Headland and Field Edge Performance Assessment Using Yield Maps and Sentinel-2 Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yield Maps for the Yield and VI Study
2.2. Field Selection for the VI Study
2.3. Field Classification
- Headland: The area on the two opposite edges of the field where the farming machinery turns or executes boundary movements during the farming operation (red).
- Field Edges: The area on the two opposite edges of the field where the farming machinery moves in a linear direction during the farming operation (blue).
- Field Centre: The central area of the field, excluding the headland and field edges, which is the main farming area (green).
2.4. Yield and VI Data Collection
2.5. Statistics
3. Results
3.1. Comparision between the Yield Map and the VI Results
3.2. Comparision of the VIs between the Headland, Field Edges, and Field Centre
3.3. The Impact of the Field Size on the Vegetation Index Differences between the Three Areas
3.4. The Impact of the Soil Texture on Vegetation Index Differences between the Three Areas
4. Discussion
4.1. Yield and VI Differences between the Headland, Field Edges, and Field Centre
4.2. Impact of the Field Size and Soil Texture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boatman, N.D. Field Margins: Integrating Agriculture and Conservation. In Proceedings of the FAO Symposium, Coventry, UK, 18–20 April 1994. [Google Scholar]
- Sparkes, D.L.; Jaggard, K.W.; Ramsden, S.J.; Scott, R.K. The Effect of Field Margins on the Yield of Sugar Beet and Cereal Crops. Ann. Appl. Biol. 1998, 132, 129–142. [Google Scholar] [CrossRef]
- Wilcox, A.; Perry, N.H.; Boatman, N.D.; Chaney, K. Factors Affecting the Yield of Winter Cereals in Crop Margins. J. Agric. Sci. 2000, 135, 335–346. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Vougioukas, S.G. Minimising the Non-Working Distance Travelled by Machines Operating in a Headland Field Pattern. Biosyst. Eng. 2008, 101, 1–12. [Google Scholar] [CrossRef]
- Jin, J.; Tang, L. Optimal Coverage Path Planning for Arable Farming on 2D Surfaces. Trans. ASABE 2010, 53, 283–295. [Google Scholar] [CrossRef]
- Rodrigues, C.K.; Da Silva Lopes, E.; M’ller, M.M.L.; Genú, A.M. Variabilidade Espacial Da Compactação de Um Solo Submetido Ao Tráfego de Harvester e Forwarder. Sci. For. Sci. 2015, 43, 387–394. [Google Scholar]
- Scott, D.I.; Tams, A.R.; Berry, P.M.; Mooney, S.J. The Effects of Wheel-Induced Soil Compaction on Anchorage Strength and Resistance to Root Lodging of Winter Barley (Hordeum vulgare L.). Soil Tillage Res. 2005, 82, 147–160. [Google Scholar] [CrossRef]
- Spekken, M.; de Bruin, S. Optimized Routing on Agricultural Fields by Minimizing Maneuvering and Servicing Time. Precis. Agric. 2013, 14, 224–244. [Google Scholar] [CrossRef]
- Sunoj, S.; Kharel, D.; Kharel, T.; Cho, J.; Czymmek, K.J.; Ketterings, Q.M. Impact of Headland Area on Whole Field and Farm Corn Silage and Grain Yield. Agron. J. 2021, 113, 147–158. [Google Scholar] [CrossRef]
- Duttmann, R.; Brunotte, J.; Bach, M. Spatial Analyses of Field Traffic Intensity and Modeling of Changes in Wheel Load and Ground Contact Pressure in Individual Fields during a Silage Maize Harvest. Soil Tillage Res. 2013, 126, 100–111. [Google Scholar] [CrossRef]
- Duttmann, R.; Schwanebeck, M.; Nolde, M.; Horn, R. Predicting Soil Compaction Risks Related to Field Traffic during Silage Maize Harvest. Soil Sci. Soc. Am. J. 2014, 78, 408–421. [Google Scholar] [CrossRef]
- Godwin, R.J.; Miller, P.C.H. A Review of the Technologies for Mapping Within-Field Variability. Biosyst. Eng. 2003, 84, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Gaženja, U. The decrease of wheat yield on the plot edges—Headlands due to soil compaction. In Proceedings of the 47th International Symposium, Actual Tasks on Agricultural Engineering, Opatija, Croatia, 5–7 March 2019; pp. 97–106. [Google Scholar]
