Utilizing Intelligent Portable Bicycle Lights to Assess Urban Bicycle Infrastructure Surfaces
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Measuring Equipment
3.3. Measuring Technique
3.4. Importing Data in GIS for Bicycle Infrastructure Roughness
3.5. Cyclists’ Perception of Vibration
4. Results
4.1. Sensitivity Test
4.2. Cycling Vibration on Tested Bicycle Segments
4.3. Infrastructure Type and Vibration
4.4. Effect of Speed on Cycling Vibration
4.5. Cyclist Perception of Vibration
4.6. Comparison of Results with Root Mean Square Method
4.7. Rider’s Reported Location
5. Discussion
5.1. Sensitivity of SEE.SENSE Device
5.2. Vibration on Tested Bicycle Segments
5.3. Infrastructure Type and Vibration
5.4. Correlation between Speed and Vibration
5.5. Cyclist Perception of Cycling Vibration on Tested Segment
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, T.; Moeinaddini, M.; Almoshaogeh, M.; Jamal, A.; Nawaz, I.; Alharbi, F. A New Pedestrian Crossing Level of Service (Pclos) Method for Promoting Safe Pedestrian Crossing in Urban Areas. Int. J. Environ. Res. Public Health 2021, 18, 8813. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhu, F. Cycling Comfort Evaluation with Instrumented Probe Bicycle. Transp. Res. Part A Policy Pract. 2019, 129, 217–231. [Google Scholar] [CrossRef]
- Asadi-Shekari, Z.; Moeinaddini, M.; Zaly Shah, M. A Bicycle Safety Index for Evaluating Urban Street Facilities. Traffic Inj. Prev. 2015, 16, 283–288. [Google Scholar] [CrossRef]
- Asadi-shekari, Z.; Moeinaddini, M.; Zaly, M. Non-Motorised Level of Service: Addressing Challenges in Pedestrian and Bicycle Level of Service. Transp. Rev. A Transnatl. Transdiscipl. J. 2013, 33, 166–194. [Google Scholar] [CrossRef]
- Lowry, M.B.; Furth, P.; Hadden-Loh, T. Prioritizing New Bicycle Facilities to Improve Low-Stress Network Connectivity. Transp. Res. Part A Policy Pract. 2016, 86, 124–140. [Google Scholar] [CrossRef]
- Hardinghaus, M.; Nieland, S.; Lehne, M.; Weschke, J. Article More than Bike Lanes—A Multifactorial Index of Urban Bikeability. Sustainability 2021, 13, 11584. [Google Scholar] [CrossRef]
- Melis, G.; Masala, E.; Tabasso, M. From the Smart City to the People-Friendly City: Usability of Tools and Data in Urban Planning. In Handbook of Research on Social, Economic, and Environmental Sustainability in the Development of Smart Cities; IGI Global: Hershey, PA, USA, 2015; pp. 363–381. [Google Scholar]
- Zefreh, M.M.; Esztergar-Kiss, D.; Torok, A. Implications of Different Road Pricing Schemes in Urban Areas: A Case Study for Budapest. Proc. Inst. Civ. Eng.—Transp. 2021, 174, 407–418. [Google Scholar] [CrossRef]
- Nuñez, J.Y.M.; Bisconsini, D.R.; Rodrigues da Silva, A.N. Combining Environmental Quality Assessment of Bicycle Infrastructures with Vertical Acceleration Measurements. Transp. Res. Part A Policy Pract. 2020, 137, 447–458. [Google Scholar] [CrossRef]
- Beura, S.K.; Bhuyan, P.K. Development of a Bicycle Level of Service Model for Urban Street Segments in Mid-Sized Cities Carrying Heterogeneous Traffic: A Functional Networks Approach. J. Traffic Transp. Eng. Engl. Ed. 2017, 4, 503–521. [Google Scholar] [CrossRef]
- Matcha, B.N.; Sivanesan, S.; Ng, K.C. Modelling Road Traffic Congestion at Urban Merge Section under Mixed Traffic Conditions. In Proceedings of the Institution of Civil Engineers-Transport; Thomas Telford Ltd.: London, UK, 2021; pp. 1–17. [Google Scholar] [CrossRef]
