Selection for Sustainable Preservation through In Vitro Propagation of Mature Pyrus spinosa Genotypes Rich in Total Phenolics and Antioxidants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plant Material Preparation and Sample Extraction
2.3. Total Phenol Content (TPC)
2.4. Determination of Antioxidant Capacity (AC)
2.5. Establishment of In Vitro Cultures and Shoot Proliferation
2.6. Effect of Nutrient Medium, BAP Concentration and Light Irradiance
2.7. In Vitro Shoot Rooting and Plantlet Acclimatization
2.8. Data Recording and Statistical Analysis
3. Results and Discussion
3.1. Total Phenol Content (TPC) and Antioxidant Capacity (AC)
3.2. Effect of BAP Concentration on Shoot Multiplication
3.3. Effect of Nutrient Medium and Light Irradiance
3.4. In Vitro Shoot Rooting and Plantlet Acclimatization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zamani, A.; Attar, F.; Maroofi, H. A synopsis of the genus Pyrus (Rosaceae) in Iran. Nord. J. Bot. 2012, 30, 310–332. [Google Scholar] [CrossRef]
- Tsoulpha, P.; Alexandri, S.; Tsaktsira, M. Critical factors for an efficient micropropagation protocol for Pyrus spinosa. J. Appl. Hortic. 2018, 20, 190–195. [Google Scholar] [CrossRef]
- Tzanakis, E.; Kalogeropoulos, T.; Tzimas, S.; Chatzilazarou, A.; Katsoyannos, E. Phenols and antioxidant activity of apple, quince, pomegranate, bitter orange and almond-leaved pear methanolic extracts. e-J. Sci. Tech. 2006, 1, 16–28. [Google Scholar]
- Manolaraki, F.; Sotiraki, S.; Stefanakis, A.; Skampardonis, V.; Volani, M.; Hoste, H. Anthelmintic activity of some Mediterranean browse plants against parasitic nematodes. Parasitology 2010, 137, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Mihajilov-Krstev, T.; Zlatković, B.; Stankov-Jovanović, V.; Ilić, M.; Mitić, V.; Stojanović, G. Antioxidant and antimicrobial activities of almond-leafed pear (Pyrus spinosa Forssk.) fruits. Oxid. Commun. 2013, 36, 1079–1089. [Google Scholar]
- Kundaković, T.; Ćirić, A.; Stanojković, T.; Soković, M.; Kovačević, N. Cytotoxicity and antimicrobial activity of Pyrus pyraster Burgsd. and Pyrus spinosa Forssk. (Rosaceae). Afr. J. Microbiol. Res. 2014, 8, 511–518. [Google Scholar]
- Fadi, M.S.; Hartmann, H.T. Isolation, purification and characterization of an endogenous root-promoting factor obtained from basal section of pear hardwood cuttings. Plant Physiol. 1967, 42, 541–549. [Google Scholar]
- Al-Maarri, K.; Arnaud, Y.; Miginiac, E. Micropropagation of Pyrus communis cultivar ‘Passe Crassane’ seedlings and cultivar ‘Williams’: Factors affecting root formation in vitro and ex vitro. Scien. Hortic. 1994, 58, 207–214. [Google Scholar] [CrossRef]
- Singh, S.K.; Ojha, R.K.; Prasad, K.K. Rooting capacity of cutting of pear (Pyrus communis L.). Environ. Ecol. 2009, 27, 1990–1992. [Google Scholar]
- Dolcet-Sanjuan, R.; Mok, D.W.S.; Mok, M.C. Micropropagation of Pyrus and Cydonia and their responses to Fe-limiting conditions. Plant Cell Tiss. Org. Cult. 1990, 21, 191–199. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Long. 2009, 9, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Sanches-Silva, A.; Testai, L.; Nabavi, S.F.; Battino, M.; Devi, K.P.; Tejada, S.; Sureda, A.; Xu, S.; Yousefi, B.; Majidinia, M.; et al. Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol. Res. 2020, 152, 104626. [Google Scholar] [CrossRef]