- Szatanik-Kloc, A.; Horn, R.; Lipiec, J.; Siczek, A.; Boguta, P. Initial Growth and Root Surface Properties of Dicotyledonous Plants in Structurally Intact Field Soil and Compacted Headland Soil. Soil Tillage Res. 2019, 195, 104387. [Google Scholar] [CrossRef]
- Boatman, N.D.; Sotherton, N.W. Agronomic Consequences and Costs of Managing Field Margins for Game and Wildlife Conservation. In Proceedings of the Conference on Environmental Aspects of Applied Biology, York, UK, 19–21 September 1988. [Google Scholar]
- De Snoo, G.R. 13 Cost-Benefits of Unsprayed Crop Edges in Winter Wheat, Sugar Beet and Potatoes. In Unsprayed Field Margins: Implications for Environment, Biodiversity and Agricultural Practice; British Crop Protection Council: Farnham, UK, 1994; Volume 167. [Google Scholar]
- Speller, C.S.; Cleal, R.A.E.; Runham, S.R. A Comparison of Winter Wheat Yields from Headlands with Other Positions in Five Fen Peat Fields; Monographs-British Crop Protection Council: Farnham, UK, 1992; Volume 47. [Google Scholar]
- Cook, S.K.; Ingle, S. The Effect of Boundary Features at the Field Margins on Yields of Winter Wheat. Asp. Appl. Biol. 1997, 50, 459–466. [Google Scholar]
- Kuemmel, B. Theoretical Investigation of the Effects of Field Margin and Hedges on Crop Yields. Agric. Ecosyst. Environ. 2003, 95, 387–392. [Google Scholar] [CrossRef]
- Sparkes, D.L.; Ramsden, S.J.; Jaggard, K.W.; Scott, R.K. The Case for Headland Set-aside: Consideration of Whole-Farm Gross Margins and Grain Production on Two Farms with Contrasting Rotations. Ann. Appl. Biol. 1998, 133, 245–256. [Google Scholar] [CrossRef]
- Barać, S.; Petrović, D.; Radojević, R.; Vuković, A.; Biberdžić, M. Influence of Soil Compaction on Soil Changes and Yield of Barley and Rye at the Headlands and Inner Part of Plot. In Proceedings of the Second International Symposium on Agricultural Engineering, ISAE-2015, Belgrade-Zemun, Serbia, 9–10 October 2015; pp. 27–34. [Google Scholar]
- Ward, M.; Forristal, P.D.; McDonnell, K. Impact of Field Headlands on Wheat and Barley Performance in a Cool Atlantic Climate as Assessed in 40 Irish Tillage Fields. Ir. J. Agric. Food Res. 2020, 59, 85–97. [Google Scholar] [CrossRef]
- Arvidsson, J.; Håkansson, I. Response of Different Crops to Soil Compaction-Short-Term Effects in Swedish Field Experiments. Soil Tillage Res. 2014, 138, 56–63. [Google Scholar] [CrossRef]
- Arvidsson, J.; Keller, T. Soil Stress as Affected by Wheel Load and Tyre Inflation Pressure. Soil Tillage Res. 2007, 96, 284–291. [Google Scholar] [CrossRef]
- Sivarajan, S.; Maharlooei, M.; Bajwa, S.G.; Nowatzki, J. Impact of Soil Compaction Due to Wheel Traffic on Corn and Soybean Growth, Development and Yield. Soil Tillage Res. 2018, 175, 234–243. [Google Scholar] [CrossRef]
- Barbour, P.J.; Martin, S.W.; Burger, W. Estimating Economic Impact of Conservation Field Borders on Farm Revenue. Crop Manag. 2007, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Al-Gaadi, K.A.; Hassaballa, A.A.; Tola, E.; Kayad, A.G.; Madugundu, R.; Alblewi, B.; Assiri, F. Prediction of Potato Crop Yield Using Precision Agriculture Techniques. PLoS ONE 2016, 11, e0162219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Báez-González, A.D.; Chen, P.Y.; Tiscareño-López, M.; Srinivasan, R. Using Satellite and Field Data with Crop Growth Modeling to Monitor and Estimate Corn Yield in Mexico. Crop Sci. 2002, 42, 1943–1949. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.; Daughtry, C.; Johnson, D. Assessing the Variability of Corn and Soybean Yields in Central Iowa Using High Spatiotemporal Resolution Multi-Satellite Imagery. Remote Sens. 2018, 10, 1489. [Google Scholar] [CrossRef] [Green Version]
- Maestrini, B.; Basso, B. Predicting Spatial Patterns of Within-Field Crop Yield Variability. Field Crop. Res. 2018, 219, 106–112. [Google Scholar] [CrossRef]