- Cafiso, S.; Di Graziano, A.; Marchetta, V.; Pappalardo, G. Urban Road Pavements Monitoring and Assessment Using Bike and E-Scooter as Probe Vehicles. Case Stud. Constr. Mater. 2022, 16, e00889. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Liu, P.; Schneider, R.; Ragland, D.R. Investigating Bicyclists’ Perception of Comfort on Physically Separated Bicycle Paths in Nanjing, China. Transp. Res. Rec. 2012, 2317, 76–84. [Google Scholar] [CrossRef]
- Pojani, D.; Bakija, D.; Shkreli, E.; Corcoran, J.; Mateo-Babiano, I. Do Northwestern and Southeastern Europe Share a Common “Cycling Mindset”? Comparative Analysis of Beliefs toward Cycling in the Netherlands and the Balkans. Eur. J. Transp. Infrastruct. Res. 2017, 17, 25–45. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Liu, P.; Ragland, D.R. Physical Environments Influencing Bicyclists’ Perception of Comfort on Separated and on-Street Bicycle Facilities. Transp. Res. Part D 2012, 17, 256–261. [Google Scholar] [CrossRef]
- Zuo, T.; Wei, H. Bikeway Prioritization to Increase Bicycle Network Connectivity and Bicycle-Transit Connection: A Multi-Criteria Decision Analysis Approach. Transp. Res. Part A Policy Pract. 2019, 129, 52–71. [Google Scholar] [CrossRef]
- Schmid-Querg, J.; Keler, A.; Grigoropoulos, G. The Munich Bikeability Index: A Practical Approach for Measuring Urban Bikeability. Sustainability 2021, 13, 428. [Google Scholar] [CrossRef]
- Jain, H.; Tiwari, G.; Zuidgeest, M.H. P Evaluating Bicyclists Comfort and Safety Perception. In Proceedings of the 12th World Conference for Transportation Research, Lisbon, Portugal, 11–15 July 2010; pp. 1–19. [Google Scholar]
- Wage, O.; Feuerhake, U.; Koetsier, C.; Ponick, A.; Schild, N.; Beening, T.; Dare, S. Ride Vibrations: Towards Comfort-Based Bicycle Navigation. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, 43, 367–373. [Google Scholar] [CrossRef]
- Beura, S.K.; Bhuyan, P.K. Development of Artificial Intelligence-Based Bicycle Level of Service Models for Urban Street Segments. Int. J. Intell. Transp. Syst. Res. 2021, 20, 142–156. [Google Scholar] [CrossRef]
- Van Petegem, J.H.; Schepers, P.; Wijlhuizen, G.J. The Safety of Physically Separated Cycle Tracks Compared to Marked Cycle Lanes and Mixed Traffic Conditions in Amsterdam. Eur. J. Transp. Infrastruct. Res. 2021, 21, 19–37. [Google Scholar] [CrossRef]
- Hardinghaus, M.; Papantoniou, P. Evaluating Cyclists’ Route Preferences with Respect to Infrastructure. Sustainability 2020, 12, 3375. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yan, X.; Gao, Z. Vehicle Counting and Traffic Flow Analysis with UAV by Low Rank Representation. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, Macao, 5–8 December 2017; pp. 1401–1405. [Google Scholar] [CrossRef]
- Osman, S.A.; Almoshaogeh, M.; Jamal, A.; Alharbi, F.; Al Mojil, A.; Dalhat, M.A. Intelligent Assessment of Pavement Condition Indices Using Artificial Neural Networks. Sustainability 2023, 15, 561. [Google Scholar] [CrossRef]
- Bíl, M.; Andrášik, R.; Kubeček, J. How Comfortable Are Your Cycling Tracks? A New Method for Objective Bicycle Vibration Measurement. Transp. Res. Part C Emerg. Technol. 2015, 56, 415–425. [Google Scholar] [CrossRef]
- Hölzel, C.; Höchtl, F.; Senner, V. Cycling Comfort on Different Road Surfaces. Procedia Eng. 2012, 34, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Miah, S.; Kaparias, I.; Ayub, N.; Milonidis, E.; Holmes, W. Measuring Cycle Riding Comfort in Southampton Using an Instrumented Bicycle. In Proceedings of the 6th International Conference on Models and Technologies for Intelligent Transportation Systems, Cracow, Poland, 5–7 June 2019. [Google Scholar]
