.02807 * |
0.0269629 | 0.0137896 | |
Technical executive × EPT | 0.0436851 ** | |
0.0203887 | ||
Technical executive × EPI | 1.100706 ** | |
0.5144984 | ||
IMR | 1.980804 | −0.0344477 |
2.640215 | 0.2528263 | |
Age | 3.076095 | −0.4023683 |
3.060587 | 0.3500913 | |
Growth | 0.0222027 | 0.0108425 |
0.0585588 | 0.016819 | |
Manage cost | −0.0378281 | −0.3309729 * |
0.9370732 | 0.1770222 | |
Leverage | 0.0412988 | 0.0016691 |
0.0833313 | 0.0013516 | |
Cash | −0.2717694 | 0.0364164 |
0.2194006 | 0.0723632 | |
_cons | −10.38223 | 1.842441 * |
10.99439 | 1.042354 | |
Fixed effects | Firm, Year × Industry | Firm, Year × Industry |
Observations | 252 | 670 |
R-squared | 0.9159613 | 0.7821674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Zhang, Q.; Hui, Y. The Impact of Market and Non-Market-Based Environmental Policy Instruments on Firms’ Sustainable Technological Innovation: Evidence from Chinese Firms. Sustainability 2023, 15, 4425. https://doi.org/10.3390/su15054425
Jiang J, Zhang Q, Hui Y. The Impact of Market and Non-Market-Based Environmental Policy Instruments on Firms’ Sustainable Technological Innovation: Evidence from Chinese Firms. Sustainability. 2023; 15(5):4425. https://doi.org/10.3390/su15054425
Chicago/Turabian StyleJiang, Jie, Qihang Zhang, and Yifan Hui. 2023. "The Impact of Market and Non-Market-Based Environmental Policy Instruments on Firms’ Sustainable Technological Innovation: Evidence from Chinese Firms" Sustainability 15, no. 5: 4425. https://doi.org/10.3390/su15054425
APA StyleJiang, J., Zhang, Q., & Hui, Y. (2023). The Impact of Market and Non-Market-Based Environmental Policy Instruments on Firms’ Sustainable Technological Innovation: Evidence from Chinese Firms. Sustainability, 15(5), 4425. https://doi.org/10.3390/su15054425