- Singh, S.; Sk, M.F.; Sonawane, A.; Kar, P.; Sadhukhan, S.; Sk, M.F.; Sonawane, A.; Kar, P.; Sadhukhan, S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: An in-silico analysis. J. Biomol. Struct. Dyn. 2020, 28, 6249–6264. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Techn. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Reed, B.M.; DeNoma, J.; Wada, S.; Postman, J. Micropropagation of pear (Pyrus sp.). In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants; Lambardi, M., Ozudogru, E., Jain, S., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 3–18. [Google Scholar]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proc. Intl. Plant Prop. Soc. 1980, 30, 421–427. [Google Scholar]
- Driver, J.; Kuniyuki, A.H. In vitro propagation of Paradox walnut rootstock. HortScience 1984, 19, 507–509. [Google Scholar] [CrossRef]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Yin, T.; Chen, Y.; Cai, L.; Tai, Z.; Li, Z.; Liu, C.; Wang, Y.; Ding, Z. Phenolic compounds and antioxidant activities of edible flowers of Pyrus pashia. J. Funct. Foods 2015, 17, 371–379. [Google Scholar] [CrossRef]
- Grygorieva, O.; Kucharska, A.Z.; Piórecki, N.; Klymenko, S.; Vergun, O.; Brindza, J. Antioxidant activities and phenolic compounds in fruits of various genotypes of American persimmon (Diospyros virginiana L.). Acta Sci. Pol. Techn. Aliment. 2018, 17, 117–124. [Google Scholar]
- Chena, G.L.; Chen, S.G.; Zhao, Y.Y.; Luo, C.X.; Li, J.; Gao, Y.Q. Totalphenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Indust. Crops. Prod. 2014, 57, 150–157. [Google Scholar] [CrossRef]
- Ekin, H.N.; Gokbulut, A.; Aydin, Z.U.; Donmez, A.A.; Orhan, I.E. Insight into anticholinesterase and antioxidant potential of thirty-four Rosaceae samples and phenolic characterization of the active extracts by HPLC. Industr. Crops Prod. 2016, 91, 104–113. [Google Scholar] [CrossRef]
- Zahid, K.; Ahmed, M.; Khan, F. Comparative evaluation of total phenolics, total flavonoids content and antiradical activity in six selected species of family Rosaceae using spectroscopic method. Amer. J. Biomed. Sci. Res. 2019, 3, 352–357. [Google Scholar] [CrossRef]
- Yang, S.W.; Lee, H.; Song, J.M.; Choi, S.E.; Cheong, E.J. Analysis of total phenolic, flavonoid contents, and antioxidant capacity extract from leaves of selected accessions of two wild pear species, Pyrus pyrifolia and P. ussuriensis. J. For. Environ. Sci. 2021, 37, 226–234. [Google Scholar] [CrossRef]
- Pandey, N.; Pant, J. Determination of physicochemical and pharmacological screening of leaves and flowers part of Pyrus pashia. Intl. J. Herb. Med. 2020, 8, 28–32. [Google Scholar]
- Kadota, M.; Niimi, Y. Effects of cytokinin types and their concentrations on shoot proliferation and hyperhydricity in in vitro pear cultivar shoots. Plant Cell Tiss. Org. Cult. 2003, 72, 261–265. [Google Scholar] [CrossRef]
- Poudyal, Β.Κ.; Zhang, Y.; Du, G. Adventitious shoot regeneration from the leaves of some pear varieties (Pyrus spp.) grown in vitro. Front. Agr. China 2008, 2, 82–92. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Poudyal, B.K.; Zhang, Y.; Jiao, Z.; Qi, J. Adventitious shoot regeneration from the leaves of in vitro grown ‘Zhongli 1’ pear (Pyrus spp.). Front. Agr. China 2009, 3, 60–66. [Google Scholar] [CrossRef]
- Βerardi, G.; Infante, R.; Neri, D. Micropropagation of Pyrus calleryana Dcn. from seedlings. Scien. Hortic. 1993, 53, 157–165. [Google Scholar] [CrossRef]
- Shibli, R.A.; Ajlouni, M.M.; Jaradat, A.; Aljanabi, S.; Shatnawi, M. Micropropagation in wild pear (Pyrus syrica). Scien. Hortic. 1997, 68, 237–242. [Google Scholar] [CrossRef]