- Gao, J.; Sha, A.; Huang, Y.; Hu, L.; Tong, Z.; Jiang, W. Evaluating the Cycling Comfort on Urban Roads Based on Cyclists’ Perception of Vibration. J. Clean. Prod. 2018, 192, 531–541. [Google Scholar] [CrossRef]
- Menghini, G.; Carrasco, N.; Schüssler, N.; Axhausen, K.W. Route Choice of Cyclists in Zurich. Transp. Res. Part A Policy Pract. 2010, 44, 754–765. [Google Scholar] [CrossRef]
- Pomoni, M. Exploring Smart Tires as a Tool to Assist Safe Driving and Monitor Tire–Road Friction. Vehicles 2022, 4, 744–765. [Google Scholar] [CrossRef]
- Hull, A.; O’Holleran, C. Bicycle Infrastructure: Can Good Design Encourage Cycling? Urban Plan. Transp. Res. 2014, 2, 369–406. [Google Scholar] [CrossRef] [Green Version]
- Gogola, M. Analysing the Vibration of Bicycles on Various Road Surfaces in the City of Žilina. Arch. Motoryz. 2020, 88, 77–97. [Google Scholar] [CrossRef]
- Bernardi, S.; Rupi, F. An Analysis of Bicycle Travel Speed and Disturbances on Off-Street and on-Street Facilities. Transp. Res. Procedia 2015, 5, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Rybarczyk, G.; Wu, C. Bicycle Facility Planning Using GIS and Multi-Criteria Decision Analysis. Appl. Geogr. 2010, 30, 282–293. [Google Scholar] [CrossRef]
- Calvey, J.C.; Shackleton, J.P.; Taylor, M.D.; Llewellyn, R. Engineering Condition Assessment of Cycling Infrastructure: Cyclists’ Perceptions of Satisfaction and Comfort. Transp. Res. Part A Policy Pract. 2015, 78, 134–143. [Google Scholar] [CrossRef]
- Giubilato, F.; Petrone, N. A Method for Evaluating the Vibrational Response of Racing Bicycles Wheels under Road Roughness Excitation. Procedia Eng. 2012, 34, 409–414. [Google Scholar] [CrossRef]
- Wolniak, R. Analysis of the Bicycle Roads System as an Element of a Smart Mobility on the Example of Poland Provinces. Smart Cities 2023, 6, 368–391. [Google Scholar] [CrossRef]
- Winters, M.; Zanotto, M.; Butler, G. The Canadian Bikeway Comfort and Safety (Can-Bics) Classification System: A Common Naming Convention for Cycling Infrastructure. Health Promot. Chronic Dis. Prev. Can. 2020, 40, 288–293. [Google Scholar] [CrossRef] [PubMed]
- SEE.SENSE. Sense Road Surface Monitoring Capability; SEE.SENSE: Newtownards, UK, 2019. [Google Scholar]
- Asadi-Shekari, Z.; Moeinaddini, M.; Aghaabbasi, M.; Cools, M.; Zaly Shah, M. Exploring Effective Micro-Level Items for Evaluating Inclusive Walking Facilities on Urban Streets (Applied in Johor Bahru, Malaysia). Sustain. Cities Soc. 2019, 49, 101563. [Google Scholar] [CrossRef]
- Heinen, E.; van Wee, B.; Maat, K. Commuting by Bicycle: An Overview of the Literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Aghaabbasi, M.; Moeinaddini, M.; Shah, M.Z.; Asadi-shekari, Z. Addressing Issues in the Use of Google Tools for Assessing Pedestrian Built Environments. J. Transp. Geogr. 2018, 73, 185–198. [Google Scholar] [CrossRef]
- Labdaoui, K.; Mazouz, S.; Moeinaddini, M.; Cools, M.; Teller, J. The Street Walkability and Thermal Comfort Index (SWTCI): A New Assessment Tool Combining Street Design Measurements and Thermal Comfort. Sci. Total Environ. 2021, 795, 148663. [Google Scholar] [CrossRef]
- Joo, S.; Oh, C. A Novel Method to Monitor Bicycling Environments. Transp. Res. Part A Policy Pract. 2013, 54, 1–13. [Google Scholar] [CrossRef]