- Toscano, P.; Castrignanò, A.; Filippo, S.; Gennaro, D.; Vittorio Vonella, A.; Ventrella, D.; Matese, A. A Precision Agriculture Approach for Durum Wheat Yield Assessment Using Remote Sensing Data and Yield Mapping. Agronomy 2019, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Caturegli, L.; Gaetani, M.; Volterrani, M.; Magni, S.; Minelli, A.; Baldi, A.; Brandani, G.; Mancini, M.; Lenzi, A.; Orlandini, S.; et al. Normalized Difference Vegetation Index versus Dark Green Colour Index to Estimate Nitrogen Status on Bermudagrass Hybrid and Tall Fescue. Int. J. Remote Sens. 2020, 41, 455–470. [Google Scholar] [CrossRef]
- Tucker, C.J.; Holben, B.N.; Elgin, J.H.; McMurtrey, J.E. Remote Sensing of Total Dry-Matter Accumulation in Winter Wheat. Remote Sens. Environ. 1981, 11, 171–189. [Google Scholar] [CrossRef] [Green Version]
- Yao, F.; Tang, Y.; Wang, P.; Zhang, J. Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain. Phys. Chem. Earth 2015, 87–88, 142–152. [Google Scholar] [CrossRef]
- Asrar, G.; Kanemasu, E.T.; Yoshida, M. Estimates of Leaf Area Index from Spectral Reflectance of Wheat Under Different Cultural Practices and Solar Angle. Remote Sens. Environ. 1985, 17, 1–11. [Google Scholar] [CrossRef]
- Campos, I.; González-Gómez, L.; Villodre, J.; Calera, M.; Campoy, J.; Jiménez, N.; Plaza, C.; Sánchez-Prieto, S.; Calera, A. Mapping Within-Field Variability in Wheat Yield and Biomass Using Remote Sensing Vegetation Indices. Precis. Agric. 2019, 20, 214–236. [Google Scholar] [CrossRef]
- Patel, N.K.; Patnaik, C.; Dutta, S.; Shekh, A.M.; Dave, A.J. Study of Crop Growth Parameters Using Airborne Imaging Spectrometer Data. Int. J. Remote Sens. 2001, 22, 2401–2411. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS- MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Gatto, S.; Marinello, F.; Pirotti, F. Monitoring Within-Field Variability of Corn Yield Using Sentinel-2 and Machine Learning Techniques. Remote Sens. 2019, 11, 2873. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Huang, J.; Tang, Y.; Wang, X. New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Bu, H.; Sharma, L.K.; Denton, A.; Franzen, D.W. Comparison of Satellite Imagery and Ground-Based Active Optical Sensors as Yield Predictors in Sugar Beet, Spring Wheat, Corn, and Sunflower. Agron. J. 2017, 109, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Sibley, A.M.; Grassini, P.; Thomas, N.E.; Cassman, K.G.; Lobell, D.B. Testing Remote Sensing Approaches for Assessing Yield Variability among Maize Fields. Agron. J. 2014, 106, 24–32. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Paraforos, D.S.; Rodrigues, F.A.; Cohen, Y.; Fountas, S.; Francisco, M.-J.; Pezzuolo, A.; Grigolato, S.; Marinello, F. How Many Gigabytes per Hectare Are Available in the Digital Agriculture Era? A Digitization Footprint Estimation. Comput. Electron. Agric. 2022, 198, 107080. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Verhegghen, A.; Lemoine, G.; Kempeneers, P.; Meroni, M.; van der Velde, M. From Parcel to Continental Scale—A First European Crop Type Map Based on Sentinel-1 and LUCAS Copernicus in-Situ Observations. Remote Sens. Environ. 2021, 266, 112708. [Google Scholar] [CrossRef]
- Cohrs, C.W.; Cook, R.L.; Gray, J.M.; Albaugh, T.J. Sentinel-2 Leaf Area Index Estimation for Pine Plantations in the Southeastern United States. Remote Sens. 2020, 12, 1406. [Google Scholar] [CrossRef]
- Bukowiecki, J.; Rose, T.; Kage, H. Sentinel-2 Data for Precision Agriculture?—A Uav-Based Assessment. Sensors 2021, 21, 2861. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Gatto, S.; Whelan, B.; Sartori, L.; Marinello, F. Ten Years of Corn Yield Dynamics at Field Scale under Digital Agriculture Solutions: A Case Study from North Italy. Comput. Electron. Agric. 2021, 185, 106126. [Google Scholar] [CrossRef]
- CLAAS (n.d.). Lexion 8000. Available online: https://www.claas.com/en/products/combine-harvesters/lexion-8000.html (accessed on 1 February 2023).