- Caboni, E.; Tonelli, M.G.; Lauri, P.; D’Angeli, S.; Damiano, C. In vitro shoot regeneration from leaves of wild pear. Plant Cell Tiss. Org. Cult. 1999, 59, 1–7. [Google Scholar] [CrossRef]
- Wada, S.; Niedz, R.P.; DeNoma, J.; Reed, B.M. Mesos components (CaCl2, MgSO4, KH2PO4) are critical for improving pear micropropagation. In Vitro Cell. Dev. Biol.-Plant 2013, 49, 356–365. [Google Scholar] [CrossRef]
- Poothong, S.; Reed, B.M. Modeling the effects of mineral nutrition for improving growth and development of micropropagated red raspberries. Scien. Hortic. 2014, 165, 132–141. [Google Scholar] [CrossRef]
- Bell, R.L.; Srinivasan, C.; Lomberk, D. Effect of nutrient media on axillary shoot proliferation and preconditioning for adventitious shoot regeneration of pears. In Vitro Cell. Dev. Biol.-Plant 2009, 45, 708–714. [Google Scholar] [CrossRef]
- Quoirin, M.; Lepoivre, P. Improved media for in vitro culture of Prunus sp. Acta Hortic. 1977, 78, 437–442. [Google Scholar] [CrossRef]
- Cozza, R.; Turco, D.; Bati, C.B.; Bitonti, M.B. Influence of growth medium on mineral composition and leaf histology in micropropagated plantlets of Olea europaea. Plant Cell Tiss. Org. Cult. 1997, 51, 215–223. [Google Scholar] [CrossRef]
- De Monteiro, A.C.B.; Higashi, E.N.; Gonçalves, A.N.; Rodriguez, A.P.M. A novel approach for the definition of the inorganic medium components for micropropagation of yellow passionfruit (Passiflora edulis Sims. f. flavicarpa Deg.). In Vitro Cell. Dev. Biol. Plant 2000, 36, 527–531. [Google Scholar] [CrossRef]
- Gribble, K.; Conroy, J.P.; Holford, P.; Milham, P.J. In vitro uptake of minerals by Gypsophila paniculata and hybrid eucalypts, and relevance to media mineral formulation. Aust. J. Bot. 2002, 50, 713–723. [Google Scholar] [CrossRef]
- Nas, M.N.; Read, P.E. A hypothesis for the development of a defined tissue culture medium of higher plants and micropropagation of hazelnuts. Scien. Hortic. 2004, 101, 189–200. [Google Scholar] [CrossRef]
- Aranda-Peres, A.N.; Peres, L.E.P.; Higashi, E.N.; Martinelli, A.P. Adjustment of mineral elements in the culture medium for the micropropagation of three Vriesea bromeliads from the Brazilian Atlantic Forest: The importance of calcium. HortScience 2009, 44, 106–112. [Google Scholar] [CrossRef]
- Yeo, D.; Reed, B. Micropropagation of three Pyrus rootstocks. HortScience 1995, 30, 620–623. [Google Scholar] [CrossRef] [Green Version]
- Aygun, A.; Dumanoglu, H. In vitro shoot proliferation and in vitro and ex vitro root formation of Pyrus elaeagrifolia Pallas. Front. Plant Sci. 2015, 6, 225. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.-S.; Mullins, M.G. Propagation in vitro of pear, Pyrus communis L., cultivars ‘William’s Bon Chrétien’, ‘Packham’s Triumph’ and ‘Beurré Bosc’. Scien. Hortic. 1984, 23, 51–57. [Google Scholar] [CrossRef]
- Bhojwani, S.S.; Mullins, K.; Cohen, D. In vitro propagation of Pyrus pyrifolia. Scien. Hortic. 1984, 24, 247–254. [Google Scholar] [CrossRef]
- Dimitrova, N.; Nacheva, L.; Berova, M. Optimisation of rooting and acclimatization of Pyrus communis L. with the biostimulator Charkor. Silva 2019, 20, 47–56. [Google Scholar]
Location | Genotype Code | Latitude N | Longitude E |
---|---|---|---|
Agia Anastasia | AA1 | 40.4745249° | 23.1694133° |
AA2 | 40.4743708° | 23.1695997° | |
AA3 | 40.4743795° | 23.1697057° | |
AA4 | 40.4737353° | 23.1718045° | |
AA5 | 40.4780138° | 23.1882478° | |
AA6 | 40.4779023° | 23.1879031° | |
AA7 | 40.4802906° | 23.1907855° | |
AA8 | 40.4805263° | 23.1905726° | |