- Joo, S.; Oh, C.; Jeong, E.; Lee, G. Categorizing Bicycling Environments Using GPS-Based Public Bicycle Speed Data. Transp. Res. Part C Emerg. Technol. 2015, 56, 239–250. [Google Scholar] [CrossRef]
- Torbic, D.; Elefteriadou, L.; El-Gindy, M. Methodology for Evaluating Impacts of Rumble Strips on Bicyclists. In Proceedings of the Transportation Research Board 82nd Annual Meeting, Washington, DC, USA, 12–16 January 2003; Transportation Research Board of the National Academies: Washington, DC, USA, 2003; p. 24. [Google Scholar]
- Litzenberger, S.; Christensen, T.; Hofstätter, O.; Sabo, A. Prediction of Road Surface Quality during Cycling Using Smartphone Accelerometer Data. Proceedings 2018, 2, 217. [Google Scholar] [CrossRef] [Green Version]
- Olieman, M.; Marin-Perianu, R.; Marin-Perianu, M. Measurement of Dynamic Comfort in Cycling Using Wireless Acceleration Sensors. Procedia Eng. 2012, 34, 568–573. [Google Scholar] [CrossRef] [Green Version]
- Gemne, G.; Taylor, W. Hand-Arm Vibration and the Central Autonomic Nervous System: A Special Volume of Journal of Low Frequency Noise & Vibration; Multi-Science: Kent, UK, 1983. [Google Scholar]
- Griffin, M.J.; Bovenzi, M. The Diagnosis of Disorders Caused by Hand-Transmitted Vibration: Southampton Workshop 2000. Int. Arch. Occup. Environ. Health 2002, 75, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Vanwalleghem, J.; Mortier, F.; De Baere, I.; Loccufier, M.; Van Paepegem, W. Design of an Instrumented Bicycle for the Evaluation of Bicycle Dynamics and Its Relation with the Cyclist’s Comfort. Procedia Eng. 2012, 34, 485–490. [Google Scholar] [CrossRef]
- Labdaoui, K.; Mazouz, S.; Acidi, A.; Cools, M.; Moeinaddini, M.; Teller, J. Utilizing Thermal Comfort and Walking Facilities to Propose a Comfort Walkability Index (CWI) at the Neighbourhood Level. Build. Environ. 2021, 193, 107627. [Google Scholar] [CrossRef]
- Dixon, L.B. Bicycle and Pedestrian Level-of-Service Performance Measures and Standards for Congestion Management Systems. Transp. Res. Rec. 1996, 1538, 1–9. [Google Scholar] [CrossRef]
- Kazemzadeh, K.; Laureshyn, A.; Hiselius, L.W.; Ronchi, E. Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature. Sustainability 2020, 12, 2944. [Google Scholar] [CrossRef] [Green Version]
- Castañon, U.N.; Ribeiro, P.J.G. Bikeability and Emerging Phenomena in Cycling: Exploratory Analysis and Review. Sustainability 2021, 13, 2394. [Google Scholar] [CrossRef]
- Ivanjko, E.; Kušić, K.; Gregurić, M. Simulational Analysis of Two Controllers for Variable Speed Limit Control. Proc. Inst. Civ. Eng.—Transp. 2022, 175, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Levenberg, E. Estimating Vehicle Speed with Embedded Inertial Sensors. Transp. Res. Part C Emerg. Technol. 2014, 46, 300–308. [Google Scholar] [CrossRef]
- Feizi, A.; Oh, J.S.; Kwigizile, V.; Joo, S. Cycling Environment Analysis by Bicyclists’ Skill Levels Using Instrumented Probe Bicycle (IPB). Int. J. Sustain. Transp. 2019, 14, 722–732. [Google Scholar] [CrossRef]
- Feizi, A.; Joo, S.; Kwigizile, V.; Oh, J.-S. Analysis of Bicycle Environment Using Instrumented Probe Bicycle. J. Transp. Health 2018, 9, S32. [Google Scholar] [CrossRef]
- Mason, G.; Larson, M.; Deng, R.; Reed, D.; Pahlmeyer, M.; Wright, N.; Wu, Z.P.; Yahata, J. A Robust Low Cost Device for Measuring Road Induced Vibrations. J. Sci. Cycl. 2016, 5, 13–17. [Google Scholar]