- CLAAS (n.d.). Jaguar 900. Available online: https://www.claas.com/en/products/forage-harvesters/jaguar-900.html (accessed on 1 February 2023).
- Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for Automating Error Removal from Yield Maps. Precis. Agric. 2019, 20, 1030–1044. [Google Scholar] [CrossRef]
- Kriging Method in ArcGIS Pro. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/kriging.htm (accessed on 22 January 2023).
- EUROSTAT 2019 European Statistics on Agriculture, Forestry and Fisheries [WWW Document]. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 17 January 2023).
- A Website for Precision Farming Service. Available online: https://onesoil.ai/en/ (accessed on 22 January 2023).
- d’Andrimont, R.; Verhegghen, A.; Lemoine, G.; Kempeneers, P.; Meroni, M.; van der Velde, M. J.R.C. (JRC) EUCROPMAP 2018; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Hengl, T. Sand Content in % (Kg/Kg) at 6 Standard Depths (0, 10, 30, 60, 100 and 200 Cm) at 250 m Resolution (Version V02) [Data Set]. Available online: https://zenodo.org/record/2525662#.Y_9na3bMKUk (accessed on 22 January 2023).
- Chaney, K.; Wilcox, A.; Perry, N.H.; Boatman, N.D. The Economics of Establishing Field Margins and Buffer Zones of Different Widths in Cereal Fields. Asp. Appl. Biol. 1999, 54, 79–84. [Google Scholar]
- Liu, K.; Benetti, M.; Sozzi, M.; Gasparini, F.; Sartori, L. Soil Compaction under Different Traction Resistance Conditions—A Case Study in North Italy. Agriculture 2022, 12, 1954. [Google Scholar] [CrossRef]
- ten Damme, L.; Schjønning, P.; Munkholm, L.J.; Green, O.; Nielsen, S.K.; Lamandé, M. Traction and Repeated Wheeling—Effects on Contact Area Characteristics and Stresses in the Upper Subsoil. Soil Tillage Res. 2021, 211, 105020. [Google Scholar] [CrossRef]
- Kaczorowska–Dolowy, M.; Godwin, R.J.; Dickin, E.; White, D.R.; Misiewicz, P.A. Controlled Traffic Farming Delivers Better Crop Yield of Winter Bean as a Result of Improved Root Development. Agron. Res. 2019, 17, 725–740. [Google Scholar] [CrossRef]
- Li, Y.X.; Tullberg, J.N.; Freebairn, D.M. Wheel Traffic and Tillage Effects on Runoff and Crop Yield. Soil Tillage Res. 2007, 97, 282–292. [Google Scholar] [CrossRef]
- Fleige, H.; Horn, R. Field Experiments on the Effect of Soil Compaction on Soil Properties, Runoff, Interflow and Erosion. Adv. Geoecol. 2000, 32, 258–268. [Google Scholar]
- Rauws, G.; Auzet, A.V. Laboratory Experiments on the Effects of Simulated Tractor Wheelings on Linear Soil Erosion. Soil Tillage Res. 1989, 13, 75–81. [Google Scholar] [CrossRef]
- Prasuhn, V. Soil Erosion in the Swiss Midlands: Results of a 10-Year Field Survey. Geomorphology 2011, 126, 32–41. [Google Scholar] [CrossRef]
- Sanders, S.; Mosimann, T. Erosionsschutz Durch Intervallbegrünung in Fahrgassen: Ergebnisse Aus Versuchen Im Winterweizen. Wasser Abfall Wiesb. 2005, 10, 34–38. [Google Scholar] [CrossRef]
- Boguzas, V.; Håkansson, I. Barley Yield Losses Simulation under Lithuanian Conditions Using the Swedish Soil Compaction Model. In Proceedings of the International Conference on Sustainable Agriculture in Baltic States, Tartu, Estonia, 28–30 June 2001; pp. 24–28. [Google Scholar]
- Ridge, R.E. Trends in Sugar Cane Mechanization. Int. Sugar J. 2001, 103, 150–154. [Google Scholar]