Chalkidiki | Ch1 | 40.4604397° | 23.3776510° |
Ch2 | 40.4604397° | 23.3776510° | |
Ch3 | 40.4597619° | 23.3768460° | |
Ch4 | 40.4598438° | 23.3775906° | |
Ch5 | 40.4598609° | 23.3773378° | |
Ch6 | 40.4568795° | 23.4084984° | |
Ch7 | 40.4573448° | 23.4074041° | |
Ch8 | 40.4628896° | 23.3385812° | |
Lagadas | L1 | 40.7540624° | 23.1392016° |
L2 | 40.7536982° | 23.1393273° | |
L3 | 40.7567682° | 23.1404019° | |
L4 | 40.7567329° | 23.1409849° | |
L5 | 40.7566468° | 23.1413470° | |
L6 | 40.7551287° | 23.1477250° | |
L7 | 40.7579819° | 23.1565756° | |
L8 | 40.7591659° | 23.1594043° | |
Pieria | P1 | 40.3047421° | 23.4914045° |
P2 | 40.3047421° | 23.4912045° | |
P3 | 40.3031678° | 23.4919882° | |
P4 | 40.3031678° | 23.4919882° | |
P5 | 40.3057794° | 23.4882214° | |
P6 | 40.3058068° | 23.4902324° | |
P7 | 40.3070443° | 23.4839155° | |
P8 | 40.3064999° | 23.4832791° |
Factors | Rooting (%) | Number of Roots | Length of Roots (cm) | ||||||
---|---|---|---|---|---|---|---|---|---|
df | F | Sign. | df | F | Sign. | df | F | Sign. | |
Medium | 1 | 527.368 | 0.000 *** | 1 | 1.432 | 0.233 NS | 1 | 0.000 | 0.986 NS |
IBA conc. | 4 | 736.269 | 0.000 *** | 4 | 5.148 | 0.001 *** | 4 | 6.584 | 0.000 *** |
Medium x IBA conc. | 4 | 448.247 | 0.000 *** | 4 | 20.963 | 0.000 *** | 4 | 16.526 | 0.000 *** |
Rooting (%) | Number of Roots | Length of Roots (cm) | ||||
---|---|---|---|---|---|---|
IBA (μM) | Modified Rooting MS | Pear Medium 1 | Modified Rooting MS | Pear Medium 1 | Modified Rooting MS | Pear Medium 1 |
0.00 | 38.5 ± 7.7 b1A2 | 30.0 ± 7.2 bcA | 1.6 ± 0.2 cB | 6.3 ± 0.7 aA | 4.5 ± 0.2 aA | 2.9 ± 0.7 bB |
2.46 | 44.0 ± 7.8 bA | 20.0 ± 6.3 cdB | 3.0 ± 0.4 bA | 1.0 ± 0.0 dB | 1.3 ± 0.0 dB | 4.2 ± 1.0 aA |
4.90 | 73.0 ± 7.0 aA | 10.0 ± 4.7 dB | 4.0 ± 0.5 aA | 1.0 ± 0.0 dB | 1.8 ± 0.1 cA | 1.5 ± 0.0 dB |
24.60 | 22.0 ± 6.5 cB | 40.0 ± 7.7 bA | 1.5 ± 0.2 cB | 4.0 ± 0.4 bA | 1.6 ± 0.1 cB | 2.7 ± 0.2 bA |
49.00 | 79.0 ± 6.5 aA | 80.0 ± 6.3 aA | 2.7 ± 0.3 bA | 2.4 ± 0.2 cA | 3.9 ± 0.3 bA | 1.8 ± 0.2 cB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandri, S.; Tsaktsira, M.; Hatzilazarou, S.; Kostas, S.; Nianiou-Obeidat, I.; Economou, A.; Scaltsoyiannes, A.; Tsoulpha, P. Selection for Sustainable Preservation through In Vitro Propagation of Mature Pyrus spinosa Genotypes Rich in Total Phenolics and Antioxidants. Sustainability 2023, 15, 4511. https://doi.org/10.3390/su15054511
Alexandri S, Tsaktsira M, Hatzilazarou S, Kostas S, Nianiou-Obeidat I, Economou A, Scaltsoyiannes A, Tsoulpha P. Selection for Sustainable Preservation through In Vitro Propagation of Mature Pyrus spinosa Genotypes Rich in Total Phenolics and Antioxidants. Sustainability. 2023; 15(5):4511. https://doi.org/10.3390/su15054511
Chicago/Turabian StyleAlexandri, Styliani, Maria Tsaktsira, Stefanos Hatzilazarou, Stefanos Kostas, Irini Nianiou-Obeidat, Athanasios Economou, Apostolos Scaltsoyiannes, and Parthena Tsoulpha. 2023. "Selection for Sustainable Preservation through In Vitro Propagation of Mature Pyrus spinosa Genotypes Rich in Total Phenolics and Antioxidants" Sustainability 15, no. 5: 4511. https://doi.org/10.3390/su15054511
APA StyleAlexandri, S., Tsaktsira, M., Hatzilazarou, S., Kostas, S., Nianiou-Obeidat, I., Economou, A., Scaltsoyiannes, A., & Tsoulpha, P. (2023). Selection for Sustainable Preservation through In Vitro Propagation of Mature Pyrus spinosa Genotypes Rich in Total Phenolics and Antioxidants. Sustainability, 15(5), 4511. https://doi.org/10.3390/su15054511