- Castells-Graells, D.; Salahub, C.; Pournaras, E. On Cycling Risk and Discomfort: Urban Safety Mapping and Bike Route Recommendations. Computing 2020, 102, 1259–1274. [Google Scholar] [CrossRef] [Green Version]
- Ul-Abdin, Z.; De Backer, H.; De Winne, P.; Rajper, S.Z. Ride Quality for Bicycle Paths under Different Pavement Conditions; American Society of Civil Engineers: Reston, VA, USA, 2018. [Google Scholar]
- Esri, R. ArcGIS Desktop: Release 10; Environmental Systems Research Institute (ESRI): Redlands, CA, USA, 2011. [Google Scholar]
- Zahid, M.; Chen, Y.; Khan, S.; Jamal, A.; Ijaz, M.; Ahmed, T. Predicting Risky and Aggressive Driving Behavior among Taxi Drivers: Do Spatio-Temporal Attributes Matter? Int. J. Environ. Res. Public Health 2020, 17, 3937. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahmadi, H.M.; Jamal, A.; Ahmed, T.; Rahman, M.T.; Reza, I.; Farooq, D. Calibrating the Highway Safety Manual Predictive Models for Multilane Rural Highway Segments in Saudi Arabia. Arab. J. Sci. Eng. 2021, 46, 11471–11485. [Google Scholar] [CrossRef]
- Milakis, D.; Athanasopoulos, K. What about People in Cycle Network Planning? Applying Participative Multicriteria GIS Analysis in the Case of the Athens Metropolitan Cycle Network. J. Transp. Geogr. 2014, 35, 120–129. [Google Scholar] [CrossRef]
- Zahid, M.; Jamal, A.; Chen, Y.; Ahmed, T.; Ijaz, M. Predicting Red Light Running Violation Using Machine Learning Classifiers BT—Green Connected Automated Transportation and Safety; Wang, W., Chen, Y., He, Z., Jiang, X., Eds.; Springer: Singapore, 2022; pp. 137–148. [Google Scholar]
- Kenniscentrum Voor Het Fietsbeleid in Vlaanderen Fiets DNA. 2020. Available online: https://fietsberaad.be/documenten/fietsdna2020/ (accessed on 14 November 2022).
- Li, H.; Harvey, J.T.; Thigpen, C.; Wu, R. Surface Treatment Macrotexture and Bicycle Ride Quality; Research Report UCPRC-RR-2013-07; University of California Pavement Research Center: Davis, CA, USA, 2013. [Google Scholar]
Inner Bicycle Path (R70) | |||||
---|---|---|---|---|---|
Run | Maximum Vibration Value | Mean Vibration Value | Standard Deviation of Vibration | Mean Speed (km/h) | Max Speed (km/h) |
1 | 49 | 3.07 | 4.12 | 15.62 | 20.3 |
2 | 31 | 2.98 | 4.01 | 15.64 | 21.1 |
3 | 51 | 2.90 | 4.55 | 15.80 | 20.7 |
4 | 36 | 2.65 | 4.01 | 15.7 | 25.4 |
5 | 37 | 2.62 | 3.92 | 16.1 | 19.9 |
6 | 32 | 2.39 | 3.37 | 15.36 | 20.2 |
Outer bicycle path (R70) | |||||
1 | 37 | 3.08 | 4.26 | 13.31 | 23.8 |
2 | 43 | 3.42 | 4.91 | 12.9 | 22.3 |
3 | 37 | 2.64 | 3.95 | 13.3 | 23.8 |
4 | 37 | 2.61 | 4.01 | 14.22 | 21.18 |
5 | 37 | 2.56 | 3.8 | 13.34 | 23.82 |
6 | 43 | 2.81 | 4.34 | 12.82 | 22.40 |
Street Section ID | AS-1 | AS-2 | AS-3 | AS-4 |
Average Vibration | 2.57 | 2.48 | 3.71 | 3.89 |
Infrastructure Type | Asphalt | Asphalt | Asphalt | Asphalt |
Street Section ID | AS-5 | AS-6 | AS-7 | AS-8 |
Average Vibration | 3.59 | 4.06 | 7.5 | 1 |
Infrastructure Type | Asphalt | Asphalt | Asphalt | Asphalt |
Street Section ID | AS-9 | PS-1 | PS-2 | PS-3 |
Average Vibration | 1.63 | 8.00 | 4.25 | 10.06 |
Infrastructure Type | Asphalt | Paving slabs | Paving slabs | Paving slabs |
Street Section ID | PS-4 | PS-5 | PS-6 | CS-1 |
Average Vibration | 3.3 | 3.72 | 3.22 | 17.78 |
Infrastructure Type | Paving slabs | Paving slabs | Paving slabs | Cobblestone |
Street Section ID | CS-2 | CS-3 | CS-4 | CS-5 |
Average Vibration | 14.15 | 19 | 17.4 | 10.7 |