- Obour, P.B.; Kolberg, D.; Lamandé, M.; Børresen, T.; Edwards, G.; Sørensen, C.G.; Munkholm, L.J. Compaction and Sowing Date Change Soil Physical Properties and Crop Yield in a Loamy Temperate Soil. Soil Tillage Res. 2018, 184, 153–163. [Google Scholar] [CrossRef]
- The Canola Council of Canada. Evaluation of Emission Reductions and Cost Savings in Sectional Control Air Seeders, Drills, and Sowing Equipment across the Canadian Prairies; Project No. R19075P; The Canola Council of Canada: Winnipeg, MB, Canada, 2020; pp. 23–26. [Google Scholar]
- Boatman, N.D. Effects of Herbicide Use, Fungicide Use and Position in the Field on the Yield and Yield Components of Spring Barley. J. Agric. Sci. 1992, 118, 17–28. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Arnold, G.M. Factors Affecting Field Weed and Field Margin Flora on a Farm in Essex, UK. Landsc. Urban Plan. 1995, 31, 205–216. [Google Scholar] [CrossRef]
- Welch, R.Y.; Behnke, G.D.; Davis, A.S.; Masiunas, J.; Villamil, M.B. Using Cover Crops in Headlands of Organic Grain Farms: Effects on Soil Properties, Weeds and Crop Yields. Agric. Ecosyst. Environ. 2016, 216, 322–332. [Google Scholar] [CrossRef]
- Lee, W.S.; Alchanatis, V.; Yang, C.; Hirafuji, M.; Moshou, D.; Li, C. Sensing Technologies for Precision Specialty Crop Production. Comput. Electron. Agric. 2010, 74, 2–33. [Google Scholar] [CrossRef]
- Tullberg, J.N.; Yule, D.F.; McGarry, D. Controlled Traffic Farming-From Research to Adoption in Australia. Soil Tillage Res. 2007, 97, 272–281. [Google Scholar] [CrossRef]
- McPhee, J.E.; Antille, D.L.; Tullberg, J.N.; Doyle, R.B.; Boersma, M. Managing Soil Compaction—A Choice of Low-Mass Autonomous Vehicles or Controlled Traffic? Biosyst. Eng. 2020, 195, 227–241. [Google Scholar] [CrossRef]
- Tullberg, J.; Antille, D.L.; Bluett, C.; Eberhard, J.; Scheer, C. Controlled Traffic Farming Effects on Soil Emissions of Nitrous Oxide and Methane. Soil Tillage Res. 2018, 176, 18–25. [Google Scholar] [CrossRef]
- Keller, T.; Dexter, A.R. Plastic Limits of Agricultural Soils as Functions of Soil Texture and Organic Matter Content. Soil Res. 2012, 50, 7–17. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R.; Or, D. Historical Increase in Agricultural Machinery Weights Enhanced Soil Stress Levels and Adversely Affected Soil Functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Schjønning, P.; van den Akker, J.J.H.; Keller, T.; Greve, M.H.; Lamandé, M.; Simojoki, A.; Stettler, M.; Arvidsson, J.; Breuning-Madsen, H. Driver-Pressure-State-Impact-Response (DPSIR) Analysis and Risk Assessment for Soil Compaction—A European Perspective; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 133, ISBN 9780128030523. [Google Scholar]
- Eriksson, J.; Hakansson, I.; Danfors, B. Jordpackning--Markstruktur--Groda; Medd Jordbruktekniska Institutet: Uppsala, Sweden, 1974. [Google Scholar]
- Keller, T.; Défossez, P.; Weisskopf, P.; Arvidsson, J.; Richard, G. SoilFlex: A Model for Prediction of Soil Stresses and Soil Compaction Due to Agricultural Field Traffic Including a Synthesis of Analytical Approaches. Soil Tillage Res. 2007, 93, 391–411. [Google Scholar] [CrossRef]
- Keller, T.; Håkansson, I. Estimation of Reference Bulk Density from Soil Particle Size Distribution and Soil Organic Matter Content. Geoderma 2010, 154, 398–406. [Google Scholar] [CrossRef]
Number | Year | Crop | Size (ha) | Yield (t/ha) | 1-H/C | 1-L/C | ||
---|---|---|---|---|---|---|---|---|
H | L | C | ||||||
1 | 2019 | Silage Maize | 26.62 | 25.71c | 34.14b | 34.82a | 26.17% | 1.96% |
2 | 2019 | Silage Maize | 25.41 | 26.60c | 28.21b | 28.63a | 7.08% | 1.44% |
3 | 2019 | Silage Maize | 4.26 | 30.96c | 31.45b | 32.20a | 3.84% | 2.33% |
4 | 2020 | Silage Maize | 9.38 | 19.51c | 24.50b | 25.47a | 23.39% | 1.85% |
5 | 2021 | Triticale | 3.86 | 19.67b | 20.75a | 20.53a | 4.22% | −1.08% |
6 | 2021 | Triticale | 6.82 | 20.97a | 20.12b | 21.15a | 0.84% | 4.87% |
7 | 2021 | Triticale | 2.66 | 20.91c | 21.56b | 21.78a | 3.99% | 0.98% |
8 | 2021 | Triticale | 10.41 | 19.50c | 22.97b | 23.29a | 16.30% | 1.40% |
9 | 2021 | Silage Maize | 26.62 | 42.31b | 45.37a | 45.24a | 6.46% | −0.29% |
10 | 2021 | Silage Maize | 13.85 | 38.10c | 43.81b | 47.39a | 19.59% | 7.55% |
11 | 2021 | Silage Maize | 10.67 | 34.16c | 41.86b | 44.80a | 23.75% | 6.55% |
12 | 2022 | Maize | 10.37 | 15.37c | 16.51b | 17.06a | 9.89% | 3.24% |
13 | 2022 | Maize | 7.14 | 15.12c | 17.12b | 17.40a | 13.10% | 1.61% |
Average | 12.20% | 2.49% |
Number | NDVI | GNDVI | NDRE | |||
---|---|---|---|---|---|---|
1-H/C | 1-L/C | 1-H/C | 1-L/C | 1-H/C | 1-L/C | |
1 | 16.57% | 2.30% | 12.61% | 2.15% | 19.90% | 4.39% |
2 | 0.20% | 2.14% | 1.76% | 3.74% | 1.68% | 2.86% |
3 | 1.93% | 2.07% | 3.58% | 1.82% | 4.15% | 2.63% |
4 | 4.99% | 1.19% | 3.77% | 1.32% | 5.78% | 1.99% |
5 | 4.99% | 2.20% | 3.77% | 1.96% | 5.78% | 2.86% |
6 | 9.10% | 3.80% | 7.35% | 3.65% | 10.72% | 4.95% |
7 | 5.41% | 0.62% | 5.98% | 0.84% | 9.86% | 1.71% |
8 | 10.06% | 0.34% | 10.20% | 0.23% | 10.49% | −0.04% |
9 | 11.90% | 1.61% | 9.97% | 1.77% | 14.80% | 3.40% |
10 | 7.60% | 2.52% | 3.69% | 2.31% | 13.02% | 2.29% |
11 | 11.68% | 5.62% | 10.66% | 4.80% | 15.92% | 7.57% |
12 | 25.01% | 3.48% | 24.69% | 3.56% | 31.29% | 5.30% |
13 | 30.91% | −1.40% | 27.84% | −0.26% | 36.05% | 0.44% |
Average | 10.80% | 2.04% | 9.68% | 2.15% | 13.80% | 3.10% |
Type | Headland (H) | Field Edges (L) | Field Center (c) | 1-H/C | 1-L/C |
---|---|---|---|---|---|
NDVI | 0.673b | 0.684b | 0.703a | 4.27% | 2.70% |
GNDVI | 0.574b | 0.583b | 0.599a | 4.17% | 2.67% |
NDRE | 0.577c | 0.591b | 0.613a | 5.87% | 3.59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Kayad, A.; Sozzi, M.; Sartori, L.; Marinello, F. Headland and Field Edge Performance Assessment Using Yield Maps and Sentinel-2 Images. Sustainability 2023, 15, 4516. https://doi.org/10.3390/su15054516
Liu K, Kayad A, Sozzi M, Sartori L, Marinello F. Headland and Field Edge Performance Assessment Using Yield Maps and Sentinel-2 Images. Sustainability. 2023; 15(5):4516. https://doi.org/10.3390/su15054516
Chicago/Turabian StyleLiu, Kaihua, Ahmed Kayad, Marco Sozzi, Luigi Sartori, and Francesco Marinello. 2023. "Headland and Field Edge Performance Assessment Using Yield Maps and Sentinel-2 Images" Sustainability 15, no. 5: 4516. https://doi.org/10.3390/su15054516
APA StyleLiu, K., Kayad, A., Sozzi, M., Sartori, L., & Marinello, F. (2023). Headland and Field Edge Performance Assessment Using Yield Maps and Sentinel-2 Images. Sustainability, 15(5), 4516. https://doi.org/10.3390/su15054516