Infrastructure Type | Cobblestone | Cobblestone | Cobblestone | Cobblestone |
Street Section ID | CO-1 | CO-2 | SPS-1 | SPS-2 |
Average Vibration | 5.82 | 3.07 | 5.47 | 6.48 |
Infrastructure Type | Concrete | Concrete | Small paving slabs | Small paving elements/slabs |
Street Section ID | M-1 | M-2 | M-3 | M-4 |
Average Vibration | 14.09 | 13.06 | 10.9 | 5.50 |
Infrastructure Type | Mixed (small paving slabs and cobblestone) | Mixed (asphalt and cobblestone) | Mixed (asphalt and cobblestone) | Mixed (asphalt and paving slabs) |
Multiple Comparisons | ||||||
---|---|---|---|---|---|---|
Tukey HSD | ||||||
(I) Infrastructure Type | (J) Infra_type | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
Lower Bound | Upper Bound | |||||
Asphalt | Concrete | −3.21500 | 1.28434 | 0.114 | −6.9195 | 0.4895 |
Small paving slabs | −6.90250 * | 1.28434 | <0.001 | −10.6070 | −3.1980 | |
Paving slabs | −9.87857 * | 1.31916 | <0.001 | −13.6834 | −6.0737 | |
Cobblestone | −14.56800 * | 1.23396 | <0.001 | −18.1271 | −11.0089 | |
Concrete | Asphalt | 3.21500 | 1.28434 | 0.114 | −0.4895 | 6.9195 |
Small paving slabs | −3.68750 * | 1.12644 | 0.020 | −6.9365 | −0.4385 | |
Paving slabs | −6.66357 * | 1.16598 | <0.001 | −10.0266 | −3.3005 | |
Cobblestone | −11.35300 * | 1.06864 | <0.001 | −14.4353 | −8.2707 | |
Small paving slabs | Asphalt | 6.90250 * | 1.28434 | <0.001 | 3.1980 | 10.6070 |
Concrete | 3.68750 * | 1.12644 | 0.020 | 0.4385 | 6.9365 | |
Paving slabs | −2.97607 | 1.16598 | 0.103 | −6.3391 | 0.3870 | |
Cobblestone | −7.66550 * | 1.06864 | <0.001 | −10.7478 | −4.5832 | |
Paving slabs | Asphalt | 9.87857 * | 1.31916 | <0.001 | 6.0737 | 13.6834 |
Concrete | 6.66357 * | 1.16598 | <0.001 | 3.3005 | 10.0266 | |
Small paving slabs | 2.97607 | 1.16598 | 0.103 | −0.3870 | 6.3391 | |
Cobblestone | −4.68943 * | 1.11024 | 0.002 | −7.8917 | −1.4872 | |
Cobblestone | Asphalt | 14.56800 * | 1.23396 | <0.001 | 11.0089 | 18.1271 |
Concrete | 11.35300 * | 1.06864 | <0.001 | 8.2707 | 14.4353 | |
Small paving slabs | 7.66550 * | 1.06864 | <0.001 | 4.5832 | 10.7478 | |
Paving slabs | 4.68943 * | 1.11024 | 0.002 | 1.4872 | 7.8917 |
Section ID | Pavement Type | RMS Values | User Reaction (ISO 2631–1) | SEE.SENSE Values | User Reaction |
---|---|---|---|---|---|
AS-1 | Asphalt | 0.302 | Not uncomfortable | 2.57 | Extremely comfortable |
PS-1 | Paving slab | 0.61 | A little uncomfortable | 8.00 | Somewhat comfortable |
CS-1 | Cobblestone | 2.43 | Very uncomfortable | 17.78 | Extremely uncomfortable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, T.; Pirdavani, A.; Janssens, D.; Wets, G. Utilizing Intelligent Portable Bicycle Lights to Assess Urban Bicycle Infrastructure Surfaces. Sustainability 2023, 15, 4495. https://doi.org/10.3390/su15054495
Ahmed T, Pirdavani A, Janssens D, Wets G. Utilizing Intelligent Portable Bicycle Lights to Assess Urban Bicycle Infrastructure Surfaces. Sustainability. 2023; 15(5):4495. https://doi.org/10.3390/su15054495
Chicago/Turabian StyleAhmed, Tufail, Ali Pirdavani, Davy Janssens, and Geert Wets. 2023. "Utilizing Intelligent Portable Bicycle Lights to Assess Urban Bicycle Infrastructure Surfaces" Sustainability 15, no. 5: 4495. https://doi.org/10.3390/su15054495
APA StyleAhmed, T., Pirdavani, A., Janssens, D., & Wets, G. (2023). Utilizing Intelligent Portable Bicycle Lights to Assess Urban Bicycle Infrastructure Surfaces. Sustainability, 15(5), 4495. https://doi.org/10.3390/su15054495